马尔科夫链例题整理
- 格式:ppt
- 大小:1.26 MB
- 文档页数:61
马尔可夫链例题讲解
马尔可夫链是一个数学模型,用于描述一系列状态之间的随机转移。
每个状态的未来只取决于其当前状态,而与过去的状态无关。
以下是一个马尔可夫链的简单例题及其讲解:
例题:求销售状态的转移概率矩阵
题目描述:记录了某抗病毒药的6年24个季度的销售情况,得到表1。
试求其销售状态的转移概率矩阵。
表1 某抗病毒药24个季度的销售情况
季度销售状态
Q1 畅销
Q2 畅销
Q3 畅销
... ...
Q24 畅销
分析表中的数据,其中有15个季度畅销,9个季度滞销,连续出现畅销和
由畅销转入滞销以及由滞销转入畅销的次数均为7,连续滞销的次数为2。
由此,可得到下面的市场状态转移情况表(表2)。
表2 市场状态转移情况表
下季度药品所处的市场状态 1(畅销) 2(滞销)本季度药品所处的市
场状态
1(畅销) 7 7 1(畅销)
2(滞销) 7 2 2(滞销)
现计算转移概率:以频率代替概率,可得连续畅销的概率:P(连续畅销) =
7/15。
同样得由畅销转入滞销的概率:P(畅销→滞销) = 7/15。
滞销转入畅销的概率:P(滞销→畅销) = 7/15。
连续滞销的概率:P(连续滞销) = 2/15。
综上,得销售状态转移概率矩阵为:P=(P(连续畅销) P(畅销→滞销) P(滞销→畅销) P(连续滞销))=(7/15 7/15 7/15 2/15)。
从上面的计算过程知,所求转移概率矩阵P的元素其实可以直接通过表2中的数字计算而得到,即将表中数分母中的数为15减1是因为第24季度是
畅销,无后续记录,需减1。
马尔科夫链(与数列结合的概率递推问题)如果要评选出 2023 年各地模拟题中最“成功”的题目,我想非“马尔科夫链”莫属了,尽管2023 年新高考I 卷出乎了很多“命题专家”的意料,但第 21 题考察了马尔科夫链,可谓为广大“专家”“名卷”“押题卷”挽回了一些颜面。
2023年新高考I 卷第21题的投篮问题是马尔可夫链;再往前的热点模考卷中,2023年杭州二模第21题的赌徒输光问题是马尔可夫链,2023年茂名二模的摸球问题是马尔可夫链;再往更前的2019年全国I 卷药物试验也是马尔可夫链,在新人教A 版选择性必修三 P91 页 拓展探索中的第10题是传球问题,是马尔科夫链的典型模型,可以看出自从新教材引入全概率公式(新人教A 版选择性必修三 P49 页),可想而知,未来会有越来越多的递推型概率难题出现模考试题中!因此,在复习备考中全概率等系列内容需要格外关注马尔科夫链作为一种命题模型出现了,马尔科夫链在题中的体现可以简单的概括为全概率公式+数列递推,对于高中生而言,马尔科夫链其实也不难理解。
本文主要介绍了马尔科夫链和一维随机游走模型在高考中的几种具体的应用情形,希望对各位接下来的复习和备考有一些帮助。
基本原理虽然贝叶斯公式不做要求,但是全概率公式已经是新高考考查内容了,利用全概率公式,我们既可以构造某些递推关系求解概率,还可以推导经典的一维随机游走模型,即:设数轴上一个点,它的位置只能位于整点处,在时刻0=t 时,位于点)(+∈=N i i x ,下一个时刻,它将以概率α或者β(1),1,0(=+∈βαα)向左或者向右平移一个单位. 若记状态i t X =表示:在时刻t 该点位于位置)(+∈=N i i x ,那么由全概率公式可得:)|()()|()()(1111111+==++=−==+−==+⋅+⋅=i t i t i t i t i t i t i t X X P X P X X P X P X P另一方面,由于αβ==+==+−==+)|(,)|(1111i t i t i t i t X X P X X P ,代入上式可得:11−+⋅+⋅=i i i P P P βα.进一步,我们假设在0=x 与),0(+∈>=N m m m x 处各有一个吸收壁,当点到达吸收壁时被吸收,不再游走.于是,1,00==m P P .随机游走模型是一个典型的马尔科夫过程.