高中数学导数压轴题重难点突破
- 格式:pdf
- 大小:6.87 MB
- 文档页数:60
高中数学导数难题怎么解题导数是高考数学必考的内容,近年来高考加大了对以导数为载体的知识问题的考查,题型在难度、深度和广度上不断地加大、加深,从而使得导数相关知识愈发显得重要。
下面是小编为大家整理的关于高中数学导数难题解题技巧,希望对您有所帮助。
欢迎大家阅读参考学习!1.导数在判断函数的单调性、最值中的应用利用导数来求函数的最值的一般步骤是: (1)先根据求导公式对函数求出函数的导数; (2)解出令函数的导数等于 0 的自变量; (3)从导数性质得出函数的单调区间; (4)通过定义域从单调区间中求出函数最值。
2.导数在函数极值中的应用利用导数的知识来求函数极值是高中数学问题比较常见的类型。
利用导数求函数极值的一般步骤是: (1)首先根据求导法则求出函数的导数; (2)令函数的导数等于 0,从而解出导函数的零点; (3)从导函数的零点个数来分区间讨论,得到函数的单调区间; (4)根据极值点的定义来判断函数的极值点,最后再求出函数的极值。
3.导数在求参数的取值范围时的应用利用导数求函数中的某些参数的取值范围,成为近年来高考的热点。
在一般函数含参数的题中,通过运用导数来化简函数,可以更快速地求出参数的取值范围。
导数知识在函数解题中的妙用函数知识是高中数学的重点内容,其中包括极值、图像、奇偶性、单调性等方面的分析,具有代表性的题型就是极值的计算和单调性的分析,按照普通的解题过程是通过图像来分析,可是对于较难的函数来说,制作图像不仅浪费时间,而且极容易出错,而在函数解题中应用导数简直就是手到擒来。
例如:函数 f(x)=x3+3x2+9x+a,分析 f(x)的单调性。
这是高中数学中常见的三次函数,在对这道题目进行单调性分析时,很多学生根据思维定式会采用常规的手法画图去分析单调区间,但由于未知数a 的存在而遇到困难。
如果考虑用导数的相关知识解决这一问题,解:f’(x)=-3x2+6x+9,令 f’(x)>0,那么解得 x<-1 或者 x>3,也就是说函数在(- ∞ ,-1), (3,+∞)这个单调区间上单调递减,这样就能非常容易的判断函数的单调性。
㊀㊀㊀讲题比赛获奖论文之六:2022年高考数学全国乙卷导数压轴题解析◉中央民族大学附属中学呼和浩特分校㊀李雪峰㊀㊀摘要:函数零点问题在高考压轴题中经常出现.在解题过程中,按照一定标准对参数分类讨论㊁把握细节确定方向㊁引入隐零点㊁区间卡根,这些方面都可能成为解决零点问题的障碍.所以,选取适当的角度观察㊁分析,根据题目中的关键信息制定策略㊁拟定解题思路,并在此基础上进行计算㊁推理论证,往往是解题的关键.只有明白了思考的底层逻辑,才能使分析问题㊁解决问题的能力有所提高.关键词:函数零点问题;分类讨论;数形结合;区间卡根1试题呈现(2022年高考数学全国乙卷第21题)已知函数f (x )=l n (1+x )+a x e -x.(1)当a =1时,求曲线y =f (x )在点(0,f (0))处的切线方程;(2)若f (x )在区间(-1,0),(0,+ɕ)各恰有一个零点,求a 的取值范围.2试题解析本题的第(1)问不多赘述,下面给出第(2)问的几种不同的思考角度和解题方法.2.1思路一及解法2.1.1解题思路一的形成因为题中所给条件是函数零点问题,所以我们先观察函数值的正负情况以及何时为零.当a ȡ0时,若x >0,则f (x )=l n (1+x )+a x e -x>0恒成立,与题意不符.因此,下面只讨论a <0时的情形.通过观察易知f (0)=0,当x ң-1时,f (x )ң-ɕ;当x ң+ɕ时,f (x )ң+ɕ.要使f (x )在区间(-1,0),(0,+ɕ)各恰有一个零点,则可以猜测f (x )的图象大致如图1所示.图1由图1可知,fᶄ(0)=a +1<0显然为其必要条件,即a <-1.下面需要说明:①当a ȡ-1时,不符合题意;②当a <-1时,讨论函数f (x )的单调性,再根据零点存在定理说明在区间(-1,0)和(0,+ɕ)上各恰有一个零点.思路一的思维导图如图2所示.函数f (x )零点问题观察函数的零点及正负情况确定讨论a 的标准说明a ȡ0和-1ɤa <0时不符合题意当a <-1时,利用隐零点讨论f (x )的单调性,并区间探点,说明a <-1时符合题意得出结论图22.1.2具体解法解法1:由思路一的分析可知a ȡ0不合题意,下面只讨论a <0时的情形.由f (x )求导,得f ᶄ(x )=e x +a (1-x 2)(x +1)ex.设g (x )=e x +a (1-x 2).当-1ɤa <0时,在区间(0,+ɕ)上,有g (x )=e x +a (1-x 2)=(e x+a )-a x 2>0.所以,在区间(0,+ɕ)上,f ᶄ(x )>0,f (x )单调递增,则f (x )>f (0)=0,这与题意不符.