高中数学难点突破_难点31__数学归纳法解题
- 格式:doc
- 大小:218.50 KB
- 文档页数:6
高中数学难点突破策略及答案高中数学作为一门基础科目和必修课程,在学生中的重要性不言而喻。
然而,很多学生面对数学题目时却感到头疼和无从下手。
这主要是因为高中数学难点比较多,需要掌握大量的知识和技巧。
为了帮助大家更好地解决高中数学难点,下面给出几个突破的策略及答案。
一、题目深层理解要突破高中数学的难点,首先需要对题目进行深层次的理解。
因为数学问题本身是一个个独立的系统,需要从整体和细节两方面入手,了解每个知识点所存在的联系与区别,在理解后再去进行操作分析以及答案求解。
例如,对于一道具体的代数题目:已知$\frac{a}{b}=\frac{c}{d}$以及$\frac{a+b}{b}=n$,求$\frac{c+d}{d}$我们可以先确定方程式,再从代数式子出发进行思考。
代数思想推理:$\frac{a}{b}=\frac{c}{d}$$\frac{a}{c}=\frac{b}{d}$$\frac{a}{c}+1=\frac{b}{d}+1$$\frac{a+c}{c}=\frac{b+d}{d}$$\frac{a+b+c}{c}=\frac{b+d}{d}$$\frac{a+b+c}{b+d}=\frac{c}{d}$$\frac{a+c}{c}=\frac{1}{n}$$\frac{a+b}{b}=n$$\frac{a}{c}=\frac{1}{n}-1=-\frac{1}{n-1}$$\frac{c}{a}=\frac{n-1}{n}$$\frac{c+d}{d}=\frac{c}{d}+1=\frac{a}{b}+1=\frac{a+b}{b}=\fra c{1}{n-1}+n$所以答案为$\frac{1}{n-1}+n$对于这种题目,我们需要对数学概念进行充分的理解,确定方程组,并深入去理解整个问题,分析题目中的复杂信息,一步步推演得出答案。
二、分类讨论高中数学题目通常根据题目的基础知识和细节分类,可以分为多个子分类进行讨论,从而帮助解答。
高中数学数学归纳法的使用技巧在高中数学中,数学归纳法是一种常用的证明方法,用于证明一些关于自然数的命题。
它的基本思想是通过证明命题在某个特定条件下成立,并且在该条件下,命题在下一个自然数也成立,从而推导出该命题对于所有自然数都成立。
数学归纳法的使用技巧对于高中数学学习者来说至关重要,本文将从基本原理、典型例题以及解题技巧三个方面进行论述。
一、基本原理数学归纳法的基本原理可以概括为以下两点:1. 基础步骤:证明当n等于某个特定值时,命题成立。
2. 归纳步骤:假设当n等于k时,命题成立,然后证明当n等于k+1时,命题也成立。
基于这两个原理,我们可以使用数学归纳法证明一些关于自然数的命题。
接下来,我们通过几个典型例题来说明数学归纳法的具体应用。
二、典型例题例题1:证明对于任意正整数n,1+2+3+...+n = n(n+1)/2。
解析:首先,在n=1时,等式左边为1,右边也为1,等式成立。
接下来,假设当n=k时,等式成立,即1+2+3+...+k = k(k+1)/2。
我们需要证明当n=k+1时,等式也成立。
根据归纳步骤,我们可以得到:1+2+3+...+k+(k+1) = k(k+1)/2 + (k+1)= (k^2 + k + 2k + 2) / 2= (k^2 + 3k + 2) / 2= (k+1)(k+2) / 2由此可见,当n=k+1时,等式也成立。
因此,根据数学归纳法,我们可以得出结论:对于任意正整数n,1+2+3+...+n = n(n+1)/2。
例题2:证明2^n > n^2,其中n为正整数且n≥4。
解析:首先,在n=4时,等式左边为16,右边为16,等式成立。
接下来,假设当n=k时,等式成立,即2^k > k^2。
我们需要证明当n=k+1时,等式也成立。
根据归纳步骤,我们可以得到:2^(k+1) = 2^k * 2> k^2 * 2= 2k^2由于k≥4,所以2k^2 > (k+1)^2。
高中数学解题技巧方法总结第1篇(1)利用y=sin x和y=cos x的值域直接求.(2)把所给的三角函数式变换成y=A sin(ωx+φ)+b(或y=A cos(ωx+φ)+b)的形式求值域.(3)把sin x或cos x看作一个整体,将原函数转换成二次函数求值域.(4)利用sin x±cos x和sin x cos x的关系将原函数转换成二次函数求值域.高中数学解题技巧方法总结第2篇(1)分组转化求和法一个数列的通项公式是由若干个等差数列或等比数列或可求和的数列组成,则求和时可用分组求和法,分别求和后再相加减.(2)裂项相消法把数列的通项拆成两项之差,在求和时中间的一些项可以相互抵消,从而求得其和.(3)错位相减法如果一个数列的各项是由一个等差数列和一个等比数列的对应项之积构成的,那么这个数列的前n项和即可用此法来求,如等比数列的前n项和公式就是用此法推导的.