进一步,若点在某个位置后有三种情况:向左平移一个单位,其概率为a ,原地不动,其概率为b ,向右平移一个单位,其概率为c ,那么根据全概率公式可得:11+−++=i i i i cP bP aP P2023·新高考Ⅰ卷T211.乙两人投篮,每次由其中一人投篮,规则如下:若命中则此人继续投籃,若末命中则换为对方投篮.无论之前投篮情况如何,甲每次投篮的命中率均为0.6,乙每次投篮的命中率均为0.8.由抽签确定第1次投篮的人选,第1次投篮的人是甲、乙的概率各为0.5. (1)求第2次投篮的人是乙的概率; (2)求第i 次投篮的人是甲的概率; (3)已知:若随机变量i X 服从两点分布,且()()110,1,2,,i i i P X P X q i n ==−===⋅⋅⋅,则11n ni i i i E X q == = ∑∑.记前n 次(即从第1次到第n 次投篮)中甲投篮的次数为Y ,求()E Y . 【解析】(1)记“第i 次投篮的人是甲”为事件i A ,“第i 次投篮的人是乙”为事件i B ,所以,()()()()()()()21212121121||P B P A B P B B P A P B A P B P B B =+=+()0.510.60.50.80.6×−+×.(2)设()i i P A p =,依题可知,()1i i P B p =−,则()()()()()()()11111||i i i i i i i i i i i P A P A A P B A P A P A A P B P A B +++++=+=+,即()()10.610.810.40.2i i i i p p p p +=+−×−=+, 构造等比数列{}i p λ+,设()125i i p p λλ++=+,解得13λ=−,则1121353i i p p + −=−,又11111,236p p =−=,所以13i p−是首项为16,公比为25的等比数列,即11112121,365653i i i i p p −−−=×=×+. (3)因为1121653i i p − =×+,1,2,,i n =⋅⋅⋅, 所以当*N n ∈时,()122115251263185315nnn n n E Y p p p − =+++=×+=−+ − ,故52()11853nnE Y=−+.2019·全国Ⅰ卷2.为治疗某种疾病,研制了甲、乙两种新药,希望知道哪种新药更有效,为此进行动物试验.试验方案如下:每一轮选取两只白鼠对药效进行对比试验.对于两只白鼠,随机选一只施以甲药,另一只施以乙药.一轮的治疗结果得出后,再安排下一轮试验.当其中一种药治愈的白鼠比另一种药治愈的白鼠多4只时,就停止试验,并认为治愈只数多的药更有效.为了方便描述问题,约定:对于每轮试验,若施以甲药的白鼠治愈且施以乙药的白鼠未治愈则甲药得1分,乙药得1−分;若施以乙药的白鼠治愈且施以甲药的白鼠未治愈则乙药得1分,甲药得1−分;若都治愈或都未治愈则两种药均得0分.甲、乙两种药的治愈率分别记为α和β,一轮试验中甲药的得分记为X . (1)求X 的分布列.(2)若甲药、乙药在试验开始时都赋予4分,)0,1,2,,8(i p i =⋅⋅⋅表示“甲药的累计得分为i 时,最终认为甲药比乙药更有效”的概率,则00p =,81p =,11()127i i i i p ap bp cp i ==++…-+,,,,其中)1(a P X ==-,(0)b P X == (1)c PX ==. 假设0.5α=,0.8β=. ①证明:1)0{,1,2,,}7(i i p p i−=⋅⋅⋅+为等比数列; ②求4p ,并根据4p 的值解释这种试验方案的合理性. 【解析】(1)X 的所有可能取值为-1,0,1.11()()P X αβ=−−=,()()()011P X αβαβ=+−−=,()1(1)P X αβ=−=, 所以X 的分布列为X -11P(1)αβ− )1((1)αβαβ+−− ()1αβ−(2)①证明 由(1)得0.4a =,0.5b =,0.1c =.因此110.40.50.1i i i i p p p p −+=++,故()()110.10.4i i i i p p p p −=−+-,则()114i i i i p p p p −=−+-.