当a <-1时,g ᶄ(x )=e x-2a x ,因为g ᵡ(x )=e x-2a >0,所以g ᶄ(x )在区间(-1,+ɕ)上单调递增.又因为g ᶄ(-1)=e -1+2a <0,gᶄ(0)=1>0,所以存在唯一x 0ɪ(-1,0),使g ᶄ(x 0)=0.因此,当x ɪ(-1,x 0)时,g ᶄ(x )<0,g(x )单调递减;当x ɪ(x 0,+ɕ)时,g ᶄ(x)>0,g (x )单调递增.(为直观起见,下面分别画出函数g ᶄ(x ),g (x ),f (x )的大致图象,如图3~5所示.)图3㊀㊀图4322022年12月上半月㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀试题研究命题考试Copyright ©博看网. All Rights Reserved.㊀㊀㊀图5于是g (x 0)<g (0)=a +1<0,又因为g (-1)=1e >0,g (1)=e >0,所以存在x 1ɪ(-1,x 0),x 2ɪ(x 0,1),使g (x 1)=g (x 2)=0.当x ɪ(-1,x 1)时,g (x )>0,f ᶄ(x )>0,f (x )单调递增;当x ɪ(x 1,x 2)时,g (x )<0,f ᶄ(x )<0,f (x )单调递减;当x ɪ(x 2,+ɕ)时,g (x )>0,fᶄ(x )>0,f (x )单调递增.同时可知f (x 1)>f (0)=0,f (x 2)<f (0)=0.(至此,利用隐零点求出了函数f (x )的单调区间.下面利用放缩法进行区间卡根,根据零点存在定理说明在区间(-1,0)和(0,+ɕ)上各恰有一个零点.)当-1<x <0时,因为x e -x>-e(证明略),所以f (x )=l n (1+x )+a x e -x<l n (x +1)-e a .由l n (x +1)-e a <0,得x <e e a -1.取m =e e a-1,则f (m )<0,从而存在唯一s ɪ(m ,x 1),使f (s )=0.当x >0时,因为x e -xɤ1e (证明略),所以f (x )=l n (1+x )+a x e -x>l n (x +1)+a e.由l n (x +1)+a e>0,得x >e -a e-1.取n =e -a e-1,则f (n )>0,从而存在唯一t ɪ(x 2,n ),使f (t )=0.所以,当a <-1时,函数f (x )区间(-1,0)和(0,+ɕ)上各恰有一个零点.综上所述,a 的取值范围是(-ɕ,-1).解法2:当a ȡ0时,在区间(0,+ɕ)上,f (x )=l n (1+x )+a x e -x>0,与题意不符.下面只讨论a <0时的情形.由f (x )求导得f ᶄ(x )=1x +1+a (1-x )ex=1x +1[1+a (1-x 2)e x].(注意常见的变形技巧:对数 单身狗 ,指数 找朋友 .)设g (x )=1+a (1-x 2)ex,x ɪ(-1,+ɕ).求导,得g ᶄ(x )=a (x 2-2x -1)ex,x ɪ(-1,+ɕ).易得g (x )在(-1,1-2)上单调递减,在(1-2,1+2)上单调递增,在(1+2,+ɕ)上单调递增.当-1ɤa <0时,g (0)=a +1ȡ0,又因为当x >1+2时,g (x )=1+a (1-x 2)ex>1,所以当x >0时,g (x )>0,f ᶄ(x )>0,f (x )单调递增,从而f (x )>f (0)=0,这与题意不符.(为直观起见,给出g (x )的图象,如图6所示.)图6当a <-1时,g (0)=a +1<0,因为g (-1)=g (1)=1>0,g (1-2)<g (0)<0,所以存在唯一x 1ɪ(-1,0),x 2ɪ(0,1),使g (x 1)=g (x 2)=0.此时f (x )在(-1,x 1)上单调递增,(x 1,x 2)上单调递减,在(x 2,+ɕ)上单调递增.故f (x 1)>f (0)=0>f (x 2).(为直观起见,给出g (x ),f (x )的图象,如图7.)㊀图7下面找点说明f (x )在区间(-1,0),(0,+ɕ)上有零点.f (x )=l n (1+x )+a xex (a <-1).设m (x )=x e x ,则x ɪ(-1,1)时,m ᶄ(x )=1-xex >0,x ɪ(1,+ɕ)时,m ᶄ(x )<0.于是m (x )ɪ-e ,1e æèçöø÷.所以,可得l n (1+x )+ae<l n (1+x )+a xex <l n (1+x )-a e .由l n (1+x )+a e=0,解得x =e -ae-1>0,f (e -a e-1)>l n (1+e --1)+a e=0.由l n (1+x )-a e =0,解得x =e e a-1.