第三章气体的热力过程及气体的压缩
- 格式:ppt
- 大小:934.50 KB
- 文档页数:37
第三章理想⽓体的性质与热⼒过程第三章理想⽓体的性质和理想⽓体的热⼒过程英⽂习题1. Mass of air in a roomDetermine the mass of the air in a room whose dimensions are 4 m×5 m×6 m at 100 kPa and 25℃2. State equation of an ideal gasA cylinder with a capacity of 2.0 m 3contained oxygen gas at a pressure of 500 kPa and 25℃ initially. Then a leak developed and was not discovered until the pressure dropped to 300 kPa while the temperature stayed the same. Assuming ideal-gas behavior, determine how much oxygen had leaked out of the cylinder by the time the leak was discovered.3. Two tanks are connected by a valve. One tank contains 2 kg of carbon monoxide gas at 77oC and0.7 bar. The other tank holds 8 kg of the same gas at 27oC and 1.2 bar. The valve is opened and the gases are allowed to mix while receiving energy by heat transfer from the surrounding. The final ideal gas equilibrium temperature is 42℃ Using the model, determine (a) the final equilibrium pressure, in bar, and (b) the heat transfer for the process,in kJ.4. Electric heating of air in a houseThe electric heating systems used in many houses c o nsist of a simple duct with resistance wires. Air is heated as it flows over resistance wires. Consider a 15-kW electric system. Air enters the heating section at 100 kPa and 17oC with a volume flow rate of 150 m 3/min. If heat is lost from the air in the duct to the surroundings at a rate of 200 W, determine the exit temperature of air.C P =1.005 kJ/(kg. K).5. Evaluation of the Δu of an ideal gasAir at 300 K and 200 kPa is heated at constant pressure to 600 K. Determine the change in internal energy of air per unit mass, using (a) data from the air table, (b) the functional form of the specific heat, and (c) the average specific heat value.6. Properties of an ideal gasA gas has a density of 1.875 kg/m 3at a pressure of 1 bar and with a temperature of 15oC. A mass of 0.9 kg of the gas requires a heat transfer of 175 kJ to raise its temperature from 15oC to 250oC while the pressure of the gas remains constant. Determine (1) the characteristic gas constant of the gas, (2) the specific heat capacity of the gas at constant pressure, (3) the specific heat capacity of the gas at constant volume, (4) the change of internal energy, (5) the work transfer.7. Freezing of chicken in a boxCarbon2kg, 77oCarbon 8kg, 27oMonoxide C 0.7bar Monoxide C 1.2bar valve Tank 1Tank 2FIGURE 3-1FIGURE 3-2FIGURE 3-3A supply of 50 kg of chicken at 6℃ contained in a box is to be frozen to -18℃ in a freezer. Determine the amount of heat that needs to be removed. The latent heat of the chicken is 247 kJ/kg, and its specific heat is 3.32 kJ/kg.