马尔可夫链的定义及例子
- 格式:ppt
- 大小:1.46 MB
- 文档页数:93
第三章 马尔可夫链 一、马尔可夫链的概念马尔可夫过程是一类有重要应用意义的随机过程,它具有如下特征:随机过程‘将来’所处的状态仅与‘现在’所处的状态有关,而与‘过去’曾处于什么状态无关。
马尔可夫过程按其状态和时间参数是离散还是连续的可以分成三类 (1) 时间和状态都是离散的马尔可夫过程,称为马尔可夫链。
(2) 时间连续、状态离散的马尔可夫过程,称为连续时间的马尔可夫链。
(3) 时间和状态都连续的马尔可夫过程。
本章介绍马尔可夫链定义1 设}0,{≥n X n 为随机序列,其状态空间为},,,{210 i i i I =,如果对任意正整数n 及任意n+2个状态I i i i i n ∈+1210,,,, ,有},,,{110011n n n n i X i X i X i X P ====++}{11n n n n i X i X P ===++则称此随机序列}0,{≥n X n 为马尔可夫链。
若将时刻n 称为‘现在’,将时刻n+1称为‘将来’,而把0,1,2,……,n-1称为‘过去’。
定义中的等式便可通俗解释为:在已知}0,{≥n X n ‘现在’所处的状态条件下,‘将来’所要达到的状态与‘过去’所经历的状态无关,这一特性常称为马尔可夫的无后效性。
例1.一个n 级数字传输系统,每一级的输入和输出信号只取0或1两个值,每一级的输出是下一级的输入;并假定当一级输入为0时,其输出为0和为1的概率分别为p 和1-p;当输入为1时,其输出为1和0的概率分别为p 和1-p (见图)令Xn 表示第n 级输出,则{ Xn,n ≥0}便为一个马尔可夫链。
例2.从1,2,……,N 数字中任取一个数,记为X0;再从1,2,……,X0数字中任取一个数,记为X1;再从1,2,……,X1中任取一个数,记为X2;依此类推,在1,2,……,Xn-1中任取一个数,记为Xn 。
可以证明{ Xn,n ≥0}为马尔可夫链。
事实上,{ Xn,n ≥0}的状态空间为I={1,2,……,N},对任意正整数n ,取n+1个状态I i i i i n ,,,,210 ,由题意可知故{ Xn,n ≥0}为马尔可夫链。
马尔可夫链性质马尔可夫链的性质及简单分类1。
关于马尔可夫性的定义: Markov chain(M)是一个基于(随机)概率分布,或者更确切地说一个集合,这里的概率取决于一个分布的参数值。
一般用“ M”来表示这种性质。
2。
单个马尔可夫链的特征马尔可夫链是有限个无限深的、具有有限个状态和无限个后继的动态过程。
例如,如果考虑在一次掷一颗色子中不被点到次数最多的那个动作为初始状态,那么将该动作进行第k次后停止并且记为k+1,从而就形成了一条以0为状态、具有0个后继的马尔可夫链。
3。
M 的稳定性①一条马尔可夫链是稳定的,如果存在一个稳定点,则它必定收敛于一个极小值。
②无穷大的马尔可夫链不是稳定的,因为无限大的马尔可夫链没有极小点。
③一条马尔可夫链是不稳定的,如果存在一个临界值,那么它将不能收敛到一个极小值。
④当m= 1时,M为不稳定的,因为此时不存在一个能使得M在不断移动中达到极小值的事件。
4。
多重马尔可夫链的稳定性①当m=1时,每个马尔可夫链都是稳定的,但是有一个M-1,即当m=1时, M至少存在两个状态。
②当m为有限值时,它的收敛速度相当快。
所以可以利用它实现无限大的马尔可夫链的分析。
5。
稳定性的相关例子:单个马尔可夫链,初始状态集( 0, 1)多个马尔可夫链,初始状态集( 1, 0)多重马尔可夫链,初始状态集( 1, n-1)马尔可夫链的多样性对比类似于巴斯德的多样性:只有三个简单的经典情况:一组确定的物理事件;一组随机变量;一组标准的模式。
6。
平衡状态:给定初始状态,单个马尔可夫链不可能达到平衡状态,而多重马尔可夫链可以通过某种算法达到平衡状态。
7。
平衡状态下单个马尔可夫链的产生( 1)可以设想,只要每个平衡状态都是不稳定的,那么有无限多个初始状态集,其中有多个不同的选择。