所以可得f (e a e -1)<l n (1+e a e-1)-a e =0.所以f (x )在区间(-1,0),(0,+ɕ)上各恰有一个零点.综上所述,a 的取值范围是(-ɕ,-1).点评:解法1和解法2的基本思路一样,都是按照一定的标准对参数a 进行分类讨论,然后借助隐零点将函数的定义域分成若干个单调区间,最后在每个单调区间上卡根,根据零点存在定理说明函数零点的情况.解法2在求导后将导函数等价变形,使再求导后只需解一个不含参的二次不等式,简化了运算.解题一般是按照由易到难的顺序进行思考,即先42命题考试试题研究㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀2022年12月上半月Copyright ©博看网. All Rights Reserved.㊀㊀㊀观察㊁猜想,再分析㊁思辨,最后论证㊁求解.题目越复杂越要注意细节,细节往往是打通解题思路的关键.2.2思路二及解法2.2.1解题思路二的形成函数零点的问题往往可以转化为两个函数图象交点问题,因此该题可以考虑参变分离,将函数零点的问题转化为直线与另一个函数图象交点问题,同时还可以避免参数讨论带来的麻烦.思路二的思维导图,如图8所示.函数f (x )零点问题转化为直线y =-a 与y =F (x )图象交点问题求导后,讨论F ᶄ(x )的符号及F (x )的单调性x >0时,求出F (x )在x =0处的极限,由图可得a <-1当x <0时,利用隐零点,讨论F (x )的单调性,并求出F (x )当x 趋于-1时的极限,由图可得a <-1得出结论图82.2.2具体解法解法3:因为f (0)=0,所以f (x )=0等价于-a =e x l n (1+x )x.令F (x )=e x l n (1+x )x (x >-1),则F ᶄ(x )=e x[(x 2-1)l n (1+x )+x ]x 2(x +1).令g (x )=(x 2-1)l n (1+x )+x ,则gᶄ(x )=x [1+2l n (1+x )].(注意到g (0)=0,所以先讨论g (x )在x >0时的正负情况.)当x >0时,gᶄ(x )>0,则g (x )单调递增,g (x )>g (0)=0,从而当x >0时,F ᶄ(x )>0,F (x )在(0,+ɕ)单调递增.由导数定义,得㊀F (x )>l i m x ң0F (x )=l i m x ң0e xl n (1+x )-e 0l n (1+0)x -0=[e xl n (1+x )]ᶄ|x =0=[e x 11+x +e xl n (1+x )]|x =0=1.(为直观起见,下面给出F (x )的图象.)图9如图9所示,要使直线y =a 与F (x )图象在y 轴右侧恰有一个交点,则必然有-a >1,即a <-1.因为e e l n (1+e -a )e-a+a >l n (1+e -a )+a >l n e -a+a =0,所以由零点存在定理可知,a <-1时,f (x )在区间(0,+ɕ)恰有一个零点.当-1<x <0时,令g ᶄ(x )=0,得x =e --1.易知g (x )在(-1,e -12-1)上单调递增,在(e -12-1,0)上单调递减,则g (e -12-1)>g (0)=0.因为g (e -1-1)=-e 2+3e -1e2<0,所以存在唯一x 0ɪ(e -1-1,e -12-1),使g (x 0)=0.(为直观起见,给出g (x ),F (x )的图象,如图10.)㊀㊀图10当-1<x <x 0时,g (x )<0,F ᶄ(x )<0,F (x )单调递减;当x 0<x <0时,g (x )>0,F ᶄ(x )>0,F (x )单调递增.所以F (x 0)<l i m x ң0F (x )=1.又因为l i m x ң-1F (x )=+ɕ,所以要使直线y =a 与f (x )图象在y 轴左侧恰有一个交点,则必然有-a >1,即a <-1.综上所述,当a <-1时,f (x )在区间(-1,0),(0,+ɕ)各恰有一个零点.点评:解法3的好处在于对F (x )求导后避免了参数的讨论;难点在于当x 趋于0时F (x )的极限值不易求出,虽然可用洛必达法则,但是超出了高中所学.该解法绕开了洛必达法则,利用导数的定义求出F (x )在x =0处的极限,比较巧妙,不易想到.3试题链接下面给出两道高考真题,供读者练习.试题1㊀(2017年全国Ⅰ卷理科)已知函数f (x )=a e 2x +(a -2)e x-x .(1)讨论f (x )的单调性;(2)若f (x )有两个零点,求a 的取值范围.试题2㊀(2018年全国Ⅱ卷理科)已知函数f (x )=e x-a x 2.(1)若a =1,证明:当x ȡ0时,f (x )ȡ1;(2)若f (x )在(0,+ɕ)只有一个零点,求a .4总结函数零点问题是高考的常考内容,数形并用㊁合理分类是解题的关键.区间探点是一个难点,常常可以用放缩法解决.上述方法都是解决此类问题的典型方法,由于方法3中的极限值不易求出,考试中绝大多数考生选择了方法1和方法2.该题对学生的逻辑推理能力和运算能力要求较高,解题时要求学生注意细节㊁大胆猜想㊁合理分类㊁准确计算,这样才能将问题顺利解决.Z522022年12月上半月㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀试题研究命题考试Copyright ©博看网. All Rights Reserved.。