又因为1010p p p −≠=,所以1)0{,1,2,,}7(i i p p i−=⋅⋅⋅+为公比为4,首项为1p 的等比数列. ② 由①得()()()88877610087761001413p p p p p p p p p p p p p p p p −=−+−+…+−+=−+−+…+−+=⋅. 由于81p =,故18341p =−, 所以()()()()444332*********3257p p p p p p p p p p p −=−+−+−+−+==. 4p 表示最终认为甲药更有效的概率.由计算结果可以看出,在甲药治愈率为0.5,乙药治愈率为0.8时,认为甲药更有效的概率为410.0039257p =≈,此时得出错误结论的概率非常小,说明这种试验方案合理.课本原题:人教A 版数学《选择性必修三》P913.甲、乙、丙三人相互做传球训练,第1次由甲将球传出,每次传球时,传球者都等可能地将球传给另外两个人中的任何一人.求n 次传球后球在甲手中的概率. 【解析】记第n 次传球后球在甲手中的概率为n P ,则第1n −次传球后球在甲手中的概率为1n P −, 开始时球在甲手中,则01P =.若第n 次传球后球在甲手中,则第1n −次传球后球不在甲手中,即第1n −次传球后球在乙或丙手中, 所以第1n −次传球后球不在甲手中的概率为11n P −−,又乙或丙在第n 次把球传到甲手上的概率为12, 于是有()1112n n P P −−=,即1111323n n P P − −=−− ,1n ≥, 于是数列13n P−是首项为0213P −=,公比为12−得等比数列, 所以121332nn P −=×−,所以()*211323nn P n =×−+∈ N .1.(2024届·武汉高三开学考)有编号为1,2,3,...,18,19,20的20个箱子,第一个箱子有2个黄球1个绿球,其余箱子均为2个黄球2个绿球,现从第一个箱子中取出一个球放入第二个箱子,再从第二个箱子中取出一个球放入第三个箱子,以此类推,最后从第19个箱子取出一个球放入第20个箱子,记i p 为从第i 个箱子中取出黄球的概率. (1)求23,p p ; (2)求20p . 【答案】(1)2815P =,33875P =;(2)201911652P =+⋅【分析】(1)分第一次取出黄球和绿球两种情况,再由互斥事件概率加法公式计算可得答案; (2)由题意可得()132155+=+−i i i P P P ,可得答案. 【详解】(1)从第二个箱子取出黄球的概率223128353515P =⋅+⋅=, 从第三个箱子取出黄球的概率3838238115515575P =⋅+−⋅= ; (2)由题意可知,()1321215555i i i i P P P P +=+−=+, 即1111252i i P P + −=− ,又123P = 1111111111,,,26265652i i i i P P P −− −=∴−=⋅∴=+ ⋅ 201911652P ∴=+⋅.重点题型·归类精讲【答案】(1)1942,1311776n n P −=−−(2)第二次,证明见解析【分析】(1)根据全概率公式即可求解2P ,利用抽奖规则,结合全概率公式即可由等比数列的定义求解, (2)根据1311776n n P −=−−,即可对n 分奇偶性求解.【详解】(1)记该顾客第()*N i i ∈次摸球抽中奖品为事件A ,依题意,127P =, ()()()()()22121121212119||1737242P P A P A P A A P A P A A ==+=×+−×= . 因为()11|3n n P A A −=,()11|2n n P A A −=,()n n P P A =,所以()()()()()1111||n n n n n n n P A P A P A A P A P A A −−−−=+,所以()111111113262n n n n P P P P −−−=+−=−+, 所以1313767n n P P − −=−−, 又因为127P =,则131077P −=−≠, 所以数列37n P−是首项为17−,公比为16−的等比数列,故1311776n n P −=−−.