马尔科夫链预测方法讲解
- 格式:ppt
- 大小:532.50 KB
- 文档页数:29
加权马尔可夫链预测多种状态之间的转移概率模型构建随着信息技术的迅猛发展,数据处理和分析技术在各个领域得到了广泛应用。
在信息处理和预测模型中,马尔可夫链是一种常见的概率模型,它通过描述状态之间的转移概率来实现对未来状态的预测。
然而,在实际应用中,许多系统具有多种状态,并且这些状态之间的转移概率可能受到不同因素的影响,因此需要构建一种能够灵活应对多种状态转移的预测模型。
在这种需求下,加权马尔可夫链成为了一种有效的预测模型。
加权马尔可夫链通过为每种状态之间的转移概率赋予权重,来反映不同因素对转移概率的影响,从而更准确地描述系统的状态转移过程。
本文将重点介绍加权马尔可夫链预测多种状态之间的转移概率模型构建的方法和应用。
一、加权马尔可夫链的基本原理1.1 马尔可夫链的基本概念马尔可夫链是一种随机过程,具有马尔可夫性质,即未来的状态只依赖于当前状态,而与过去的状态无关。
马尔可夫链可以用状态空间、初始概率分布和转移概率矩阵来描述,其中转移概率矩阵反映了系统从一个状态到另一个状态的概率。
1.2 加权马尔可夫链的概念在实际应用中,许多系统的状态转移概率可能受到不同因素的影响,因此需要引入权重来衡量不同因素对转移概率的影响。
加权马尔可夫链通过为每种状态之间的转移概率赋予权重,从而更准确地描述状态之间的转移关系。
二、加权马尔可夫链预测模型构建方法2.1 数据准备构建加权马尔可夫链预测模型首先需要准备数据,包括系统的状态空间和历史状态序列。
对于多种状态的系统,需要对不同状态之间的转移概率进行统计,并分析不同因素对转移概率的影响。
2.2 转移概率权重计算在得到历史状态序列后,需要对转移概率进行权重计算。
常见的方法包括基于经验统计的加权计算和基于专家知识的主观赋权计算。
对于基于经验统计的方法,可以采用最大似然估计等统计方法来计算转移概率的权重;对于基于专家知识的方法,需要依靠领域专家对各种因素的影响进行权重赋值。
2.3 模型训练和验证在进行转移概率权重计算后,需要进行模型训练和验证。
天气预测是人类社会生活中非常重要的一项工作。
准确的天气预测可以帮助人们合理安排生活和工作,减少自然灾害对人类社会造成的影响。
而马尔科夫链是一种概率模型,可以用于预测未来的状态。
本文将介绍如何利用马尔科夫链进行天气预测的方法。
一、马尔科夫链的基本原理马尔科夫链是指具有马尔科夫性质的随机过程。
所谓马尔科夫性质是指,对于任意时刻的状态,其未来状态的概率分布只依赖于当前状态,而与过去状态无关。
马尔科夫链可以用一个状态转移矩阵来描述,该矩阵表示了系统从一个状态转移到另一个状态的概率。
二、天气预测的建模为了利用马尔科夫链进行天气预测,首先需要对天气进行建模。
通常可以将天气分为几种基本状态,比如晴天、多云、阴天、雨天等。
然后根据历史数据,可以计算出系统从一个状态转移到另一个状态的概率,构建状态转移矩阵。
三、天气预测的方法一旦建立了天气的马尔科夫链模型,就可以利用该模型进行天气预测。
假设当前的天气状态为晴天,根据状态转移矩阵,可以计算出未来每种天气状态的概率分布。
然后可以根据这个概率分布,选择概率最大的天气状态作为未来的天气预测结果。
四、马尔科夫链的优缺点利用马尔科夫链进行天气预测具有一定的优点和局限性。
优点在于,该方法基于历史数据,能够较准确地捕捉到天气状态之间的转移规律,从而可以提供相对可靠的天气预测结果。