《难点突破》压轴题----函数与导数常考题型一、要点归纳1.曲线()y f x =在0x x =处的切线的斜率等于0()f x ',且切线方程为000()()()y f x x x f x '=-+.2.若可导函数()y f x =在x x =处取得极值,则0()0f x '=.反之,不成立.3.对于可导函数()f x ,不等式()f x '0>0<()的解集决定函数()f x 的递增(减)区间。
4.函数()f x 在区间I 上递增(减)的充要条件是:x I ∀∈,()f x '0≥(0)≤恒成立(()f x '不恒为0).5.函数()f x (非常量函数)在区间I 上不单调等价于()f x 在区间I 上有极值,则可等价转化为方程()0f x '=在区间I 上有实根且为非二重根。
(若()f x '为二次函数且I=R ,则有0∆>).6.()f x 在区间I 上无极值等价于()f x 在区间在上是单调函数,进而得到()f x '0≥或()f x '0≤在I 上恒成立.7.若x I ∀Î,()f x 0>恒成立,则min ()f x 0>;若x I ∀∈,()f x 0<恒成立,则max ()f x 0<.8.若0x I ∃∈,使得0()f x 0>,则max ()f x 0>;若0x I∃∈,使得0()f x 0<,则min ()f x 0<.9.设()f x 与()g x 的定义域的交集为D ,若x ∀∈D ()()f x g x >恒成立,则有[]min ()()0f x g x ->.10.若对11x I ∀∈、22x I ∈,12()()f x g x >恒成立,则min max ()()f x g x >.若对11x I ∀∈,22x I ∃∈,使得12()()f x g x >,则min min ()()f x g x >.若对11x I ∀∈,22x I ∃∈,使得12()()f x g x <,则max max ()()f x g x <.11.已知()f x 在区间1I 上的值域为A,,()g x 在区间2I 上值域为B ,若对11x I ∀∈,22x I ∃∈,使得1()f x =2()g x 成立,则A B ⊆.12.若三次函数f(x)有两个极值点,当且仅当方程()0f x '=一定有两个不等实根12x x 、,若三次函数f(x)没有极值点,则方程()0f x '=有两个相等的实根或没实根..13.证题中常用的不等式:①1xe x≥+②1xex-≥-③xeex ≥④316xex >⑤ln +1(1)x x x ≤>-()⑥ln 1(1)12x x x x -<>+⑦22ln 11(0)22x x x x <->⑧111ln ()1(1)2x x x x x x x-≤≤-≤-≥⑨ln 11(0)x x x x≤->二、常考题型:题型一:恒成立求参数的最值或取值范围问题1.1()010.1xax f x e x x y x-==+-=+已知函数在处的切线方程为(Ⅰ)求a 的值;(Ⅱ)()1,f x <若求x 的取值范围.2.已知函数ln ()1a x bf x x x=++,曲线()y f x =在点(1,(1))f 处的切线方程为230x y +-=.(Ⅰ)求a 、b 的值;(Ⅱ)证明:当0x >,且1x ≠时,ln ()1xf x x >-.3.已知函数ln(1)()(0)x f x x x+=>(Ⅰ)判断函数()f x 的单调性;(Ⅱ)是否存在实数a 使得关于x 的不等式ln(1)x ax +<在(0,)+∞上恒成立?若存在,求出a 的取值范围,若不存在,试说明理由.4.已知函数1ln ()xf x x+=.(Ⅰ)设a >0,若函数)(x f 在区间1(,2a a +上存在极值,求实数a 的取值范围;(Ⅱ)如果当x ≥1时,不等式2()1k kf x x -≥+恒成立,求实数k 的取值范围.5.已知函数2()23.xf x e x x =+-(Ⅰ)求曲线()y f x =在点(1,(1))f 处的切线方程;(Ⅱ)如果当1x ≥时,不等式25()(3)12f x x a x ≥+-+恒成立,试求实数a 的取值范围.6.设()ln af x x x x=+,32()3g x x x =--.