(4)倒序相加法如果一个数列{an}的前n项中首末两端等“距离”的两项的和相等或等于同一个常数,那么求这个数列的前n项和即可用倒序相加法,如等差数列的前n项和公式即是用此法推导的.(5)并项法一个数列的前n项和中,可两两结合求和,称为并项法求和,形如:(-1)nf(n)类型,可考虑利用并项法求和.高中数学解题技巧方法总结第3篇先根据已知条件求出数列的前几项,确定数列的周期,再根据周期性求值.推断数列的通项公式解答此类问题的具体步骤:(1)分式中分子、分母的特征;(2)相邻项的变化特征;(3)拆项后的特征;(4)各项的符号特征和绝对值特征;(5)化异为同,对于分式还可以考虑对分子、分母各个击破,或寻找分子、分母之间的关系;(6)对于符号交替出现的情况,可用(-1)k或(-1)k+1,k∈N*处理.高中数学解题技巧方法总结第4篇以退求进,立足特殊发散一般对于一个较一般的问题,若一时不能取得一般思路,可以采取化一般为特殊(如用特殊法解选择题),化抽象为具体,化整体为局部,化参量为常量,化较弱条件为较强条件,等等。
高中数学解题技巧归纳与总结高中数学是一门基础性的学科,对于学生来说,掌握解题技巧是提高数学成绩的关键。
本文将对高中数学解题技巧进行归纳与总结,以帮助学生提高解题效率和准确性。
一、解题思路的培养:1. 打好数学基础:数学是一门逻辑性很强的学科,掌握基础知识是解决问题的基础。
因此,学生要认真学习数学教材,打好数学基础。
2. 熟悉题目类型:高中数学题目有一定的固定格式和题型,学生要熟悉各种常见的题目类型,掌握解题的一般方法。
3. 边学边练:数学需要不断的练习来熟悉解题思路和提高运算能力。
学生可以通过做大量的数学题目来提高自己的解题能力。
二、解题方法与技巧:1. 分析问题:在解题过程中,学生要仔细分析问题,理解题意,确定所给条件和未知量,找出解题的关键之处。
2. 图形法:对于一些几何题,可以利用图形方法来解题。
通过绘制图形,可以更直观地理解问题,找到解题的线索。
3. 代数方法:代数方法是解决数学问题的一种常见方法。
通过建立代数方程式,通过运算来求解方程式的未知数,进而解决问题。
4. 类比思维:有些题目虽然是新题型,但可以通过与已知题型进行类比来解决。
学生可以寻找题目的共性,找到类似的解题思路。
5. 求差法:有些题目可以通过差的变化得到关键信息,进而解决问题。
学生可以将问题化简为求差的问题,从而更容易解决。
6. 构造法:有些题目需要通过构建具体的数学模型来解决。
学生可以通过自己的思维和想象力构造模型,解决问题。
7. 反证法:有些题目可以通过反证法解决。
学生可以假设问题的反面,通过推理和论证证明反面是不可能的,从而得出结论。
8. 数列方法:数列方法是解决一类数学问题的重要方法。
学生要能够辨别出数列的规律,通过数列的变化来解答问题。
9. 分情况讨论法:有些题目存在多种情况,每种情况的解法不同。
学生可以通过分情况讨论来解决问题。
10. 利用已知条件:学生在解题过程中要善于利用已知条件。
有时候,通过组合或运算已知条件,可以得到更多的信息,进而解决问题。
高考数学难点突破:数列通项公式推导技巧在高考数学中,数列一直是重点和难点内容,而数列通项公式的推导更是重中之重。
掌握了数列通项公式的推导技巧,就相当于握住了解决数列问题的关键钥匙。
接下来,让我们一起深入探讨数列通项公式的推导技巧。
一、等差数列通项公式的推导等差数列是指从第二项起,每一项与它的前一项的差等于同一个常数的数列。
这个常数称为等差数列的公差,通常用字母 d 表示。
假设等差数列的首项为\(a_1\),公差为 d,那么第二项就是\(a_2 = a_1 + d\),第三项\(a_3 = a_2 + d = a_1 + 2d\),第四项\(a_4 = a_3 + d = a_1 + 3d\)……以此类推,我们可以发现第 n 项\(a_n = a_1 +(n 1)d\)。
通过这种逐步推导的方式,我们很容易理解等差数列通项公式的由来。
二、等比数列通项公式的推导等比数列是指从第二项起,每一项与它的前一项的比值等于同一个常数的数列。
这个常数称为等比数列的公比,通常用字母 q 表示。
设等比数列的首项为\(a_1\),公比为 q,那么第二项\(a_2 =a_1q\),第三项\(a_3 = a_2q = a_1q^2\),第四项\(a_4 = a_3q =a_1q^3\)……依此类推,第 n 项\(a_n = a_1q^{n 1}\)。
理解这个推导过程,对于掌握等比数列的通项公式至关重要。
三、累加法推导通项公式对于形如\(a_{n + 1} a_n = f(n)\)的递推关系式,我们可以使用累加法来推导通项公式。
例如,已知\(a_{n + 1} a_n = 2n\),且\(a_1 = 1\)。
那么\(a_2 a_1 = 2×1\),\(a_3 a_2 = 2×2\),\(a_4 a_3 = 2×3\),……,\(a_n a_{n 1} = 2(n 1)\)。