然而,由于天气受到多种因素的影响,比如地理环境、气象条件等,马尔科夫链模型可能无法考虑到所有的影响因素,因此在某些情况下,其预测结果可能并不准确。
五、改进方法为了提高利用马尔科夫链进行天气预测的准确性,可以考虑引入更多的影响因素,比如地理位置、气象条件等。
另外,还可以结合其他的预测方法,比如机器学习算法等,从而提高天气预测的准确性和可靠性。
六、结论总的来说,利用马尔科夫链进行天气预测是一种简单而有效的方法。
通过建立天气的马尔科夫链模型,可以对未来的天气状态进行预测。
然而,该方法也存在一定的局限性,需要结合其他的预测方法进行改进。
马尔科夫链是一种用于建模随机过程的数学工具,它可以用于预测未来状态的概率分布。
在农业生产中,利用马尔科夫链进行预测可以帮助农民和农业专业人士更好地规划和管理农作物生产,提高农业生产的效率和产量。
本文将介绍利用马尔科夫链进行农业生产预测的技巧,并探讨其在农业生产中的应用。
马尔科夫链是一个离散时间的随机过程,其特点是未来状态只依赖于当前状态,而与过去状态无关。
在农业生产中,作物生长的状态可以看作是一个随机过程,因受到天气、土壤和其他环境因素的影响,在不同的状态下,作物的生长和产量都会有所不同。
利用马尔科夫链进行农业生产预测,可以帮助农民和农业专业人士根据当前状态预测未来作物的生长和产量,从而制定合理的种植和管理策略。
首先,利用马尔科夫链进行农业生产预测需要建立一个状态转移矩阵。
状态转移矩阵是马尔科夫链的核心概念,它描述了作物在不同生长状态之间的转移概率。
通过对历史数据的分析和统计,可以计算出作物在不同状态之间的转移概率,从而建立起状态转移矩阵。
在建立状态转移矩阵时,需要考虑天气、土壤、施肥、灌溉等因素对作物生长的影响,以及不同生长状态下作物的生长速度和产量情况,综合考虑这些因素可以更准确地建立状态转移矩阵。
其次,利用马尔科夫链进行农业生产预测需要选择合适的状态空间。
状态空间是描述马尔科夫链可能状态的集合,对于农业生产预测来说,可以将作物的生长状态划分为不同的阶段,比如播种阶段、生长阶段、开花结果阶段等。
选择合适的状态空间可以更好地描述作物的生长过程,从而提高预测的准确性。
另外,利用马尔科夫链进行农业生产预测需要考虑转移概率的稳定性和收敛性。
转移概率的稳定性和收敛性是马尔科夫链预测准确性的关键因素,如果转移概率不稳定或不收敛,将会对预测结果产生较大的影响。
因此,在利用马尔科夫链进行农业生产预测时,需要对转移概率进行充分的检验和验证,确保其稳定性和收敛性,从而提高预测的可靠性。
最后,利用马尔科夫链进行农业生产预测还需要考虑模型的更新和修正。
马尔可夫链模型与天气马尔可夫链是一种数学模型,用于描述在随机过程中状态之间的转移规律。
而天气是我们日常生活中广泛关注的话题之一。
本文将探讨马尔可夫链模型在天气预测中的应用。
一、马尔可夫链模型简介马尔可夫链模型是以数学家安德烈·马尔可夫的名字命名的概率模型。
该模型基于马尔可夫性质,即未来的状态仅与当前状态有关,与之前的状态无关。
马尔可夫链模型可以用一个状态转移矩阵表示,其中矩阵的每个元素表示从一个状态转移到另一个状态的概率。
二、天气预测与马尔可夫链模型天气预测一直是人们关注的热门话题。
准确地预测未来的天气对农业、旅游和交通等行业有着重要的意义。
而马尔可夫链模型可以用来预测天气的变化。
为了简化问题,我们将天气分为三种状态:晴天、多云和雨天。
假设我们已经根据历史数据建立了一个马尔可夫链模型。