(2)证明:当n 为奇数时,1131976742n n P −<<⋅,当n 为偶数时,131776n n P −=+⋅,则n P 随着n 的增大而减小, 所以,21942n P P ≤=,综上,该顾客第二次摸球抽中奖品的概率最大.3.从甲、乙、丙等5人中随机地抽取三个人去做传球训练.训练规则是确定一人第一次将球传出,每次传球时,传球者都等可能地将球传给另外两个人中的任何一人,每次必须将球传出. (1)记甲乙丙三人中被抽到的人数为随机变量X ,求X 的分布列;(2)若刚好抽到甲乙丙三个人相互做传球训练,且第1次由甲将球传出,记n 次传球后球在甲手中的概率为,1,2,3,n p n = ,①直接写出123p p p ,,的值;②求1n p +与n p 的关系式*()n N ∈,并求n p *()n N ∈. 【答案】(1)分布列见解析(2)①10p =,212p =,314p =;②111,1,2,322n n p p n +=−+=;11(1)132n n − −+ 【分析】(1)由离散型随机变量的分布列可解;(2)记n A 表示事件“经过n 次传球后,球在甲手中”,由全概率公式可求111,22n n p p +=−+再由数列知识,由递推公式求得通项公式.【详解】(1)X 可能取值为1,2,3,()1232353110C C p X C ===;()213235325C C p X C ===;()3032351310C C p X C === 所以随机变量X 的分布列为(2)若刚好抽到甲乙丙三个人相互做传球训练,且n 次传球后球在甲手中的概率为,1,2,3,n p n = , 则有10,p =2221,22p ==3321,24p == 记n A 表示事件“经过n 次传球后,球在甲手中”,111n n n n n A A A A A +++=⋅+⋅所以()()()11111n n n n n n n n n p P A A A A P A A P A A +++++=⋅+⋅=⋅+⋅ ()()()()()()111110122n n nn n n n n n P A P A A P A P A A p p p ++=⋅+⋅=−⋅+⋅=−∣∣ 即111,1,2,322n n p p n +=−+=, 所以1111323n n p p + −=−− ,且11133p −=− 所以数列13n p− 表示以13−为首项,12−为公比的等比数列,所以1111332n n p −−=−×−所以1111111132332n n n p −−=−×−+=−−即n 次传球后球在甲手中的概率是11(1)132n n −−+.2023届惠州一模4.为了避免就餐聚集和减少排队时间,某校开学后,食堂从开学第一天起,每餐只推出即点即取的米饭套餐和面食套餐. 已知某同学每天中午会在食堂提供的两种套餐中选择,已知他第一天选择米饭套餐的概率为23,而前一天选择了米饭套餐后一天继续选择米饭套餐的概率为14,前一天选择面食套餐后一天继续选择面食套餐的概率为12,如此往复. (1)求该同学第二天中午选择米饭套餐的概率 (2)记该同学第n 天选择米饭套餐的概率为n P(Ⅰ)证明:25n P −为等比数列;(Ⅱ)证明:当2n ≥时,512n P ≤. 【解析】(1)设1A =“第1天选择米饭套餐”,2A =“第2天选择米饭套餐”,则1A =“第1天不选择米饭套餐”,于是,()123P A =,()113P A =,()2114|P A A =,()2111122|P A A =−=, 由全概率公式()()()()()21211212111134323||P A P A P A A P A P A A =+=×+×=;(2)(Ⅰ)设n A =“第n 天选择米饭套餐”,则()n n P P A =,()1n n P A P =−,()14|1n n P A A +=,()11|1122n n P A A +=−=, ()()()()()()111111111424|2|n n n n n n n n n n n P P A P A P A A P A P A P P P A ++++==+=+−=−+, 所以1212545n n P P + −=−− ,25n P − 是以124515P −=为首项,14−为公比的等比数列。