将上述式子相加:\\begin{align}a_n a_1&= 2×1 + 2×2 + 2×3 +\cdots + 2(n 1)\\&= 2×(1 + 2 + 3 +\cdots +(n 1))\\&= 2×\frac{(n 1)n}{2}\\&= n(n 1)\end{align}\因为\(a_1 = 1\),所以\(a_n = n(n 1) + 1\)。
高中数学中的数学归纳法知识点总结数学归纳法是数学中常用的一种证明方法,在高中数学课程中占有重要的地位。
它是通过对特定命题的逐一验证来证明一般性结论的方法。
本文将对高中数学中的数学归纳法的相关知识点进行总结。
一、数学归纳法的基本思想数学归纳法是一种以自然数为基础的证明方法。
其基本思想是:假设某个命题对自然数1成立,然后假设对于任意的自然数k成立,可以证明对于自然数k+1也成立,最后通过数学归纳法原理得出该命题对所有自然数成立。
二、数学归纳法的基本步骤使用数学归纳法证明一个命题通常包括以下几个步骤:1. 基础步骤:证明该命题在自然数1上成立;2. 归纳假设:假设对于任意的自然数k,命题成立;3. 归纳证明:证明对于自然数k+1,命题也成立;4. 数学归纳法原理:根据数学归纳法原理,可以得出该命题对于所有自然数成立。
三、数学归纳法的示例下面通过几个具体的数学归纳法示例来说明其应用:1. 数列的性质证明:证明斐波那契数列的性质,即F(1)=1,F(2)=1,并且对于自然数n≥3,F(n)=F(n-1)+F(n-2)。
(1)基础步骤:当n=1或2时,斐波那契数列成立;(2)归纳假设:假设对于任意的自然数k,斐波那契数列成立;(3)归纳证明:考虑n=k+1的情况,有F(k+1)=F(k)+F(k-1),根据归纳假设,F(k)和F(k-1)都成立,因此F(k+1)也成立;(4)根据数学归纳法原理,得出斐波那契数列对所有自然数成立。
2. 数学命题的证明:证明1+2+3+...+n=n(n+1)/2。
(1)基础步骤:当n=1时,等式成立;(2)归纳假设:假设对于任意的自然数k,等式成立;(3)归纳证明:考虑n=k+1的情况,有1+2+3+...+(k+1)=k(k+1)/2+(k+1)=[(k+1)(k+2)]/2,根据归纳假设,等式成立;(4)根据数学归纳法原理,得出等式对所有自然数成立。
3. 方程求解:证明n^2-n+41是素数的情况。
高中数学《数学归纳法》教学反思引言数学归纳法是高中数学中证明问题的一种重要方法,它在数列求和、不等式证明等领域有广泛应用。
本文旨在反思《数学归纳法》的教学过程,总结经验教训,以期提升教学效果。
第一部分:教学目标与学生实际1.1 教学目标回顾阐述课程开始前设定的知识掌握、技能提升和情感态度目标。
1.2 学生实际水平分析学生在数学归纳法概念理解、证明步骤掌握和应用能力方面的现状。
1.3 目标与实际的匹配度评估教学目标与学生实际水平之间的匹配程度,反思目标设定的合理性。
第二部分:教学内容与方法2.1 教学内容安排回顾数学归纳法的教学内容,包括归纳法的基本步骤、应用范围等。
2.2 教学方法运用反思讲授法、探究学习、合作学习等教学方法的运用效果。
2.3 教学难点突破分析数学归纳法教学中的难点,如归纳假设的建立、证明过程的逻辑性等,反思突破难点的策略。
第三部分:学生学习过程3.1 学生参与度评估学生在课堂上的参与度,包括提问、讨论和作业完成情况。
3.2 学习方法掌握反思学生在数学归纳法学习中采用的学习方法,如记忆、理解、应用等。
3.3 学习难点与障碍分析学生在学习过程中遇到的难点和障碍,如归纳推理的过程、证明的严谨性等。
第四部分:教学效果评估4.1 知识掌握评估通过测验、作业和课堂表现评估学生对数学归纳法知识的掌握情况。
4.2 技能提升评估评估学生在运用数学归纳法进行证明、解决实际问题等方面的技能提升。
4.3 情感态度评估评估学生对数学学习的态度,如兴趣、信心和合作精神等。
第五部分:教学反思与改进5.1 教学方法的反思反思教学方法的适用性和有效性,考虑未来教学中可能的改进措施。
5.2 学生指导的反思反思对学生学习指导的策略,如个性化辅导、学习资源推荐等。
5.3 教学环境的反思反思教学环境对学生学习的影响,如课堂氛围、教学设施等。
第六部分:未来教学计划6.1 教学内容的调整根据教学反思,规划未来教学内容的调整,如增加证明题的练习、强化逻辑推理训练等。
高中数学解题技巧归纳总结大全高中数学解题技巧归纳总结大全平常做数学题的速度慢,考试的时候速度会更慢。
由于考试比较简单紧急,不仅速度慢,还可能会把自己原本会做的题做错。
因此把握一些数学的解题方法尤为重要。
下面是我为大家整理的关于高中数学解题技巧,盼望对您有所关心。
欢迎大家阅读参考学习!1高中数学解题技巧特值检验法对于具有一般性的数学问题,我们在解题过程中,可以将问题特别化,利用问题在某一特别状况下不真,则它在一般状况下不真这一原理,达到去伪存真的目的。
极端性原则将所要讨论的问题向极端状态进行分析,使因果关系变得更加明显,从而达到快速解决问题的目的。
极端性多数应用在求极值、取值范围、解析几何上面,许多计算步骤繁琐、计算量大的题,一但采纳极端性去分析,那么就能瞬间解决问题。