现在我们想要预测未来五天的天气情况。
根据马尔可夫链模型,我们可以根据当前天气状态转移到下一个天气状态的概率来进行预测。
例如,如果当前是晴天,我们可以查找状态转移矩阵中对应的行,然后根据概率分布来确定下一个天气状态。
通过迭代这个过程,我们可以预测出未来五天的天气情况。
三、马尔可夫链模型的应用案例为了更好地理解马尔可夫链模型在天气预测中的应用,下面将介绍一个实际案例。
假设某地区的天气仅有晴天、多云和雨天三种状态。
我们根据历史天气数据得到了如下的状态转移矩阵:晴天多云雨天晴天 0.7 0.2 0.1多云 0.3 0.4 0.3雨天 0.2 0.3 0.5现在我们要通过这个马尔可夫链模型来预测未来五天的天气。
假设当前天气是晴天,根据状态转移矩阵可知,下一个天气为晴天的概率为0.7,多云的概率为0.2,雨天的概率为0.1。
根据这些概率,我们可以随机选择一个状态作为下一个天气。
假设我们选择到了多云。
接下来,我们根据多云状态对应的行来确定下一个天气。
根据状态转移矩阵可知,下一个天气为晴天的概率为0.3,多云的概率为0.4,雨天的概率为0.3。
利用马尔可夫链预测用户行为马尔可夫链是一种随机过程,被广泛应用于许多领域,包括自然语言处理、金融市场分析和预测等。
在个性化推荐系统中,利用马尔可夫链可以预测用户行为,提高推荐算法的准确性和效果。
本文将介绍利用马尔可夫链预测用户行为的原理和应用。
一、马尔可夫链基础概念及原理解释马尔可夫链是一种随机过程,具备"马尔可夫性"。
所谓"马尔可夫性"指的是,某一时刻状态的转移只依赖于前一时刻的状态,而与过去的状态序列无关。
如下所示:P(Xn+1 = x | X0, X1, ..., Xn) = P(Xn+1 = x | Xn)其中,Xn表示第n个时刻的状态,P(Xn+1 = x | X0, X1, ..., Xn)表示在X0, X1, ..., Xn的条件下,第n+1个时刻的状态为x的概率。
利用马尔可夫链预测用户行为的基本假设是用户的行为具备马尔可夫性,即用户在当前时刻的行为只依赖于前一时刻的行为。
例如,用户在某个电商平台上的购买行为可能与其之前的点击、加购物车等行为有关,而与更久远的历史行为无关。
二、基于马尔可夫链的用户行为预测方法1. 数据预处理在利用马尔可夫链预测用户行为之前,需要对原始数据进行预处理。
预处理包括数据清洗、特征提取等步骤。
具体来说,可以根据用户行为数据构建状态空间和状态转移矩阵。
2. 构建状态空间状态空间是指用户行为的所有可能状态的集合。
例如,在一个电商平台上,用户的行为可以包括浏览商品、加购物车、下订单、支付等。
因此,状态空间可以包括"浏览商品"、"加购物车"、"下订单"、"支付"等状态。
3. 构建状态转移矩阵状态转移矩阵描述了用户行为在不同状态之间的转移概率。
具体来说,对于状态空间中的每一个状态,计算用户从该状态转移到其他状态的概率。
例如,对于状态"浏览商品",可以统计用户在浏览商品后转移到"加购物车"、"下订单"或其他状态的概率。
马尔科夫预测法的原理
马尔科夫预测法是一种基于马尔科夫链的预测方法。
其原理是利用过去的一系列观测值,通过构建一个马尔科夫链模型来预测未来的观测值。
马尔科夫链是一种具有状态转移概率的数学模型,其特点是当前状态的转移只依赖于前一个状态,与其他历史状态无关。
马尔科夫预测法假设未来的观测值只与过去的观测值有关,而与其他因素无关。
具体实施马尔科夫预测法的步骤如下:
