溶质运移理论-(二)水动力弥散系数24页PPT
- 格式:ppt
- 大小:772.50 KB
- 文档页数:24
水动力弥散方程水体中的物质运移和扩散往往会受到水流的影响,因此涉及到水动力弥散方程。
水动力弥散方程是描述物质在水动力作用下在水体中弥散和扩散的方程。
在环境保护、污染防治、水资源利用和水力工程等领域中,水动力弥散方程非常重要。
弥散的基本概念在介绍水动力弥散方程之前,需要先了解一些基本概念。
弥散弥散是指物质在水中因为分子热运动而发生的无规则传递过程。
在水中,物质均呈现出弥散的现象,即物质会沿着水流的方向不断扩散。
扩散扩散是指物质在稳定均匀的介质中自发地运动,使得物质的浓度分布趋于均匀的传递过程。
对流对流是指流体中由于温度等差的非均匀性而引起的流动。
水动力域中,对流一般指水流的流动。
分子扩散分子扩散是指物质在介质中因分子热运动而发生的扩散过程。
水动力弥散方程的构建在水动力弥散方程中,要考虑物质的对流和扩散。
如果仅考虑扩散,则十分简单,其方程为:$$\\frac{\\partial c}{\\partial t}=D\ abla^2c$$其中,c表示物质的浓度,t表示时间,D为扩散系数。
但实际上,流体内部还会存在对流影响,所以在含有对流的情况下,水动力弥散方程为:$$\\frac{\\partial c}{\\partial t}+v\ abla c=D\ abla^2c$$其中,v表示水流的速度。
这个方程告诉我们随着时间的推移,浓度c会发生变化。
变化是由扩散和对流两种机制引起的,从而影响水体中物质的分布情况。
水动力弥散方程的本质意义是用数学语言描述了物质在水动力作用下如何弥散和扩散。
物理解释物理上,扩散作用是由分子的玻尔兹曼方程描述的,而对流作用是由沃滕变换描述的。
弥散过程是扩散和对流两种作用的综合体现。
在弥散过程中,对流所起的作用是将物质从一处地方迅速“输送”到其他地方,从而影响弥散的速率。
对流作用越强,同样的物质浓度分布会更快地发生变化;反之,扩散作用相对于对流影响变弱,则物质的浓度分布变化更缓慢。
水动力弥散系数一、基本概念在研究地下水溶质运移问题中,水动力弥散系数是一个很重要的参数。
水动力弥散系数是表征在一定流速下,多孔介质对某种污染物质弥散能力的参数,它在宏观上反映了多孔介质中地下水流动过程和空隙结构特征对溶质运移过程的影响。
水动力弥散系数是一个与流速及多孔介质有关的张量,即使几何上均质,且有均匀的水力传导系数的多孔介质,就弥散而论,仍然是有方向性的,即使在各向同性介质中,沿水流方向的纵向弥散和与水流方向垂直的横向弥散不同。
一般地说,水动力弥散系数包括机械弥散系数与分子扩散系数。
当地下水流速较大以致于可以忽略分子扩散系数,同时假设弥散系数与孔隙平均流速呈线性关系,这样可先求出弥散系数再除以孔隙平均流速便可获取弥散度。
分子扩散系数D '与介质的性质有关。
经验证明:T D D d ⋅=' (6-25)式中 d D ——溶质在静水中的分子扩散系数,它主要取决于溶质分子的特性和温度;T ——多孔介质的弯曲度。
机械弥散系数D ''是一个与地下水流速有关的量。
在各向同性介质中,经试验证明为:UU U U D ji T L ij T ij )(ααδα-+='' (6-26)式中 ij δ——Kronecker 记号,当j i =时,1=δ,当j i ≠时,0=δ;L α——纵向弥散度; T α——横向弥散度;U ——地下水实际速度,i U 、j U 为实际速度的分量;二、水动力弥散系数确定的试验方法水动力弥散系数可通过室内或现场弥散试验确定。
弥散系数的计算方法一般分两类:一是利用解析公式直接或间接求解;二是采用标准曲线对比法。
1.一维室内弥散试验测定水动力弥散系数 (1)试验原理以人工配制的均质各向异性岩样,进行示踪剂注入实验。
具体假设及要求如下: ①. 试验流场为均质不可压缩的稳定的一维流场,渗流为定水头补给的一维弥散; ②. 多孔介质是均质的,渗透系数,孔隙度和弥散系数都是常数; ③. 流体是不可压缩的均质液体,密度、粘滞度为常数,温度不变; ④. 试验土柱(或砂柱)及其中之流体,示踪剂的初始浓度为一定值。
土壤水与溶质的运移Contents5.0 Introduction5.1 Classifying and determining of soil water土壤水的类型划分及土壤水分含量的测定5.2 Energy status of soil water土壤水的能态5.3 Soil water movement土壤水的运动5.4 Solute transportation in soils土壤中的溶质运移Soil water土壤水是土壤的最重要组成部分之一;在土壤形成过程中起着极其重要的作用,在很大程度上参与了土壤内进行的许多物质转化过程:矿物质风化、有机化合物的合成和分解等;作物吸水的最主要来源;自然界水循环的重要环节;非纯水,而是稀薄的溶液,溶有各种溶质,还有胶体颗粒悬浮或分散其中。