剔除法利用已知条件和选择支所供应的信息,从四个选项中剔除掉三个错误的答案,从而达到正确选择的目的。
这是一种常用的方法,尤其是答案为定值,或者有数值范围时,取特别点代入验证即可排解。
2高一数学解题技巧学会画图画图是一个翻译的过程,把解题时的抽象思维,变成了形象思维,从而降低了解题难度。
有些题目,只要分析图一画出来,其中的关系就变得一目了然。
尤其是对于几何题,包括解析几何题,若不会画图,有时简直是无从下手。
因此,牢记各种题型的基本作图方法,牢记各种函数的图像和意义及演化过程和条件,对于提高解题速度特别重要。
先易后难,逐步增加习题的难度人们熟悉事物的过程都是从简洁到简单。
简洁的问题解多了,从而使概念清楚了,对公式、定理以及解题步骤熟识了,解题时就会形成跳动性思维,解题的速度就会大大提高。
我们在学习时,应依据自己的力量,先去解那些看似简洁,却很重要的习题,以不断提高解题速度和解题力量。
随着速度和力量的提高,再渐渐增加难度,就会达到事半功倍的效果。
限时答题,先提速后订正错误许多同学做题慢的一个重要缘由就是平常做作业习惯了拖延时间,导致形成了一个不太好的解题习惯。
难点31 数学归纳法解题数学归纳法是高考考查的重点内容之一.类比与猜想是应用数学归纳法所体现的比较突出的思想,抽象与概括,从特殊到一般是应用的一种主要思想方法.●难点磁场●案例探究[例1]试证明:不论正数a 、b 、c 是等差数列还是等比数列,当n >1,n ∈N *且a 、b 、c 互不相等时,均有:a n +c n >2b n .命题意图:本题主要考查数学归纳法证明不等式,属★★★★级题目.知识依托:等差数列、等比数列的性质及数学归纳法证明不等式的一般步骤.错解分析:应分别证明不等式对等比数列或等差数列均成立,不应只证明一种情况.证明:(1)设a 、b 、c 为等比数列,a =qb ,c =bq (q >0且q ≠1) ∴a n +c n =n nq b +b n q n =b n (n q 1+q n )>2b n (2)设a 、b 、c 为等差数列,则2b =a +c 猜想2n n c a +>(2c a +)n (n ≥2且n ∈N *) 下面用数学归纳法证明:①当n =2时,由2(a 2+c 2)>(a +c )2,∴222)2(2c a c a +>+ ②设n =k 时成立,即,)2(2k k k c a c a +>+ 则当n =k +1时,41211=+++k k c a (a k +1+c k +1+a k +1+c k +1)[例2]在数列{a n }中,a 1=1,当n ≥2时,a n ,S n ,S n -21成等比数列. (1)求a 2,a 3,a 4,并推出a n 的表达式;(2)用数学归纳法证明所得的结论;(3)求数列{a n }所有项的和.命题意图:本题考查了数列、数学归纳法、数列极限等基础知识.知识依托:等比数列的性质及数学归纳法的一般步骤.采用的方法是归纳、猜想、证明. 错解分析:(2)中,S k =-321-k 应舍去,这一点往往容易被忽视. 技巧与方法:求通项可证明{n S 1}是以{11S }为首项,21为公差的等差数列,进而求得通项公式.(1)由a 1=1,S 2=a 1+a 2=1+a 2,代入(*)式得:a 2=-32由a 1=1,a 2=-32,S 3=31+a 3代入(*)式得:a 3=-152 同理可得:a 4=-352,由此可推出:a n =⎪⎩⎪⎨⎧>---=)1( )12)(32(2)1( 1n n n n (2)①当n =1,2,3,4时,由(*)知猜想成立.②假设n =k (k ≥2)时,a k =-)12)(32(2--k k 成立∴(2k -3)(2k -1)S k 2+2S k -1=0∴S k =321,121--=-k S k k (舍) .1,]1)1(2][3)1(2[22112122)12(1111211212命题也成立即+=-+-+-=⇒--+=-++-⇒++++++k n k k a a k a a k a a k k k k k k k 由①②知,a n =⎪⎩⎪⎨⎧≥---=)2()12)(32(2)1(1n n n n 对一切n ∈N 成立. (3)由(2)得数列前n 项和S n =121-n ,∴S =lim ∞→n S n =0.●锦囊妙记(1)数学归纳法的基本形式设P (n )是关于自然数n 的命题,若1°P (n 0)成立(奠基)2°假设P (k )成立(k ≥n 0),可以推出P (k +1)成立(归纳),则P (n )对一切大于等于n 0的自然数n 都成立.(2)数学归纳法的应用具体常用数学归纳法证明:恒等式,不等式,数的整除性,几何中计算问题,数列的通项与和等.●歼灭难点训练一、选择题A.30B.26C.36D.62.(★★★★)用数学归纳法证明3k ≥n 3(n ≥3,n ∈N )第一步应验证( )A.n =1B.n =2C.n =3D.n =4二、填空题3.