1. 收集并整理历史数据,将其分为一系列观测值的序列。
2. 根据历史数据计算每个状态之间的转移概率。
即计算每个观测值之间的转移概率,这可以通过统计历史数据中观测值之间的频率来进行估计。
3. 根据已知的初始状态分布,选择一个初始状态作为预测的起点。
4. 根据转移概率和初始状态,依次生成未来的观测值,直到达到所需的预测长度。
马尔科夫预测法的关键在于确定状态和计算状态之间的转移概率。
这可以通过统计方法、最大似然估计或其他相应的方法来实现。
然后,使用马尔科夫链的转移概率来模拟未来的状态转移,从而得到未来观测值的预测。
马尔可夫链模型及其在预测模型中的应用马尔可夫链模型是一个重要的数学模型,在各种预测问题中都有广泛应用。
该模型描述的是一个随机过程,在每一个时间步骤上,其状态可以从当前状态转移到另一个状态,并且转移的概率只与当前状态有关,而与历史状态无关。
这种性质被称为“马尔可夫性”。
本文将介绍马尔可夫链模型的基本原理和应用,以及相关的统计方法和算法。
马尔可夫链模型的构造方法通常是通过定义状态空间和状态之间的转移概率来完成的。
状态空间是指可能的状态集合,而状态之间的转移概率则是指在一个时间步骤上从一个状态转移到另一个状态的概率。
这些转移概率通常被表示为一个矩阵,称为转移矩阵。
转移矩阵的元素表示从一个状态转移到另一个状态的概率。
马尔可夫链模型的重要性在于它对于许多实际问题的数学描述,因为很多现象都符合马尔可夫过程的特点,即时间上的无后效性,即系统的当前状态仅仅依赖于它的上一个状态。
比如,一个天气预测问题,天气系统的状态可以描述为“晴、雨、阴”,在每一个时间步骤上,系统可能会转移到另一个状态,转移概率可以根据历史天气数据进行估计。
马尔可夫链模型可以用于各种预测问题,如下一个状态的预测、状态序列的预测以及时间序列的预测。
对于下一个状态的预测问题,我们可以使用当前状态的转移矩阵来计算目标状态的概率分布。
对于状态序列的预测,我们可以利用当前状态的转移概率估计下一个状态的状态分布,并重复该过程,直到预测的序列达到一定的长度为止。
对于时间序列的预测,我们可以将时间序列转化为状态序列,并将时间作为状态的一个特征进行建模,在此基础上进行预测。
马尔可夫链模型也可以用于分析时间序列数据的特性。
例如,可以使用马尔可夫过程来检测时间序列数据中的周期性、趋势和季节性等特征。
这些特征可以反映时间序列数据的长期和短期变化情况,为精确的预测提供了基础。
对于马尔可夫链模型的参数估计问题,通常使用统计学习方法来完成。
常见的方法包括极大似然估计、贝叶斯估计以及最大后验估计等。
马尔可夫预测算法马尔可夫预测算法是一种基于马尔可夫链的概率模型,用于进行状态转移预测。
它被广泛应用于自然语言处理、机器翻译、语音识别等领域。
马尔可夫预测算法通过分析过去的状态序列来预测未来的状态。
本文将介绍马尔可夫预测算法的原理、应用以及优缺点。
一、原理1.马尔可夫链马尔可夫链是指一个随机过程,在给定当前状态的情况下,未来的状态只与当前状态有关,与其他历史状态无关。
每个状态的转移概率是固定的,可以表示为一个概率矩阵。
马尔可夫链可以用有向图表示,其中每个节点代表一个状态,每个边表示状态的转移概率。
(1)收集训练数据:根据需要预测的状态序列,收集过去的状态序列作为训练数据。
(2)计算转移概率矩阵:根据训练数据,统计相邻状态之间的转移次数,然后归一化得到转移概率矩阵。
(3)预测未来状态:根据转移概率矩阵,可以计算出目标状态的概率分布。