(Ⅰ)当2a =时,求曲线()y f x =在1x =处的切线方程;(Ⅱ)若存在12,[0,2]x x ∈,使12()()g x g x M-≥成立,求满足上述条件的最大整数M ;(Ⅲ)如果对任意的1,[,2]2s t ∈,都有()()f s g t ≥成立,求实数a 的取值范围.7.设函数(),x f x xe =2().g x ax x =+(Ⅰ)若()f x 与()g x 具有完全相同的单调区间,求a 的值;(Ⅱ)若当0x ≥时恒有()(),f x g x ≥求a 的取值范围.8.已知函数()xf x e =,()1g x x =+(Ⅰ)判断函数()()f x g x -零点的个数,并说明理由;(Ⅱ)当0x ≥时,()11axf x x≥++恒成立,求实数a 的取值范围.9.已知函数32()31()f x ax x a x R =++∈,.(Ⅰ)当0a <时,求函数f(x)的极值.(Ⅱ)设函数'1()()(21)13h x f x a x =+-+,(1,](1)x b b ∈->-,如果存在(,1],a ∈-∞-,对任意(1,]x b ∈-都有()0h x ≥成立,试求b 的最大值.10.设函数2()ln ,,f x a x bx a b R =-∈(Ⅰ)若函数()f x 在1x =处与直线12y =-相切,①求实数,a b 的值;②求函数()f x 在1,e e ⎡⎤⎢⎥⎣⎦的最大值;(Ⅱ)当0b =时,若不等式()f x m x ≥+对所有的(230,,1,2a x e ⎡⎤⎤∈∈⎦⎢⎥⎣⎦都成立,求实数m 的取值范围.11.已知函数211()ln()22f x ax x ax =++-(a 为常数,0a >).(Ⅰ)若12x =是函数()f x 的一个极值点,求a 的值;(Ⅱ)求证:当02a <≤时,()f x 在1,2⎡⎫+∞⎪⎢⎣⎭上是增函数;(Ⅲ)若对任意..的a ∈(1,2),总存在..01,12x ⎡⎤∈⎢⎥⎣⎦,使不等式20()(1)f x m a >-成立,求实数m 的取范围.12.已知函数()()()3212f x x a x a a x=+--+()a ∈R ,()'f x 为()f x 的导数.(Ⅰ)当3a =-时,证明()y f x =在区间()1,1-上不是单调....函数;(Ⅱ)设()19163g x x =-,是否存在实数a ,对于任意的[]11,1x ∈-,存在[]20,2x ∈,使得()()1122f x ax g x '+=成立?若存在,求出a 的取值范围;若不存在,说明理由.13.已知函数2()ln (1).xf x a x x a a =+->(Ⅰ)求()f x 的单调增区间;(Ⅱ)若存在[]12,1,1,x x ∈-使得12()()1(f x f x e e a -≥-是自然数),求实数的取值.范围14.设函数2()mxf x ex mx =+-.(Ⅰ)证明:()f x 在(,0)-∞单调递减,在(0,)+∞单调递增;(Ⅱ)若对于任意12,[1,1]x x ∈-,都有12()()1f x f x e -≤-,求m 的取值范围.15.已知函数R a x x axx x f ∈-+-+=,1)1ln()(.(Ⅰ)当0>a 时,求函数)(x f 的单调区间;(Ⅱ)若存在0>x ,使)(11)(Z a x xx x f ∈+-<++成立,求a 的最小值.16.设函数()1.xf x e -=-(Ⅰ)证明:当1,();1x x f x x >-≥+时(Ⅱ)当0,()1xx f x ax ≥≤+时恒成立,求a 的取值范围.17.已知函数2()(1)(1).x f x x e x x =-->(Ⅰ)试判断方程()0f x =根的个数.(Ⅱ)()(1,),k k f x k ≤+∞若为整数,且不等式在上恒成立求的最大值.18.设函数()2xf x e ax =--(Ⅰ)求()f x 的单调区间(Ⅱ)若1,a k =为整数,且当0x >时,'()()10,x k f x x -++>求k 的最大值.题型二:导数与函数的切线问题19.已知函数312()ln ,()23f x x x g x ax x e=⋅=--.(Ⅰ)求()f x 的单调增区间和最小值;(Ⅱ)若函数()y f x =与函数()y g x =在交点处存在公共切线,求实数a 的值;(Ⅲ)若2(0,]x e ∈时,函数()y f x =的图象恰好位于两条平行直线1:l y kx =;2:l y kx m =+之间,当1l 与2l 间的距离最小时,求实数m 的值.20.已知函数()ln().f x x a ax =-+(Ⅰ)求函数()f x 的单调区间和极值;(Ⅱ)若(,1),a ∈-∞-函数'()()g x a f x =的图象上存在12,P P 两点,其横坐标满足1216x x -<<<,且()g x 的图象在此两点处的切线互相垂直,求a 的取值范围.21.