Principal sources of soil water●Precipitation——Rain, snow, hail(雹); fog, mist(霜)●Ground water——lateral movement from upslope, upward movement from the underlying rock strata.precipitation Surface devoid of vegetationReachdirectly Vegetated surfaceinterceptedcanopyCanopy throughfall andstemflow atmosphereevaporation infiltration Run offSoil waterDrainage and lostEvapotraspirationThe composition of soil waterSoil water contains a number of dissolved solid and gaseous constituents,many of which exist in mobile ionic form,and a variety of suspended solid components.Base cations(Ca2+, Mg2+, K+, Na+, NH4+)PrecipitationMineral weatheringOrganic matter decomposition Lime and fertilizersourcesH+——a measure of acidity (pH)●CO2Atmosphere ——dissolved in precipitation Soil air ——produced in soil respirationH2O + CO2H2CO3H++ HCO3-Unpolluted rain water: pH>5.6Soil water: pH <5.0●Industrial and urban emission●Organic acids derived from decaying organic material●Released by plants in exchange for nutrient base cations major sourceIron and aluminiumMajor sourcesmineral weatheringacid rainMajor formFe2+, Al3+ionssoluble organic-metallic complexesSoluble anionsNO3-, PO43-Cl-, SO42-HCO3-Mineralisation processesFertilizersAtmosphere sourcesMineral weatheringDissolved organic carbon (DOC) Pollutants (heavy metals et al.)Suspended constitutions☐Small particles of mineral and organic material ☐Often result in discoloration(变污)and increased turbidity(混浊度)of soil water.第一节土壤水的类型划分及土壤水分含量测定Classifying and determining of soil water 一、土壤水分类型及有效性Soil water types and availability土壤水分研究方法能量法数量法从土壤水分受各种力作用后自由能的变化研究水分的能态和运动、变化规律。
第二章 水动力弥散方程的解析解在理想条件下,解析解能够精确地反映函数的分布变化规律。
但是除少数特别简单的模型之外,对实际问题的数学模型几乎都不能用解析方法求解。
由于溶质运移方程的特点和求解溶质运移实际问题的复杂性,一般的实际问题都要依靠数值法求解。
尽管如此,研究溶质运移基本方程的解析解法仍然是非常必要的。
这是因为,各种数值方法要用解析解来进行验证和比较;要利用解析解或配合标准曲线来确定弥散系数;还要根据解析解的适用条件来设计室内或野外试验等等。
目前溶质运移方程的解析解,一般都是针对均质各向同性含水层中的一维或径向流水动力弥散问题,在地下水为稳定流,弥散系数为常数的条件下求得的。
现仅就一维流动的溶质运移问题解析解的求解方法作些简要介绍。
第一节 一维水动力弥散方程的解析解一、一维一类边界水动力弥散方程的解析解设有一半无限的多孔介质一维溶质运移问题,原始状态溶质浓度为0,时段开始,边界处示踪剂浓度瞬时变为0C 并维持不变。
在孔隙流速为常量v 的情况下,溶质运移基本方程为t cx c v xc D ∂∂=∂∂-∂∂22 (3-2-1) 其初始和边界条件为0)0(=,x C (3-2-2) 0)0(C t C =, (3-2-3) 0)(=∞t C , (3-2-4) 式(3-2-l )对t 取拉普拉斯变换,得:x c v xc D x C C p ∂∂-∂∂=-22)0(,由式(3-2-2)知0)0(=,x C ,所以上式变为 022=-∂∂-∂∂c p x cv xc D (3-2-5) 式(3-2-5)为一二阶线性齐次常微分方程,其特征方程为02=--p vr Dr (3-2-6) 式(3-2-6)的两个根分别为D pD v D v r 24221++= DpD v D v r 24222+-= 因此,式(3-2-5)的通解为xr x r e C e C c 2121+= (3-2-7) 用边界条件式(3-2-3)和式(3-2-4)确定任意常数1C 和2C ,求满足该问题初边值条件的特解。