(★★★★★)观察下列式子:474131211,3531211,2321122222<+++<++<+…则可归纳出_________.4.(★★★★)已知a 1=21,a n +1=33+n n a a ,则a 2,a 3,a 4,a 5的值分别为_________,由此猜想a n =_________.三、解答题 5.(★★★★)用数学归纳法证明412+n +3n +2能被13整除,其中n ∈N *.6.(★★★★)若n 为大于1的自然数,求证:2413212111>+++++n n n . 7.(★★★★★)已知数列{b n }是等差数列,b 1=1,b 1+b 2+…+b 10=145.(1)求数列{b n }的通项公式b n ;(2)设数列{a n }的通项a n =log a (1+nb 1)(其中a >0且a ≠1)记S n 是数列{a n }的前n 项和,试比较S n 与31log a b n +1的大小,并证明你的结论.参考答案难点磁场解:假设存在a 、b 、c 使题设的等式成立,这时令n =1,2,3,有⎪⎩⎪⎨⎧===∴⎪⎪⎪⎩⎪⎪⎪⎨⎧++=++=++=10113 3970)24(2122)(614c b a c b a c b a c b a 于是,对n =1,2,3下面等式成立设n =k 时上式成立,即S k =12)1(+k k (3k 2+11k +10) 那么S k +1=S k +(k +1)(k +2)2=2)1(+k k (k +2)(3k +5)+(k +1)(k +2)2 =12)2)(1(++k k (3k 2+5k +12k +24) =12)2)(1(++k k [3(k +1)2+11(k +1)+10] 也就是说,等式对n =k +1也成立.综上所述,当a =3,b =11,c =10时,题设对一切自然数n 均成立. 歼灭难点训练一、1.解析:∵f (1)=36,f (2)=108=3×36,f (3)=360=10×36∴f (1),f (2),f (3)能被36整除,猜想f (n )能被36整除.证明:n =1,2时,由上得证,设n =k (k ≥2)时,⇒f (k +1)能被36整除∵f (1)不能被大于36的数整除,∴所求最大的m 值等于36. 答案:C2.解析:由题意知n ≥3,∴应验证n =3.答案:C二、3.解析:11112)11(112321122++⨯<++<+即 12122)12(1)11(11,35312112222++⨯<++++<++即 112)1(131211222++<+++++n n n 归纳为(n ∈N *) 112)1(131211:222++<+++++n n n 答案(n ∈N *) 53,553103,54393,5338333,5237332121333:.454223112+=+==+==+==+=+==+⨯=+=n a a a a a a a a a n 猜想同理解析 73:答案、83、93、103 53=n 三、5.证明:(1)当n =1时,42×1+1+31+2=91能被13整除(2)假设当n =k 时,42k +1+3k +2能被13整除,则当n =k +1时,∴当n =k +1时也成立.由①②知,当n ∈N *时,42n +1+3n +2能被13整除. 6.证明:(1)当n =2时,24131********>=+++ (2)假设当n =k 时成立,即2413212111>+++++k k k2413)1)(12(21241322112124131122112124131111221121213121,1>+++=+-++=+-++++>+-++++++++++++=k k k k k k k k k k k k k k k n 时则当 7.(1)解:设数列{b n }的公差为d ,由题意得⎩⎨⎧==⇒⎪⎩⎪⎨⎧=-+=311452)110(10101111d b d b b ,∴b n =3n -2 (2)证明:由b n =3n -2知S n =log a (1+1)+log a (1+41)+…+log a (1+231-n ) =log a [(1+1)(1+41)…(1+ 231-n )] 而31log a b n +1=log a 313+n ,于是,比较S n 与31log a b n +1的大小⇔比较(1+1)(1+41)…(1+231-n )与313+n 的大小. 取n =1,有(1+1)=33311348+⋅=>取n =2,有(1+1)(1+33312378)41+⨯=>>推测:(1+1)(1+41)…(1+231-n )>313+n (*) ①当n =1时,已验证(*)式成立.②假设n =k (k ≥1)时(*)式成立,即(1+1)(1+41)…(1+231-k )>313+k 则当n =k +1时,)1311(13)2)1(311)(2311()411)(11(3+++>-++-+++k k k k 3131323+++=k k k 333222333331)1(343)23(13130)13(49)13()13)(43()23()43()131323(++=+>+++∴>++=+++-+=+-+++k k k k k k k k k k k k k k k 31)1(3)1311)(2311()411)(11(++>-+-+++k k k 从而,即当n =k +1时,(*)式成立 由①②知,(*)式对任意正整数n 都成立.