已知在函数321253y x x x =--+的曲线上存在唯一点P 00(,)x y ,过点P 作曲线的切线l 与曲线有且只有一个公共点P,则切线l 的斜率k =______________.22.已知函数2(),.xf x e ax ex a R =+-∈(Ⅰ)若曲线()y f x =在点(1,(1))f 处的切线平行于x 轴,求函数()f x 的单调区间;(Ⅱ)试确定a 的取值范围,使得曲线()y f x =上存在唯一的点P ,曲线在该点处的切线与曲线只有一个公共点P .题型三:导数与函数的零点及零点关系问题23.已知函数3()sin (),[0]22f x ax x a R π=-∈且在,上的最大值.π-3为2(Ⅰ)求函数()f x 的解析式;(Ⅱ)判断函数()f x 在(0,)π内的零点个数,并加以证明.24.已知函数()xf x x ae=-()a R Î有两个零点12,x x ,且12x x <.(Ⅰ)求a 的取值范围;(Ⅱ)证明21x x 随着a 的减小而增大;(Ⅲ)证明12x x +随着a 的减小而增大.25.已知函数()2ln ()2a f x x x x x a a R =--+Î,在其定义域内有两个不同的极值点.(Ⅰ)求a 的取值范围;(Ⅱ)记两个极值点为12,x x ,且12x x <,已知0λ>,若不等式112e x x ll+<×恒成立,求λ的取值范围.26.已知函数()(0)axf x x e a =->.(Ⅰ)求函数()f x 的单调区间;(Ⅱ)若函数()f x 有两个零点12,x x ,且12x x <,试证明12x ae x <.27.已知函数()f x =1x x e-(x ∈R)(Ⅰ)求函数()f x 的单调区间和极值;(Ⅱ)已知函数()y g x =对任意x 满足()(4)g x f x =-,证明:当x >2时,()f x >()g x ;(Ⅲ)如果1x ≠2x ,且1()f x =2()f x ,证明:12x x +>4.28.已知函数2)1(2)(-+-=x a e x x f x)(有两个零点.(Ⅰ)求a 的取值范围;(Ⅱ)设x 1,x 2是的两个零点,证明:x 1+x 2<2.29.已知函数()(cos )2sin 2f x x x x π=---,2()(1xg x x ππ=-+-.证明:(1)存在唯一0(0,)2x π∈,使0()0f x =;32.已知()()ln ().f x x x mx m R =-∈(Ⅰ)当1m =时,()f x 的图象在()1,1-处的切线l 恰与函数(01)xy a a a =>≠且的图象相切,求实数a 的值.(Ⅱ)若函数21()ln 212F x x x mx =+-+的两个极值点为1212,,x x x x <且,求证:21()1()f x f x <-<.33.设函数'()ln(1),()(),0,f x x g x xf x x =+=≥其中'()f x 是()f x 的导函数.(Ⅰ)令11()(),()(()),,n n g x g x g x g g x n N ++==∈求()n g x 的表达式;(Ⅱ)若()()f x ag x ≥恒成立,求实数a 的取值范围;(Ⅲ)设n N +∈,比较(1)(2)()g g g n ++⋅⋅⋅+与()n f n -的大小,并加以证明.34.已知函数f(x)=e x-kx,x∈R.(Ⅰ)若k=e ,试确定函数f(x)的单调区间;(Ⅱ)若k>0,且对于任意x∈R,f(|x|)>0恒成立,试确定实数k 的取值范围;(Ⅲ)设函数F(x)=f(x)+f(-x),求证:F(1)F(2)…F(n)>()122nn e++(n∈N *).《难点突破》(答案)压轴题----函数与导数常考题型二、常考题型:题型一:恒成立求参数的最值或取值范围问题2.解:(Ⅰ)221(ln )'()(1)x x b x f x x x α+-=-+,由于直线230x y +-=的斜率为12-,且过点(1,1),故(1)1,1'(1),2f f =⎧⎪⎨=-⎪⎩即1,1,22b a b =⎧⎪⎨-=-⎪⎩解得1a =,1b =。
函数与导数压轴题题型与解题方法(高考必备)题型与方法(选择、填空题)一、函数与导数1、抽象函数与性质主要知识点:定义域、值域(最值)、单调性、奇偶性、周期性、对称性、趋势线(渐近线)对策与方法:赋值法、特例法、数形结合例1:已知定义在$[0,+\infty)$上的函数$f(x)$,当$x\in[0,1]$时,$f(x)=\frac{2}{3}-4x$;当$x>1$时,$f(x)=af(x-1)$,$a\in R$,$a$为常数。