利用这个概率分布,可以进行下一步的状态预测。
二、应用1.自然语言处理在自然语言处理中,马尔可夫预测算法被用于语言模型的建立。
通过分析文本中的单词序列,可以计算出单词之间的转移概率。
然后利用这个概率模型,可以生成新的文本,实现文本自动生成的功能。
2.机器翻译在机器翻译中,马尔可夫预测算法被用于建立语言模型,用于计算源语言和目标语言之间的转移概率。
通过分析双语平行语料库中的句子对,可以得到句子中单词之间的转移概率。
然后利用这个转移概率模型,可以进行句子的翻译。
3.语音识别在语音识别中,马尔可夫预测算法被用于建立音频信号的模型。
通过分析音频数据中的频谱特征,可以计算出特征之间的转移概率。
然后利用这个转移概率模型,可以进行音频信号的识别。
三、优缺点1.优点(1)简单易懂:马尔可夫预测算法的原理相对简单,易于理解和实现。
(2)适用范围广:马尔可夫预测算法可以应用于多个领域,例如自然语言处理、机器翻译和语音识别等。
2.缺点(1)数据需求大:马尔可夫预测算法需要大量的训练数据,才能准确计算状态之间的转移概率。
马尔科夫链是一种数学模型,常用于预测未来的状态。
在农业生产中,利用马尔科夫链进行预测可以帮助农民和政府部门更好地规划和管理农业生产,提高农产品的产量和质量。
首先,我们来谈谈马尔科夫链的原理。
马尔科夫链是一种随机过程,其未来状态的概率只与当前状态有关,与过去状态无关。
这意味着在任何给定时刻,只需要知道当前状态,就可以预测未来状态的概率。
在农业生产中,马尔科夫链可以应用于预测农产品的生长状态、病虫害发生的概率、气候变化对农作物产量的影响等。
其次,利用马尔科夫链进行农业生产预测需要进行一些数据的收集和整理。
首先,需要收集农产品生长过程中的关键数据,比如土壤湿度、温度、光照等。
这些数据可以反映农产品生长环境的变化,是预测模型的重要输入。
其次,还需要收集农产品病虫害发生的历史数据,这可以帮助建立病虫害发生的马尔科夫链模型。
最后,还需要收集气象数据,包括降雨量、气温、风力等,这些数据可以帮助预测气候变化对农作物生长的影响。
在收集数据之后,就可以利用马尔科夫链模型进行预测。
首先,需要建立马尔科夫链模型,对于农产品生长状态的预测可以利用马尔科夫随机场模型。
这种模型可以根据历史数据对农产品的生长状态进行分类,并根据当前环境条件预测未来的生长状态。
对于病虫害发生的预测,可以建立病虫害发生的马尔科夫链模型,根据历史数据对病虫害的发生进行分类,并预测未来的发生概率。
对于气候变化对农作物产量的影响,可以建立气候变化的马尔科夫链模型,根据历史气象数据对气候变化进行分类,并预测未来气候变化对农作物产量的影响。
利用马尔科夫链进行农业生产预测需要注意一些技巧。
首先,需要注意模型的参数选择,比如农产品生长状态的预测模型中,需要选择合适的生长状态分类和环境条件分类。
其次,需要注意数据的质量,收集到的数据应该是完整的、准确的。
如果数据存在缺失或错误,需要进行合理的处理。
再次,需要注意模型的验证和评估,预测结果应该与实际情况相符合。
最后,需要注意模型的更新和优化,随着时间的推移和数据的积累,模型需要进行定期的更新和优化,以保持预测的准确性。
马尔可夫链预测方法一、基于绝对分布的马尔可夫链预测方法对于一列相依的随机变量,用步长为一的马尔可夫链模型和初始分布推算出未来时段的绝对分布来做预测分析方法,称为“基于绝对分布的马尔可夫链预测方法”,不妨记其为“ADMCP 法”。