于是,当a >1时,S n >31log a b n +1,当 0<a <1时,S n <31log a b n +1∴q ≠0,a 2=-29,综合①②,猜想通项公式为a n =⎪⎩⎪⎨⎧∈=-∈-=⋅-)(2 21)(12 21N N k k n q k k n q k k 时时 下证:(1)当n =1,2时猜想成立可推知n =2k +1也成立.所以a 2k +2=-21q k +1,这说明n =2k 成立,可推知n =2k +2也成立. 综上所述,对一切自然数n ,猜想都成立.这样所求通项公式为a n =⎪⎩⎪⎨⎧∈=-∈-=⋅-)(2 21)(12 21N N k k n q k k n q k k 时当时当 S 2n =(a 1+a 3…+a 2n -1)+(a 2+a 4+…+a 2n )=2(1+q +q 2+…+q n -1)-21 (q +q 2+…+q n ) )24)(11()1()1(211)1(2q q q q q q q q n n n ---=--⋅---= 由于|q |<1,∴n n nn S q 2lim ,0lim ∞→∞→=故=)24)(11(q q q n --- 依题意知)1(24q q --<3,并注意1-q >0,|q |<1解得-1<q <0或0<q <52。
104难点31 关于数学归纳法解题数学归纳法是高考考查的重点内容之一.类比与猜想是应用数学归纳法所体现的比较突出的思想,抽象与概括,从特殊到一般是应用的一种主要思想方法.●难点磁场(★★★★)是否存在a 、b 、c 使得等式1·22+2·32+…+n (n +1)2=12)1(+n n (an 2+bn +c ). ●案例探究[例1]试证明:不论正数a 、b 、c 是等差数列还是等比数列,当n >1,n ∈N *且a 、b 、c 互不相等时,均有:a n +c n >2b n .命题意图:本题主要考查数学归纳法证明不等式,属★★★★级题目.知识依托:等差数列、等比数列的性质及数学归纳法证明不等式的一般步骤.错解分析:应分别证明不等式对等比数列或等差数列均成立,不应只证明一种情况. 技巧与方法:本题中使用到结论:(a k -c k )(a -c )>0恒成立(a 、b 、c 为正数),从而a k +1+c k +1>a k ·c +c k ·a .证明:(1)设a 、b 、c 为等比数列,a =qb,c =bq (q >0且q ≠1)∴a n+c n=n n qb +b n q n =b n (n q 1+q n )>2b n(2)设a 、b 、c 为等差数列,则2b =a +c 猜想2n n c a +>(2c a +)n(n ≥2且n ∈N *)下面用数学归纳法证明:①当n =2时,由2(a 2+c 2)>(a +c )2,∴222)2(2c a c a +>+ ②设n =k 时成立,即,)2(2kk k c a c a +>+ 则当n =k +1时,41211=+++k k c a (a k +1+c k +1+a k +1+c k +1) >41(a k +1+c k +1+a k ·c +c k ·a )=41(a k +c k )(a +c ) >(2c a +)k ·(2c a +)=(2c a +)k +1[例2]在数列{a n }中,a 1=1,当n ≥2时,a n ,S n ,S n -21成等比数列.(1)求a 2,a 3,a 4,并推出a n 的表达式; (2)用数学归纳法证明所得的结论; (3)求数列{a n }所有项的和.命题意图:本题考查了数列、数学归纳法、数列极限等基础知识.知识依托:等比数列的性质及数学归纳法的一般步骤.采用的方法是归纳、猜想、证明.错解分析:(2)中,S k =-321-k 应舍去,这一点往往容易被忽视.技巧与方法:求通项可证明{n S 1}是以{11S }为首项,21为公差的等差数列,进而求得105通项公式.解:∵a n ,S n ,S n -21成等比数列,∴S n 2=a n ·(S n -21)(n ≥2) (*) (1)由a 1=1,S 2=a 1+a 2=1+a 2,代入(*)式得:a 2=-32由a 1=1,a 2=-32,S 3=31+a 3代入(*)式得:a 3=-152同理可得:a 4=-352,由此可推出:a n =⎪⎩⎪⎨⎧>---=)1( )12)(32(2)1( 1n n n n (2)①当n =1,2,3,4时,由(*)知猜想成立.