( 2)单个马尔可夫链不可能生成的情况:对于给定的马尔可夫链来说,如果一开始的状态集不为空,那么平衡状态也一定不会为空。
马尔可夫链▏小白都能看懂的马尔可夫链详解1.什么是马尔可夫链在机器学习算法中,马尔可夫链(Markov chain)是个很重要的概念。
马尔可夫链(Markov chain),又称离散时间马尔可夫链(discrete-time Markov chain),因俄国数学家安德烈·马尔可夫(俄语:Андрей Андреевич Марков)得名,为状态空间中经过从一个状态到另一个状态的转换的随机过程。
该过程要求具备“无记忆”的性质:下一状态的概率分布只能由当前状态决定,在时间序列中它前面的事件均与之无关。
这种特定类型的“无记忆性”称作马尔可夫性质。
马尔科夫链作为实际过程的统计模型具有许多应用。
在马尔可夫链的每一步,系统根据概率分布,可以从一个状态变到另一个状态,也可以保持当前状态。
状态的改变叫做转移,与不同的状态改变相关的概率叫做转移概率。
随机漫步就是马尔可夫链的例子。
随机漫步中每一步的状态是在图形中的点,每一步可以移动到任何一个相邻的点,在这里移动到每一个点的概率都是相同的(无论之前漫步路径是如何的)。
2.一个经典的马尔科夫链实例用一句话来概括马尔科夫链的话,那就是某一时刻状态转移的概率只依赖于它的前一个状态。
举个简单的例子,假如每天的天气是一个状态的话,那个今天是不是晴天只依赖于昨天的天气,而和前天的天气没有任何关系。
这么说可能有些不严谨,但是这样做可以大大简化模型的复杂度,因此马尔科夫链在很多时间序列模型中得到广泛的应用,比如循环神经网络RNN,隐式马尔科夫模型HMM等。
假设状态序列为由马尔科夫链定义可知,时刻Xt+1 的状态只与Xt 有关,用数学公式来描述就是:既然某一时刻状态转移的概率只依赖前一个状态,那么只要求出系统中任意两个状态之间的转移概率,这个马尔科夫链的模型就定了。
看一个具体的例子。
这个马尔科夫链是表示股市模型的,共有三种状态:牛市(Bull market), 熊市(Bear market)和横盘(Stagnant market)。
马尔可夫链的基本概念马尔可夫链是一种特殊的随机过程,广泛应用于统计学、机器学习、经济学、计算机科学等多个领域。
为了深入理解马尔可夫链的概念,我们先从基本定义开始,再逐步探讨其性质、分类、应用及实例分析。
一、马尔可夫链的定义马尔可夫链是一种具有“无记忆”特性的随机过程,即在给定当前状态的前提下,未来状态与过去状态无关。
换句话说,系统的未来发展只依赖于当前的状态,而不依赖于以前的状态。
这一特性通常被称为“马尔可夫性”,是马尔可夫链最大的特点。
在形式上,我们可以定义一个离散时间的马尔可夫链为一个由状态集合 ( S ) 组成的序列,其中 ( S ) 可能是有限的也可能是无限的。
设 ( X_n ) 为在时间 ( n ) 时刻该过程所处的状态,若满足条件:[ P(X_{n+1} = j | X_n = i, X_{n-1} = k, , X_0 = m) =P(X_{n+1} = j | X_n = i) ]其中,( P ) 是条件概率,这就表明该过程符合马尔可夫性质。
二、马尔可夫链的基本组成要素状态空间:状态空间是指系统所有可能的状态集合,通常用集合 ( S ) 表示。
例如,一个简单天气模型可以将状态空间定义为 ( S = {晴天, 雨天} )。
转移概率:马尔可夫链中的转移概率是指从一个状态转移到另一个状态的概率。
对于有限状态空间,转移概率通常用转移矩阵表示,其元素 ( P_{ij} ) 表示从状态 ( i ) 转移到状态 ( j ) 的概率。
初始分布:初始分布描述了系统在时间 ( t=0 ) 时,各个状态出现的概率。
通常用一个向量表示,如 ( _0(i) ) 代表在初始时刻处于状态 ( i ) 的概率。
三、马尔可夫链的性质马尔可夫链具有许多重要的性质,其中最为关键的是遍历性和极限性。