其具体方法步骤如下:1.计算指标值序列均值x ,均方差s ,建立指标值的分级标准,即确定马尔可夫链的状态空间I ,这可根据资料序列的长短及具体间题的要求进行。
例如,可用样本均方差为标准,将指标值分级,确定马尔可夫链的状态空间 I =[1, 2,…,m ];2.按步骤1所建立的分级标准,确定资料序列中各时段指标值所对应的状态;3.对步骤2所得的结果进行统计计算,可得马尔可夫链的一步转移概率矩阵1P ,它决定了指标值状态转移过程的概率法则;4.进行“马氏性” 检验;5.若以第1时段作为基期,该时段的指标值属于状态i ,则可认为初始分布为(0)(0,,0,1,0,0)P =这里P (0)是一个单位行向量,它的第i 个分量为1,其余分量全为0。
于是第2时段的绝对分布为1(1)(0)P P P =12((1),(1),,(1))m p p p =则第2时段的预测状态j 满足:(1)max{(1),}j i p p i I =∈;同样预测第k +1时段的状态,则有1()(0)k P k P P =12((),(),,())m p k p k p k =得到所预测的状态j 满足:()max{(),}j i p k p k i I =∈6.进一步对该马尔可夫链的特征(遍历性、平稳分布等)进行分析。
二、叠加马尔可夫链预测方法对于一列相依的随机变量,利用各种步长的马尔可夫链求得的绝对分布叠加来做预测分析,的方法,称为“叠加马尔可夫链预测方法”,不妨记其为“SPMCP 法’。
其具体方法步骤如下:1) 计算指标值序列均值x ,均方差s ,建立指标值的分级标准(相当于确定马尔可夫链的状态空间),可根据资料序列的长短及具体问题的要求进行;2) 按1)所建立的分级标准,确定资料序列中各时段指标值所对应的状态;3) 对2)所得的结果进行统计,可得不同滞时(步长)的马尔可夫链的转移概率矩阵,它决定了指标值状态转移过程的概率法则;4) 马氏性检验;5) 分别以前面若干时段的指标值为初始状态,结合其相应的各步转移概率矩阵即可预测出该时段指标值的状态概率(6)将同一状态的各预测概率求和作为指标值处于该状态的预测概率,即,所对应的i 即为该时段指标值的预测状态。
马尔可夫链预测方法马尔可夫链是一种具有马尔可夫性质的随机过程。
它的基本思想是,当前状态的转移只与前一状态有关,与过去的所有历史状态无关。
这种转移关系可以用概率矩阵表示,称为转移矩阵。
通过分析转移矩阵,可以预测未来状态的概率分布。
1.数据收集和预处理:首先需要收集用于训练的数据,数据可以是连续的时间序列数据或离散的状态序列数据。
然后对数据进行预处理,如去除噪声、平滑数据等。
2.状态建模:将数据转化为状态序列。
状态可以是离散的,也可以是连续的。
离散状态可以表示一些事件的发生与否,如天气的晴天、阴天、雨天;连续状态可以表示一些指标的取值范围,如温度、股价等。
3.转移概率估计:根据训练数据,计算状态之间的转移概率。
如果状态是离散的,可以通过计数各个状态之间的转换次数,然后除以总次数得到概率;如果状态是连续的,可以使用概率密度函数来估计概率。
4. 可观测序列生成:通过给定初始状态和转移概率,使用马尔可夫链进行推理,生成未来的状态序列。
可以使用蒙特卡洛方法、Metropolis-Hasting算法等。
5.结果分析和评估:根据生成的序列,可以进行结果分析和评估,比较预测结果与实际观测结果的差异,评估模型的预测性能。
然而,马尔可夫链预测方法也存在一些限制。