②假设n =k (k ≥2)时,a k =-)12)(32(2--k k 成立故S k 2=-)12)(32(2--k k ·(S k -21)∴(2k -3)(2k -1)S k 2+2S k -1=0∴S k =321,121--=-k S k k (舍) 由S k +12=a k +1·(S k +1-21),得(S k +a k +1)2=a k +1(a k +1+S k -21).1,]1)1(2][3)1(2[22112122)12(1111211212命题也成立即+=-+-+-=⇒--+=-++-⇒++++++k n k k a a k a a k a a k k k k k k k由①②知,a n =⎪⎩⎪⎨⎧≥---=)2()12)(32(2)1(1n n n n 对一切n ∈N 成立. (3)由(2)得数列前n 项和S n =121-n ,∴S =lim ∞→n S n =0.●锦囊妙记(1)数学归纳法的基本形式设P (n )是关于自然数n 的命题,若 1°P (n 0)成立(奠基)2°假设P (k )成立(k ≥n 0),可以推出P (k +1)成立(归纳),则P (n )对一切大于等于n 0的自然数n 都成立.(2)数学归纳法的应用具体常用数学归纳法证明:恒等式,不等式,数的整除性,几何中计算问题,数列的通项与和等.●歼灭难点训练 一、选择题1.(★★★★★)已知f (n )=(2n +7)·3n +9,存在自然数m ,使得对任意n ∈N ,都能使m 整除106f (n ),则最大的m 的值为( )A.30B.26C.36D.6 2.(★★★★)用数学归纳法证明3k ≥n 3(n ≥3,n ∈N )第一步应验证( ) A.n =1 B.n =2 C.n =3 D.n =4 二、填空题3.(★★★★★)观察下列式子:474131211,3531211,2321122222<+++<++<+…则可归纳出_________.4.(★★★★)已知a 1=21,a n +1=33+n n a a ,则a 2,a 3,a 4,a 5的值分别为_________,由此猜想a n =_________.三、解答题5.(★★★★)用数学归纳法证明412+n +3n +2能被13整除,其中n ∈N *.6.(★★★★)若n 为大于1的自然数,求证:2413212111>+++++n n n . 7.(★★★★★)已知数列{b n }是等差数列,b 1=1,b 1+b 2+…+b 10=145.(1)求数列{b n }的通项公式b n ; (2)设数列{a n }的通项a n =log a (1+nb 1)(其中a >0且a ≠1)记S n 是数列{a n }的前n 项和,试比较S n 与31log a b n +1的大小,并证明你的结论. 8.(★★★★★)设实数q 满足|q |<1,数列{a n }满足:a 1=2,a 2≠0,a n ·a n +1=-q n ,求a n 表达式,又如果lim ∞→n S 2n <3,求q 的取值范围.参考答案难点磁场解:假设存在a 、b 、c 使题设的等式成立,这时令n =1,2,3,有⎪⎩⎪⎨⎧===∴⎪⎪⎪⎩⎪⎪⎪⎨⎧++=++=++=101133970)24(2122)(614c b a cb ac b a c b a 于是,对n =1,2,3下面等式成立 1·22+2·32+…+n (n +1)2=)10113(12)1(2+++n n n n 记S n =1·22+2·32+…+n (n +1)2设n =k 时上式成立,即S k =12)1(+k k (3k 2+11k +10) 那么S k +1=S k +(k +1)(k +2)2=2)1(+k k (k +2)(3k +5)+(k +1)(k +2)2107=12)2)(1(++k k (3k 2+5k +12k +24)=12)2)(1(++k k [3(k +1)2+11(k +1)+10]也就是说,等式对n =k +1也成立.综上所述,当a =3,b =11,c =10时,题设对一切自然数n 均成立. 歼灭难点训练一、1.解析:∵f (1)=36,f (2)=108=3×36,f (3)=360=10×36 ∴f (1),f (2),f (3)能被36整除,猜想f (n )能被36整除. 证明:n =1,2时,由上得证,设n =k (k ≥2)时, f (k )=(2k +7)·3k +9能被36整除,则n =k +1时, f (k +1)-f (k )=(2k +9)·3k +1 -(2k +7)·3k =(6k +27)·3k -(2k +7)·3k=(4k +20)·3k =36(k +5)·3k -2 (k ≥2) ⇒f (k +1)能被36整除∵f (1)不能被大于36的数整除,∴所求最大的m 值等于36. 答案:C2.解析:由题意知n ≥3,∴应验证n =3. 答案:C 二、3.解析:11112)11(112321122++⨯<++<+即 12122)12(1)11(11,35312112222++⨯<++++<++即112)1(131211222++<+++++n n n 归纳为(n ∈N *) 112)1(131211:222++<+++++n n n 答案(n ∈N *) 53,553103,54393,5338333,523733221333:.454223112+=+==+==+==+=+==+⨯=+=n a a a a a a a a a n 猜想同理解析 73:答案、83、93、10353=n 三、5.