离散时间马氏链例题离散时间马氏链(离散时间马尔科夫链)是一种随机过程,其中每个状态的未来转变仅依赖于其当前状态,而不依赖于过去的状态或转变。
以下是离散时间马氏链的一个简单例题:天气预报问题假设明天的天气仅与今天的天气有关,而与过去的天气无关。
如果今天下雨,那么明天下雨的概率为0.7;如果今天不下雨,那么明天下雨的概率为0.4。
我们要求出今天下雨并且四天后仍然下雨的概率(假设α=0.7,β=0.4)。
解:定义状态:我们可以定义两个状态,状态0表示不下雨,状态1表示下雨。
建立转移概率矩阵:根据题目描述,我们可以得到以下的转移概率矩阵P:P = [0.6 0.4; 0.3 0.7]其中,P(i, j)表示从状态i转移到状态j的概率。
3. 应用马氏链的性质:我们知道马氏链的性质是未来的状态只与当前状态有关,与过去的状态无关。
因此,我们可以使用转移概率矩阵来计算四天后仍然下雨的概率。
我们从今天下雨(状态1)开始,想要知道四天后仍然下雨的概率。
我们可以通过连续应用转移概率矩阵来计算这个概率:今天下雨并且四天后仍然下雨的概率= P(1, 1)^4但是这是错误的,因为我们不能直接取四次方。
正确的做法是,考虑所有可能的路径,即在这四天中,天气可能如何变化。
例如,它可能一直保持下雨,或者可能在中间某天下雨然后再次下雨等等。
我们需要考虑所有这些可能性。
但是,对于较大的n值,直接计算所有路径是不切实际的。
我们可以使用一种称为“稳态概率”的概念来简化计算。
稳态概率是指,当时间趋于无穷大时,马氏链处于某个特定状态的概率。
在这个例子中,我们可以计算出稳态概率,然后用它来估计四天后下雨的概率。
然而在这个特定的例子中,由于转移概率矩阵不是对称的,因此没有简单的公式可以直接计算出n步转移概率。
我们需要使用矩阵的n次幂来计算这个概率。
但是注意,我们不能简单地取P(1,1)的四次幂,因为那将假设每天都独立地下雨,而实际上每天的天气都依赖于前一天的天气。
连续时间马尔可夫链例题假设有一个连续时间马尔可夫链,描述一个人的健康状态。
该马尔可夫链包含三个状态:健康、生病和康复。
人的健康状态可以根据以下转移概率进行模拟:1. 在任何时间点,一个健康的人以0.1的速率生病。
2. 在任何时间点,一个生病的人以0.2的速率康复。
3. 在任何时间点,一个康复的人以0.05的速率重新生病。
现在假设一个人的初始状态是健康,我们可以使用连续时间马尔可夫链模型来模拟他的健康状态随时间的变化。
假设每个时间单位是一周,我们希望模拟他一年内的健康状态。
根据上面的转移概率,我们可以得到如下的转移矩阵:```| 健康 | 生病 | 康复 |----------------------------健康 | 0.9 | 0.1 | 0 |生病 | 0.05 | 0.75 | 0.2 |康复 | 0 | 0.05 | 0.95|```该矩阵中的每个元素表示从当前状态转移到下一个状态的概率。
例如,一个健康的人在一周后仍然健康的概率为0.9,在一周后生病的概率为0.1,在一周后康复的概率为0。
使用该转移矩阵,我们可以模拟一个人一年内的健康状态。
假设每个时间单位是一周,则一年共有52个时间单位。
我们可以使用随机数生成器来生成每个时间单位的状态。
假设生成的随机数在[0,1)之间,我们可以根据转移概率进行状态转移。
例如,如果生成的随机数小于0.9,则人在下一个时间单位仍然健康;如果生成的随机数介于0.9和0.95之间,则人在下一个时间单位康复;如果生成的随机数大于等于0.95,则人在下一个时间单位重新生病。
使用这种方法,我们可以模拟一个人一年的健康状态,并观察他在这段时间内的状态变化。
这可以帮助我们更好地了解和预测一个人的健康动向。