下列有关函数$f(x)$的描述:①当$a=2$时,$f(\frac{3}{2})=4$;②当$a<\frac{1}{2}$时,函数$f(x)$的值域为$[-2,2]$;③当$a>\frac{1}{2}$时,不等式$f(x)\leq 2a$恒成立;④当$-\frac{1}{2}<a<\frac{1}{2}$时,函数$f(x)$的图像与直线$y=2an-1$($n\in N^*$)在$[1,n]$内的交点个数为$n-\frac{1+(-1)^n}{2}$。
其中描述正确的个数有(。
)【答案】C分析:根据题意,当$x>1$时,$f(x)$的值由$f(x-1)$决定,因此可以考虑特例法。
当$a=2$时,$f(x)$的值域为$[0,4]$,因此①正确。
当$a\frac{1}{2}$时,$f(x)$在$[0,1]$上单调递减,在$[1,+\infty)$上单调递增,因此不等式$f(x)\leq 2a$恒成立,③正确。
当$-\frac{1}{2}<a<\frac{1}{2}$时,$f(x)$在$[0,1]$上单调递减,在$[1,+\infty)$上单调递增,因此$f(x)$与直线$y=2an-1$($n\in N^*$)在$[1,n]$内的交点个数为$n-\frac{1+(-1)^n}{2}$,④正确。
因此,答案为$\boxed{\textbf{(C) }2}$。
导数压轴题十种构造方法大全以及解题方法导引方法一 等价变形,转化构造 方法导读研究函数的性质是高考压轴题的核心思想,但直接构造或者简单拆分函数依然复杂,这时候需要依赖对函数的等价变形,通过恒等变形发现简单函数结构再进行构造研究,会起到事半功倍的效果。
方法导引例1 已知函数f(x)=a e x (a ∈R ),g(x)=lnx x+1.(1)求函数g(x)的极值;(2)当a ≥1e 时,求证:f(x)≥g(x). 解析:(1)由g (x )=ln x x+1,得g ′(x )=1−ln x x 2,定义域为(0,+∞).令g ′(x )=0,解得x =e , 列表如下:结合表格可知函数g (x )的极大值为g (e )=1e +1,无极小值. (2)要证明f (x )≥g (x ),即证ae x ≥ln x x+1,而定义域为(0,+∞),所以只要证axe x −ln x −x ≥0,又因为a ≥1e,所以axe x −ln x −x ≥1exe x −ln x −x , 所以只要证明1e xe x −ln x −x ≥0.令F (x )=1e xe x −ln x −x ,则F ′(x )=(x +1)(e x−1−1x ), 记ℎ(x )=e x−1−1x ,则ℎ(x )在(0,+∞)单调递增且ℎ(1)=0,所以当x ∈(0,1)时,ℎ(x )<0,从而F ′(x )<0;当x ∈(1,+∞)时,ℎ(x )>0,从而F ′(x )>0,即F (x )在(0,1)单调递减,在(1,+∞)单调递增,F (x )≥F (1)=0. 所以当a ≥1e 时,f (x )≥g (x ).例2已知a ∈R ,a ≠0,函数f (x ) =e ax -1-ax ,其中常数e =2.71828.(1)求f (x ) 的最小值;(2)当a ≥1时,求证:对任意x >0 ,都有xf (x ) ≥ 2ln x +1-ax 2. 解析:(1)因为()1ax f x eax -=-,则()()11ax f x a e -'=-,()210ax f x a e -'=>'故()f x '为R 上的增函数,令()0f x '=,解得1x a= 故当()1,,0x f x a ⎛⎫∈-∞< '⎪⎝⎭,()f x 单调递减; 当()1,,0x f x a ⎛⎫∈+∞>'⎪⎝⎭,()f x 单调递增, 则()10min f x f a ⎛⎫==⎪⎝⎭故函数()f x 的最小值为0.(2)证明:要证明xf (x ) ≥ 2ln x +12ax - 等价于证明121ax xe lnx -≥+由(1)可知:10ax e ax --≥,即1ax e ax -≥ 因为0x >,故12ax xe ax -≥ 故等价于证明221ax lnx ≥+即()2210,0,ax lnx x --≥∈+∞令()221g x ax lnx =--,即证()()0,0,g x x ≥∈+∞恒成立.又())21122g x ax x x+-=-='令()0g x '=,解得x =故当(),0x g x⎛'∈< ⎝,()g x 单调递减; 当(),0x g x⎫∈+∞>'⎪⎭,()g x 单调递增;故()2g x g lna≥== 有因为1a ≥,故0lna ≥ 故()0g x lna ≥≥即证.即对任意x >0 ,都有xf (x ) ≥ 2ln x +1-ax 2. 方法二:构造常见典型函数 方法导读常见典型函数主要包括xlnx ,x/lnx ,lnx/x ; xe x ,xe x ,e x /x 等,通过变形发现简单函数结构再进行构造研究,会起到事半功倍的效果。
高考函数与导数类压轴题的6大模型与23种考法总结!压轴
题不只学霸才能解~
只有学霸才会解'压轴题'嘛?