遍历性:如果一个马尔可夫链在长期运行后,将以一种稳定的方式达到各个状态,并且这个稳态与初始选择无关,那么我们称它为遍历。
换句话说,一个遍历性的马尔可夫链在达到平稳分布后,各个状态出现的概率将保持不变。
马尔可夫链的基本概念马尔可夫链是一种数学模型,用于描述具有马尔可夫性质的随机过程。
马尔可夫性质指的是在给定当前状态的情况下,未来状态的概率只与当前状态有关,与过去状态无关。
马尔可夫链由一组状态和状态之间的转移概率组成,可以用于模拟和预测各种随机过程,如天气变化、股票价格波动等。
一、马尔可夫链的定义马尔可夫链由状态空间和转移概率矩阵组成。
状态空间是指所有可能的状态的集合,用S表示。
转移概率矩阵是一个n×n的矩阵,其中n 是状态空间的大小。
转移概率矩阵的元素表示从一个状态转移到另一个状态的概率。
二、马尔可夫链的性质1. 马尔可夫性质:在给定当前状态的情况下,未来状态的概率只与当前状态有关,与过去状态无关。
2. 遍历性:从任意一个状态出发,经过有限步骤后可以到达任意一个状态。
3. 周期性:一个状态可以分为周期为k的状态和非周期状态。
周期为k的状态在经过k步后才能返回原状态,非周期状态的周期为1。
4. 不可约性:如果一个马尔可夫链中的任意两个状态都是可达的,那么该马尔可夫链是不可约的。
5. 非周期马尔可夫链的收敛性:如果一个马尔可夫链是非周期的且不可约的,那么它具有收敛性,即在经过足够多的步骤后,状态分布会趋于稳定。
三、马尔可夫链的应用马尔可夫链在许多领域都有广泛的应用,包括自然语言处理、机器学习、金融市场分析等。
1. 自然语言处理:马尔可夫链可以用于语言模型的建立,通过分析文本中的词语之间的转移概率,可以预测下一个词语的出现概率,从而实现自动文本生成、机器翻译等任务。
2. 机器学习:马尔可夫链可以用于序列数据的建模和预测,如音频信号处理、图像处理等。
通过分析序列数据中的状态转移概率,可以预测下一个状态的出现概率,从而实现序列数据的预测和分类。
3. 金融市场分析:马尔可夫链可以用于分析金融市场的波动性和趋势。
通过分析股票价格的状态转移概率,可以预测未来股票价格的走势,从而指导投资决策。
四、马尔可夫链的改进和扩展马尔可夫链的基本概念可以通过改进和扩展来适应更复杂的问题。
马尔可夫链的基本概念与应用实例马尔可夫链是一种数学模型,用于描述一个过程,该过程在任何给定状态下进行的概率取决于前一状态,而与过去状态无关。
它在许多领域中有着广泛的应用,如统计学、经济学、化学、物理学等等。
本文将对马尔可夫链的基本概念和一些应用实例进行阐述。
一、马尔可夫链的基本概念马尔可夫链是一种随机过程,在任何给定状态下,转移到另一个状态的概率只取决于前一个状态,而与之前的状态无关。
这被称为马尔可夫性质。
因此一个马尔可夫链可以完全由初始状态和转移概率矩阵来描述。
1. 状态空间状态空间是指一个马尔可夫链中所有可能的状态的集合。
它可以是有限的,也可以是无限的。
例如,一个投掷硬币的例子,状态空间为{正面, 反面}。
2. 转移概率矩阵转移概率矩阵描述的是从一个状态到另一个状态的概率。
在一个马尔可夫链中,概率矩阵的每一行表示从一个状态转移到所有其他状态的概率。
在一个有限状态空间中,概率矩阵是一个n x n 的矩阵(n表示状态的数量)。
例如一个2 x 2的矩阵表示如下:s1 s2s1 p11 p12s2 p21 p22其中,p11 表示从状态 s1 转移到状态 s1 的概率;p12 表示从状态 s1 转移到状态 s2 的概率;p21 表示从状态 s2 转移到状态 s1 的概率;p22 表示从状态 s2 转移到状态 s2 的概率。
3. 初始状态概率分布每个马尔可夫链起始状态可以是任何一个状态。
初始状态概率分布表示从哪个可能的起始状态开始进行模型。
它通常会假定为一个向量,其中每个元素表示该状态成为起始状态的概率。
二、马尔可夫链的应用实例随机漫步是马尔可夫链的一个重要应用。
在随机漫步中,一个行动的结果只取决于之前的状态,而与其之前的状态无关。
这种情况下,马尔可夫链为该过程提供了一个可靠的模型。