℃ above freezing and 1.77 kJ/kg.℃ below freezing. The container box is 1.5 kg, and the specific heat of the box material is 1.4 kJ/kg.℃. Also, the freezing temperature of chicken is -2.8℃.8. Closed- system energy balanceA rigid tank which acts as a perfect heat insulator and which has a negligible heat capacity is divided into two unequal partsA andB by a partition. Different amounts of the same ideal gas are contained in the two parts of the tank. The initial conditions of temperature T, pressure p, and total volume V are known for both parts of the tank. Find expressions for the equilibrium temperature T and pressure P reached after removal of the partition. Calculate the entropy change for A and B and the totalentropy change of the tank. Assume that Cv,m is constant,9. Thermal processes of an ideal gasAn air receiver has a capacity of 0.85 m 3and contains air at a temperature of 15℃ and a pressure of 275 kN/m 3. An additional mass of 1.7 kg is pumped into the receiver. It is then left until the temperature becomes 15℃ once again. Determine (1) the new pressure of the air in the receiver, (2) the specific enthalpy of the air at 15℃ if it is assumed that the specific enthalpy of the air is zero at 0℃. Take cp=1.005 kJ/kg.K, cc=0.715 kJ/kg.K.10. Air is compressed steadily by a reversible compressor from an inlet state of 100KPa and 300K toan exit pressure of 900 kPa. Determine the compressor work per unit mass for isentropic compression with k=1.4, (1) isentropic compression with k=1.4, (2) polytropic compression with n=1.3, (3) isothermal compression, and (4) ideal two-stage compression with intercooling with a polytropic exponent of 1.3.11. A rigid cylinder contains a “floating” piston, free to mo ve within the cylinder without friction. Initially,it divided the cylinder in half, and on each side of the piston the cylinder holds 1 kg of the same ideal gas at 20oC, and 0.2 MPa . An electrical resistance heater is installed on side A of the cylinder, and it is energized slowly to P A2=P B2=0.4 MPa. If the tank and the piston are perfect heat insulators and are of negligible heat capacity, cv=0.72 kJ/(kg·K). Calculate (1)the final temperatures, volumes of A,B sides, (2)the amount of heat added to the system by the resistor. (3)the entropy changes of A,B sides, (4)the total entropy change of the cylinder.⼯程热⼒学与传热学第三章理想⽓体的性质和热⼒过程习题1 理想⽓体的c p 和c V 之差及c p 和c V 之⽐是否在任何温度下都等于⼀个常数?习题0.20.1MPa 300K 0.01m 3AMPa 300K 0.01m 3BFIGURE 3-42如果⽐热容是温度t 的单调增函数,当t 2 >t 1时平均⽐热容2121,,00t t t t c c c 中哪⼀个最⼤?哪⼀个最⼩? 3如果某种⼯质的状态⽅程式遵循T R pv g ,这种物质的⽐热容⼀定是常数吗?这种物质的⽐热容仅是温度的函数吗? 4在p-v 图上画出定⽐热容理想⽓体的可逆定容加热过程,可逆定压加热过程,可逆定温加热过程和可逆绝热膨胀过程。