证明:(1)当n =1时,42×1+1+31+2=91能被13整除(2)假设当n =k 时,42k +1+3k +2能被13整除,则当n =k +1时, 42(k +1)+1+3k +3=42k +1·42+3k +2·3-42k +1·3+42k +1·3 =42k +1·13+3·(42k +1+3k +2 )∵42k +1·13能被13整除,42k +1+3k +2能被13整除108∴当n =k +1时也成立.由①②知,当n ∈N *时,42n +1+3n +2能被13整除.6.证明:(1)当n =2时,2413127221121>=+++ (2)假设当n =k 时成立,即2413212111>+++++k k k 2413)1)(12(21241322112124131122112124131111221121213121,1>+++=+-++=+-++++>+-++++++++++++=k k k k k k k k k k k k k k k n 时则当 7.(1)解:设数列{b n }的公差为d ,由题意得⎩⎨⎧==⇒⎪⎩⎪⎨⎧=-+=311452)110(10101111d b d b b ,∴b n =3n -2 (2)证明:由b n =3n -2知S n =log a (1+1)+log a (1+41)+…+log a (1+231-n ) =log a [(1+1)(1+41)…(1+ 231-n )]而31log a b n +1=log a 313+n ,于是,比较S n 与31log a b n +1 的大小⇔比较(1+1)(1+41)…(1+231-n )与313+n 的大小.取n =1,有(1+1)=33311348+⋅=> 取n =2,有(1+1)(1+33312378)41+⨯=>> 推测:(1+1)(1+41)…(1+231-n )>313+n (*) ①当n =1时,已验证(*)式成立.②假设n =k (k ≥1)时(*)式成立,即(1+1)(1+41)…(1+231-k )>313+k 则当n =k +1时,)1311(13)2)1(311)(2311()411)(11(3+++>-++-+++k k k k 3131323+++=k k k333222333331)1(343)23(13130)13(49)13()13)(43()23()43()131323(++=+>+++∴>++=+++-+=+-+++k k k k k k k k k k k k k k k10931)1(3)1311)(2311()411)(11(++>-+-+++k k k 从而,即当n =k +1时,(*)式成立由①②知,(*)式对任意正整数n 都成立. 于是,当a >1时,S n >31log a b n +1 ,当 0<a <1时,S n <31log a b n +1 8.解:∵a 1·a 2=-q ,a 1=2,a 2≠0, ∴q ≠0,a 2=-29, ∵a n ·a n +1=-q n ,a n +1·a n +2=-q n +1 两式相除,得qa a n n 12=+,即a n +2=q ·a n 于是,a 1=2,a 3=2·q ,a 5=2·q n …猜想:a 2n +1=-21q n(n =1,2,3,…) 综合①②,猜想通项公式为a n =⎪⎩⎪⎨⎧∈=-∈-=⋅-)(2 21)(12 21N N k k n q k k n q k k 时时下证:(1)当n =1,2时猜想成立(2)设n =2k -1时,a 2k -1=2·q k -1则n =2k +1时,由于a 2k +1=q ·a 2k -1 ∴a 2k +1=2·q k 即n =2k -1成立. 可推知n =2k +1也成立. 设n =2k 时,a 2k =-21q k,则n =2k +2时,由于a 2k +2=q ·a 2k , 所以a 2k +2=-21q k+1,这说明n =2k 成立,可推知n =2k +2也成立. 综上所述,对一切自然数n ,猜想都成立.这样所求通项公式为a n =⎪⎩⎪⎨⎧∈=-∈-=⋅-)(221)(12 21N N k k n q k k n q k k 时当时当S 2n =(a 1+a 3…+a 2n -1)+(a 2+a 4+…+a 2n ) =2(1+q +q 2+…+q n -1 )-21(q +q 2+…+q n ) )24)(11()1()1(211)1(2q q q q q q q q n n n ---=--⋅---=由于|q |<1,∴n n nn S q 2lim ,0lim ∞→∞→=故=)24)(11(qq q n --- 依题意知)1(24q q --<3,并注意1-q >0,|q |<1解得-1<q <0或0<q <52。