在高考数学里,这个问题的答案一定是否定的,数学压轴题十之有九是对函数与导数问题的考查,此类题型确实不简单,但极具规律性,属于难,但是容易备考的题型。
今天车车帮你整理好了压轴题的所有题型和命题角度,无论你的数学成绩如何,请务必试试攻克它。
文末查看电子版领取方式。
\
本文目录
题型一切线型
1.求在某处的切线方程
2.求过某点的切线方程
3.已知切线方程求参数
题型二单调型
1.主导函数需“二次求导”型
2.主导函数为“一次函数”型
3.主导函数为“二次函数”型
4.已知函数单调性,求参数范围
题型三极值最值型
1.求函数的极值
2.求函数的最值
3.已知极值求参数
4.已知最值求参数
题型四零点型
1.零点(交点,根)的个数问题
2.零点存在性定理的应用
3.极值点偏移问题
题型五恒成立与存在性问题
1.单变量型恒成立问题
2.单变量型存在性问题
3.双变量型的恒成立与存在性问题
4.等式型恒成立与存在性问题
题型六与不等式有关的证明问题
1.单变量型不等式证明
2.含有e x与lnx的不等式证明技巧
3.多元函数不等式的证明
4.数列型不等式证明的构造方法。
导数问题难点突破
导数是整个高中数学的难点,在高考中有道小题和一道大题,都是压轴题。
导数研究的核心是单调性问题,尤其是含参函数的单调性问题。
但学生们普遍掌握的不好,主要问题是不知如何分类。
我做了如下处理:
1、理解解题原理。
让学生们充发理解利用导数处理单调生的原理,理解数形结合的思想。
2、优化解题过程
结合具体的例子,先让学生们去求解含参函数的单调性,然后再共同优化解题过程、寻找出最优的解题思路。
经过大家的共同探讨,我们找出了最优的解题思路:
第一步:求导,标定义域
第二步:看导函数是否有恒正或恒负的情况,如果有,先处理这种情况。
因为此时原函数在定义域内是单调函数
第三步:如果导函数有正,有负,则说明原函数有增有减。
如果导函数是连续函数,则一定有零点。
求出这个零点。
第四步:列表,找出导函数在由零点分开的各个区间内的正负,得出原函数的单调性。
依此过程,学生们基本都可以完成含参函数的单调性 问题。
看下面的例子:
设函数3()(1)f x x ax b =---,R x ∈,其中R b a ∈,求)(x f 的单调区间;
解析:(Ⅰ)解:由b ax x x f ---=3)1()(,可得a x x f --=2)1(3)('.
下面分两种情况讨论:
当x 变化时,)('x f ,)(x f 的变化情况如下表:
,
),331(+∞+a .。
高一数学导数压轴题解题技巧
高一数学导数压轴题通常是考察学生对导数概念的理解和应用
能力的重要考试,以下是一些解题技巧:
1. 理解导数定义
导数定义是理解导数概念的基础,需熟练掌握并能熟练运用。
2. 熟练掌握导数的基本性质
导数具有线性性、乘积法则、商法则、链式法则等基本性质,需要熟练掌握并灵活运用。
3. 熟练掌握求导公式
常用的求导公式包括常函数导数、幂函数导数、指数函数导数、对数函数导数、三角函数导数等,需要熟练掌握并能够正确运用。
4. 理解导数的物理意义
导数的物理意义是变化率,需要理解并能够将其应用到实际问题中。
5. 灵活应用导数解决实际问题
在解决实际问题时,需要灵活运用导数概念和求导公式,并联系实际情况进行分析和解答。
通过以上解题技巧,相信学生们可以在高一数学导数压轴题中取得好成绩。
- 1 -。