在金融领域,股市价格变动也被认为是一个形式的马尔可夫链。
一个股票的价格在任何时间不仅取决于过去的价格,还受到多种经济因素的影响。
马尔可夫链在文本生成中的应用随着人工智能的发展,越来越多的技术被应用到了文本生成中。
其中,马尔可夫链就是一种非常重要的技术。
本文将介绍马尔可夫链的基本概念、在文本生成中的应用以及其优缺点。
一、马尔可夫链的基本概念马尔可夫链是指一种随机过程,它具有“无记忆”的特性。
也就是说,它的下一个状态只与当前状态相关,而与历史状态无关。
在数学上,马尔可夫链可以用一个状态转移矩阵来表示。
这个矩阵描述了在不同状态下,如何以一定的概率转移到其他状态。
举个简单的例子,假设我们有一个只含有两种词的句子:hello world。
我们可以用一个二阶马尔可夫链来生成新的句子。
这个马尔可夫链的状态包含了前两个单词。
也就是说,如果当前的状态是“hello world”,那么下一个单词只与这两个单词相关,而与句子的其他部分无关。
例如,如果下一个单词是“hello”,那么我们可以得到一个新的句子“world hello”。
二、马尔可夫链在文本生成中的应用马尔可夫链在文本生成中的应用非常广泛。
例如,在自然语言处理中,我们可以用马尔可夫链来生成新的句子。
为了实现这个目标,我们需要做以下几件事情。
1.建立马尔可夫链模型首先,我们需要建立一个马尔可夫链模型。
这个模型应该包含所有的状态和状态之间的概率转移矩阵。
在实际中,我们通常使用n阶马尔可夫链来生成新的文本。
n的大小决定了模型的复杂度。
通常来说,n的取值范围是1到5。
2.训练模型接下来,我们需要给模型提供大量的训练数据,以便它能够学习到不同的状态之间的概率转移规律。
这个训练数据可以是一个文本文件,也可以是一个网站的内容。
通常来说,训练数据越多,模型的效果越好。
3.生成新的文本最后,我们可以用已训练好的模型来生成新的文本。
具体来说,我们可以通过随机选择一个初始状态,从而得到一个新的单词。
接着,我们可以通过查找当前状态下的概率转移矩阵,来选择下一个单词。
然后,我们将新的单词加入到生成的文本中,并更新状态。
第四章4.1 马尔可夫链的的概念与转移概率一、知识回顾二、马尔可夫链的的定义三、转移概率四、马尔可夫链的一些简单例子五、总结一、知识回顾1. 条件概率定义:设A,B为两个事件,且P(A)>0,称P(B|A)=P(AB) P(A)为事件A发生条件下B事件发生的条件概率。
将条件概率公式移项即得到所谓的乘法公式:P(AB)=P(A)P(B|A)2.全概率公式设试验E的样本空间为S,A为E的事件,若B1,B2,⋯,B n为S的一个完备事件组,既满足条件:1).B1,B2,⋯,B n两两互不相容,即B i B j=∅,i≠j,i,j=1,2,⋯,n2). B1∪B2∪⋯∪B n=S,且有P(B i)>0,i=1,2,⋯,n,则P(A)=∑P(B i)P(A|B i)ni=1此式称为全概率公式。
3.矩阵乘法矩阵乘法的定义A=(a11a12a13a21a22a23),B=(b11b12b21b22b31b32)C=(c11c12c21c22)如果c11=a11×b11+a12×b21+a13×b31c12=a11×b12+a12×b22+a13×b32c21=a21×b11+a22×b21+a23×b31c22=a21×b12+a22×b22+a23×b32那么矩阵C叫做矩阵A和B的乘积,记作C=AB4.马尔可夫过程的分类马尔可夫过程按其状态和时间参数是连续的或离散的,可分为三类:(1)时间、状态都是离散的马尔科夫过程,称为马尔可夫链;(2)时间连续、状态离散的马尔科夫过程称为连续时间的马尔可夫链的;(3)时间、状态都连续的马尔科夫过程。
二、马尔科夫链的定义定义 4.1设有随机过程{X n,n∈T},若对于任意的整数n∈T和任意的i0,i1,…,i n+1∈I,条件概率都满足P{X n+1=i n+1|X0=i0,X1=i1,…,X n=i n}=P{X n+1=i n+1|X n=i n}(4.1.1)则称{X n,n∈T}为马尔科夫链,简称马氏链。
