溶质运移理论水动力弥散数的计算方法
- 格式:ppt
- 大小:2.34 MB
- 文档页数:47
第三章 求解水动力弥散方程的有限差分法在符合定解条件的情况下,水动力弥散方程的解析解,可求得计算区域任一点的溶质浓度及其随时间的变化,可分析多种因素对溶质运移过程的影响,利用实测资料可反求溶质运移有关参数,还可用以验证数值方法的可靠程度等。
但对于较复杂的初边值条件或非稳定水流运动中的溶质运移问题,一般很难求得解析解。
即使通过一定简化求得解析解,也由于公式过于繁琐以致难以实际应用。
实践中,对这类问题,常用数值方法求解。
求解水动力弥散方程的数值方法,主要有有限差分法和有限单元法。
考虑到前面有关章节对这两种数值方法已做过详细介绍,三、四两章将主要讨论几种对求解水动力弥散方程较为有效和实用的方法第一节 有限差分计算中出现的跳动和数值弥散根据前面章节所述差分法的一般概念,可以直接写出水动力弥散方程的差分方程。
一般情况下,一维弥散问题隐式格式可用追赶法求解,二维弥散问题常用交替方向隐式差分格式(ADI 法)求解。
具体解法与一般地下水运动差分方程的解法类同,此处不再赘述。
但值得注意的问题是,由于对流项的存在和差分过程中截断误差的影响,使水动力弥散问题的一般差分解法常遇到两个数值困难,即跳动(过量)和数值弥散。
所谓跳动是指在浓度峰面处,用数值法求得的相对浓度大于或小于l ;而数值弥散是指在浓度峰面处,数值法求得浓度的曲线形状比实际界面平缓。
为了解释数值跳动和数值弥散产生的原因,现以均质各向同性含水层一维弥散问题为例加以说明]7[。
此时水动力弥散方程为x cv xc D t c ∂∂-∂∂=∂∂22 (3-3-1) 根据差分法的基本概念,可直接写出其相应隐式差分方程为xC C vx C C CD tC C k i k i k i k i k i k i k i∆--∆+-=∆-+-++++++-+2)2(11112111111(3-3-2)式中,1+k iki C C 、分别为时段始、末的结点i 的溶液浓度。
令2x tr ∆∆=,上式整理后为 ki k i i k ii k i i C rC D C B C A 111111=++++++- (3-3-3) 式中,。
水动力弥散方程水体中的物质运移和扩散往往会受到水流的影响,因此涉及到水动力弥散方程。
水动力弥散方程是描述物质在水动力作用下在水体中弥散和扩散的方程。
在环境保护、污染防治、水资源利用和水力工程等领域中,水动力弥散方程非常重要。
弥散的基本概念在介绍水动力弥散方程之前,需要先了解一些基本概念。
弥散弥散是指物质在水中因为分子热运动而发生的无规则传递过程。
在水中,物质均呈现出弥散的现象,即物质会沿着水流的方向不断扩散。
扩散扩散是指物质在稳定均匀的介质中自发地运动,使得物质的浓度分布趋于均匀的传递过程。
对流对流是指流体中由于温度等差的非均匀性而引起的流动。
水动力域中,对流一般指水流的流动。
分子扩散分子扩散是指物质在介质中因分子热运动而发生的扩散过程。
水动力弥散方程的构建在水动力弥散方程中,要考虑物质的对流和扩散。
如果仅考虑扩散,则十分简单,其方程为:$$\\frac{\\partial c}{\\partial t}=D\ abla^2c$$其中,c表示物质的浓度,t表示时间,D为扩散系数。
但实际上,流体内部还会存在对流影响,所以在含有对流的情况下,水动力弥散方程为:$$\\frac{\\partial c}{\\partial t}+v\ abla c=D\ abla^2c$$其中,v表示水流的速度。
这个方程告诉我们随着时间的推移,浓度c会发生变化。
变化是由扩散和对流两种机制引起的,从而影响水体中物质的分布情况。
水动力弥散方程的本质意义是用数学语言描述了物质在水动力作用下如何弥散和扩散。
物理解释物理上,扩散作用是由分子的玻尔兹曼方程描述的,而对流作用是由沃滕变换描述的。
弥散过程是扩散和对流两种作用的综合体现。
在弥散过程中,对流所起的作用是将物质从一处地方迅速“输送”到其他地方,从而影响弥散的速率。