第三章热力学第二定律3.1 卡诺热机在的高温热源和的低温热源间工作。
求(1)热机效率;(2)当向环境作功时,系统从高温热源吸收的热及向低温热源放出的热。
解:卡诺热机的效率为根据定义3.2 卡诺热机在的高温热源和的低温热源间工作,求:(1)热机效率;(2)当从高温热源吸热时,系统对环境作的功及向低温热源放出的热解:(1) 由卡诺循环的热机效率得出(2)3.3 卡诺热机在的高温热源和的低温热源间工作,求(1)热机效率;(2)当向低温热源放热时,系统从高温热源吸热及对环境所作的功。
解: (1)(2)3.4 试说明:在高温热源和低温热源间工作的不可逆热机与卡诺机联合操作时,若令卡诺热机得到的功r W 等于不可逆热机作出的功-W 。
假设不可逆热机的热机效率大于卡诺热机效率,其结果必然是有热量从低温热源流向高温热源,而违反势热力学第二定律的克劳修斯说法。
证: (反证法) 设 r ir ηη>不可逆热机从高温热源吸热,向低温热源放热,对环境作功则逆向卡诺热机从环境得功从低温热源吸热向高温热源放热则若使逆向卡诺热机向高温热源放出的热不可逆热机从高温热源吸收的热相等,即总的结果是:得自单一低温热源的热,变成了环境作功,违背了热力学第二定律的开尔文说法,同样也就违背了克劳修斯说法。
3.5 高温热源温度,低温热源温度,今有120KJ的热直接从高温热源传给低温热源,求此过程。
解:将热源看作无限大,因此,传热过程对热源来说是可逆过程3.6 不同的热机中作于的高温热源及的低温热源之间。
求下列三种情况下,当热机从高温热源吸热时,两热源的总熵变。
(1)可逆热机效率。
(2)不可逆热机效率。
(3)不可逆热机效率。
解:设热机向低温热源放热,根据热机效率的定义因此,上面三种过程的总熵变分别为。
3.7 已知水的比定压热容。
今有1 kg,10℃的水经下列三种不同过程加热成100 ℃的水,求过程的。
(1)系统与100℃的热源接触。
(2)系统先与55℃的热源接触至热平衡,再与100℃的热源接触。
气体状态方程 热力学定律理想气体的状态方程:(1)理想气体:能够严格遵守气体实验定律的气体,称为理想气体。
理想气体是一种理想化模型。
实际中的气体在压强不太大,温度不太低的情况下,均可视为理想气体。
(2)理想气体的状态方程:C TPVT V P T V P ==或222111 一定质量的理想气体的状态发生变化时,它的压强和体积的乘积与热力学温度的比值保持不变。
即此值为—恒量。
热力学第一定律:(1)表达式为:ΔE=W+Q1.改变内能的两种方式:做功和热传递都可以改变物体的内能。
2.做功和热传递的本质区别:做功和热传递在改变物体内能上是等效的。
但二者本质上有差别。
做功是把其他形式的能转化为内能。
而热传递是把内能从一个物体转移到另一个物体上。
3.功、热量、内能改变量的关系——热力学第一定律。
①内容:在系统状态变化过程中,它的内能的改变量等于这个过程中所做功和所传递热量的总和。
②实质:是能量转化和守恒定律在热学中的体现。
③表达式:∆E W Q=+ ④为了区别不同情况,对∆E 、W 、Q 做如下符号规定: ∆E > 0 表示内能增加∆E < 0 表示内能减少Q > 0 表示系统吸热 Q < 0 表示系统放热 W > 0 表示外界对系统做功W < 0 表示系统对外界做功能的转化和守恒定律:1.物质有许多不同的运动形式,每一种运动形式都有一种对应的能。
2.各种形式的能都可以互相转化,转化过程中遵守能的转化和守恒定律。
3.能的转化和守恒定律:能量既不能凭空产生,也不会凭空消失,它只能从一种形式转化为别的形式,或者从一个物体转移到别的物体。
应注意的问题:1.温度与热量:①温度:温度是表示物体冷热程度的物理量。
从分子动理论观点看,温度是物体分子平均动能的标志。
温度是大量分子热运动的集体表现,含有统计意义,对个别分子来说,温度是没有意义的。
温度高低标志着物体内部的分子热运动的剧烈程度。
热力学理想气体的绝热膨胀和绝热压缩热力学是研究能量转化和宏观物质行为的学科。
理想气体是研究热力学中常用的模型,它具有许多简化的特征。
本文将讨论理想气体在绝热膨胀和绝热压缩过程中的特性和计算方法。
一、绝热膨胀绝热膨胀是指在没有任何热量交换的情况下,气体由一个状态膨胀到另一个状态。
在绝热膨胀过程中,系统对外界做功,而内能保持恒定。
根据理想气体的状态方程P V = nRT,我们可以推导出绝热膨胀的关系式。
假设初始状态下理想气体的温度、压强和体积分别为 T1、P1 和 V1,终态下分别为 T2、P2 和 V2。
根据理想气体状态方程,我们有:P1 V1 / T1 = P2 V2 / T2对于绝热过程,根据绝热条件P V^(γ) = 常数,其中γ 是气体的绝热指数,对于单原子理想气体,γ ≈ 5/3,对于双原子气体,γ ≈ 7/5。
我们可以将状态方程改写为:P1 V1^(γ) = P2 V2^(γ)根据绝热膨胀的定义,我们可以解得:V2 / V1 = (P1 / P2)^(1/γ)此式描述了绝热膨胀过程中气体体积和压强之间的关系。
二、绝热压缩绝热压缩是指在没有任何热量交换的情况下,气体由一个状态压缩到另一个状态。
在绝热压缩过程中,系统对外界做功,而内能保持恒定。
同样地,我们可以推导出绝热压缩的关系式。
假设初始状态下理想气体的温度、压强和体积分别为 T1、P1 和 V1,终态下分别为 T2、P2 和 V2。
根据理想气体状态方程和绝热条件,我们有:P1 V1^(γ) = P2 V2^(γ)同样根据绝热压缩的定义,我们可以解得:V2 / V1 = (P1 / P2)^(1/γ)可以发现,绝热膨胀和绝热压缩的关系式是一样的。
总结:绝热膨胀和绝热压缩是理想气体在没有热量交换的情况下发生的过程。
绝热膨胀和绝热压缩的关系式均为V2 / V1 = (P1 / P2)^(1/γ),其中γ 为气体的绝热指数。
这些关系式可以帮助我们计算和理解绝热过程中气体体积和压强的关系。