首先,马尔可夫链假设当前状态只与前一状态有关,这在一些情况下可能不够准确,因为事件的发展可能受到多个因素的影响。
其次,马尔可夫链只能对未来事件进行概率预测,不能给出具体数值。
最后,马尔可夫链假设转移概率是恒定的,不能适应环境的变化。
在实际应用中,可以结合其他方法进行改进。
例如,可以引入随机森林、神经网络等机器学习方法进行特征选择和模型训练,提高预测准确性和稳定性。
此外,也可以采用时间序列分析方法对马尔可夫链模型进行扩展,考虑更多的因素和变量,提高预测能力。
综上所述,马尔可夫链预测方法是一种基于马尔可夫过程的统计模型,通过分析状态之间的转移概率来预测未来事件。
尽管存在一些限制,但该方法具有简单高效、计算速度快的优点,在实际应用中仍具有一定的价值。
预测⽅法——马尔可夫预测马尔可夫预测若某⼀系统在已知现在情况的条件下,系统未来情况只与现在有关,与历史⽆直接关系,则称描述这类随机现象的数学模型为马尔可夫模型(马⽒模型)。
时齐马尔可夫链:系统由状态i转移到状态j的转移概率只与时间间隔长短有关,与初始时刻⽆关。
状态转移概率矩阵及柯尔莫哥洛夫定理:概率矩阵:若系统在时刻 t0 处于状态 i,经过 n 步转移,在时刻 tn 处于状态 j 。
那么,对这种转移的可能性的数量描述称为 n 步转移概率。
记为:P(xn =j|x=i)=P(n)ij令P(n)=P11(n)P12(n)⋯P1N(n) P21(n)P22(n)⋯P2N(n)⋯⋯⋯P N1(n)P N2(n)⋯P NN(n)为n部转移概率矩阵。
(P0为初始分布⾏向量)性质:1. P(n)=P(n−1)P2. P(n)=P n转移概率的渐进性质——极限概率分布正则矩阵:若存在正整数k,使得p k的每⼀个元素都是正数,则称该马尔可夫链的转移矩阵P是正则的。
马克可夫链正则阵的性质:1. P有唯⼀的不动点向量W,W的每个分量为正,满⾜WP=W;2. P的n次幂P n随n的增加趋近于矩阵V, V的每⼀⾏向量均等于不动点向量W。
马尔可夫链预测法步骤:1. 划分预测对象可能出现的状态;2. 计算初始概率,由此计算⼀步状态转移概率;3. 计算多步状态转移概率;4. 根据状态转移概率进⾏预测。
()实例:eg:由于公路运输的发展,⼤量的短途客流由铁路转向公路。
历年市场调查结果显⽰,某铁路局发现今年⽐上年相⽐有如下规律:原铁路客流有85%仍由铁路运输,有15%转由公路运输,原公路运输的客流有95%仍由公路运输,有5%转由铁路运输。
已知去年公、铁客运量合计为12000万⼈,其中铁路10000万⼈,公路2000万⼈。
预测明年总客运量为18000万⼈。
运输市场符合马⽒链模型假定。
试预测明年铁、公路客运市场占有率各是多少?客运量是多少?最后发展趋势如何?解:1. 计算去年铁路、公路客运市场占有率将旅客由铁路运输视为状态1,由公路运输视作状态2,则铁、公占有率就是处于两种状态的概率,分别记作a1,a2.以去年作为初始状态,则初始状态概率向量:A(0)=(a1(0),a2(0))=(0.83,0.17)2. 建⽴状态转移矩阵PP=0.850.15 0.050.953. 预测明年铁路,公路客运市场占有率A(2)=(a1(2),a2(2))=A(0)P2=(0.83,0.17)0.850.150.050.952=(0.62,0.38)4. 进后发展趋势lim ()()Loading [MathJax]/jax/element/mml/optable/BasicLatin.js。