随机过程中的马尔可夫链与随机游走马尔可夫链和随机游走是随机过程中两个重要的概念,它们在各个领域的建模和分析中都有着广泛的应用。
本文将介绍马尔可夫链和随机游走的基本概念、性质和应用,帮助读者全面了解和认识这两个重要的随机过程。
一、马尔可夫链1. 马尔可夫链的定义马尔可夫链是一种离散时间的随机过程,在某一时刻的状态只依赖于前一时刻的状态,与之前的状态无关。
马尔可夫链具有马尔可夫性质,即未来的状态只与当前的状态有关,与过去的状态无关。
2. 马尔可夫链的转移概率马尔可夫链的状态转移是通过概率矩阵描述的。
概率矩阵P=(pij)的第i行第j列元素pij表示从状态i转移到状态j的概率。
概率矩阵满足以下条件:每一行的元素之和为1,且所有元素都非负。
3. 马尔可夫链的平稳分布如果一个马尔可夫链满足某些条件,那么它将具有平稳分布。
平稳分布是指在长时间运行后,马尔可夫链中各个状态的概率趋于稳定,不再发生变化。
二、随机游走1. 随机游走的定义随机游走是一种在数学上描述随机过程的模型,其基本思想是在某个状态空间中随机地进行步长为1的移动。
每次移动的方向和位置都是根据特定的概率分布决定的。
2. 随机游走的简单例子一个简单的随机游走的例子是一维平面上的步长为1的游走。
从原点开始,每次向左或向右移动,移动方向由一个公平的硬币决定。
经过n次移动后,游走的位置可以用一个整数表示。
3. 随机游走的性质随机游走具有一些有趣的性质。
首先,随机游走是马尔可夫链的一个特例,因为每一步的移动只依赖于当前的位置。
其次,随着游走次数的增加,游走的位置呈现出一定的规律性,如对称性、回归性等。
这些性质在实际问题的建模和分析中有重要的应用价值。
三、马尔可夫链与随机游走的应用1. 马尔可夫链的应用马尔可夫链在很多领域有广泛的应用。
在自然语言处理中,马尔可夫链可以用于语言模型的建立。
在金融领域,马尔可夫链可以用于股票价格模型的构建。
此外,在生物学、物理学、工程学等领域,马尔可夫链也有着重要的应用。
马尔可夫链具体实例1蒙特卡洛马尔可夫链蒙特卡洛马尔可夫链(Monte Carlo Markov Chain,简称MCMC)是一种广泛应用的数据模拟方法,得名于20世纪40年代经典的蒙特卡洛算法。
它是一种随机算法,可以在无数据或有限数据的情况下,根据指定的概率分布,从而利用单个链来模拟出有关数据集的信息。
2工作原理蒙特卡洛马尔可夫链的基本原理是:假设一个样本数据集可以由一组独立的随机变量X1,X2,···,Xn,表示,其中Xi是根据一个未知概率分布f(Xi|Θ),在一个潜在参数空间Θ2中取值。
其中Θ是一组未知参数,这些参数定义了数据集的概率分布及其统计属性,并最终决定了数据集的行为。
蒙特卡洛马尔可夫链利用一种抱着穷尽所有可能性的思想,用一条链将所有假设的可能性考虑进来,这样就可以利用上述参数空间Θ2中的参数Θ调整特定的概率分布,从而确定该样本的潜在参数。
此外,MCMC还利用概率流量来确定每次尝试的状态,从而有效地收敛参数,最终获得数据模型的参数。
3如何使用学习MCMC的最简单的方法是将其应用于蒙特卡洛算法。
首先,需要构建参数空间Θ2,将参数Θ根据可能性来进行划分。
接下来,通过一个未知概率f(Xi|Θ)计算样本点Xi。
然后,通过把潜在参数Θ替换为具有完全参数的新参数θ',将其应用于f(Xi|θ’),重复这一步骤,直到收敛,最终得到样本数据集的参数。
4应用MCMC有着众多的应用,不仅可以用于统计学中的数据分析,而且在实际的商业运用中也发挥着重要的作用。
例如,淘宝和京东在推荐商品时,会利用MCMC动态调整其抵押推荐系统的参数,从而更好地向客户推荐购买更多符合用户需求的商品,同时达到双赢的目的。
5总结蒙特卡洛马尔可夫链(MCMC)是一种基于统计的模拟方法,它可以通过利用单个链上的多次尝试,从而根据假设的概率分布,实现从独立变量Xi到参数Θ的潜在参数变换,最终实现数据集的整体分析。