对流作用越强,同样的物质浓度分布会更快地发生变化;反之,扩散作用相对于对流影响变弱,则物质的浓度分布变化更缓慢。
水动力弥散系数一、基本概念在研究地下水溶质运移问题中,水动力弥散系数是一个很重要的参数。
水动力弥散系数是表征在一定流速下,多孔介质对某种污染物质弥散能力的参数,它在宏观上反映了多孔介质中地下水流动过程和空隙结构特征对溶质运移过程的影响。
水动力弥散系数是一个与流速及多孔介质有关的张量,即使几何上均质,且有均匀的水力传导系数的多孔介质,就弥散而论,仍然是有方向性的,即使在各向同性介质中,沿水流方向的纵向弥散和与水流方向垂直的横向弥散不同。
一般地说,水动力弥散系数包括机械弥散系数与分子扩散系数。
当地下水流速较大以致于可以忽略分子扩散系数,同时假设弥散系数与孔隙平均流速呈线性关系,这样可先求出弥散系数再除以孔隙平均流速便可获取弥散度。
分子扩散系数D '与介质的性质有关。
经验证明:T D D d ⋅=' (6-25)式中 d D ——溶质在静水中的分子扩散系数,它主要取决于溶质分子的特性和温度;T ——多孔介质的弯曲度。
机械弥散系数D ''是一个与地下水流速有关的量。
在各向同性介质中,经试验证明为:UU U U D ji T L ij T ij )(ααδα-+='' (6-26)式中 ij δ——Kronecker 记号,当j i =时,1=δ,当j i ≠时,0=δ;L α——纵向弥散度; T α——横向弥散度;U ——地下水实际速度,i U 、j U 为实际速度的分量;二、水动力弥散系数确定的试验方法水动力弥散系数可通过室内或现场弥散试验确定。
弥散系数的计算方法一般分两类:一是利用解析公式直接或间接求解;二是采用标准曲线对比法。
1.一维室内弥散试验测定水动力弥散系数 (1)试验原理以人工配制的均质各向异性岩样,进行示踪剂注入实验。
具体假设及要求如下: ①. 试验流场为均质不可压缩的稳定的一维流场,渗流为定水头补给的一维弥散; ②. 多孔介质是均质的,渗透系数,孔隙度和弥散系数都是常数; ③. 流体是不可压缩的均质液体,密度、粘滞度为常数,温度不变; ④. 试验土柱(或砂柱)及其中之流体,示踪剂的初始浓度为一定值。
在土壤中,溶质分子扩散符合菲克定律,即ds m cJ D x∂=-∂式中ds J 为土壤中溶质分子扩撒通量,m D 是在土壤中分子扩散系数。
由于受土壤含水量、空隙弯曲度等因的影响,土壤中分子扩散系数比自由水中小。
一般把在土壤中溶质扩散系数表示为含水量的函数,而与土壤溶质浓度无关,即b m w D D ae θ=式中:由于土壤中存在着大小不一、形状各异的的空隙,水溶液在其中流动过程中,每个空隙中的流苏大小和方向各不相同,使溶液分散并扩大运移范围的现象称之为机械弥散。
机械弥散所引起俄溶质迁移通量表示为h h cJ D x∂=-∂式中h J 为土壤中溶质分子扩撒通量,h D 是在土壤中分子扩散系数。
通常机械弥散系数可以表示为空隙流速的函数,即nh D vλ=式中:λ是弥散度,n 是经验系数,v 是空隙平均水流速度。
一般认为机械弥散系数与平均空隙水流速度成一次方程正比,这样经验系数n =1,弥散度的大小取决于水分通量和溶质对流弥散通量的平均尺度大小,一般来说扰动土条件下,λ的值为0.5 到2cm 之间机械弥散和分子扩散作用在土壤中都引起溶质迁移,但因围观流速不以测量,弥散作用与扩散作用也很难区别,同时两者的所引起的溶质迁移通量表达式的形式基本相同。
所以在实际中长把两种作用联合考虑,并称之为水动力弥散。
同样把分子扩散系数和机械弥散系数叠加起来,称之为水动力弥散系数。
因此水动力弥散作用是个别分子在空袭中运动及所发生的一切物理和化学作用的宏观表现。
根据水动力弥散定义以及分子扩撒和机械弥散间的关系,可把水动力弥散引起的土壤溶质迁移通量表示为:lh lhcJ D x∂=-∂ 式中:lh J 是水动力弥散引起的溶质通量,lh D 水水动力弥散系数,nb lh w D D ae vθλ=+土壤水是土壤溶质迁移的载体,溶质可以随着土壤水分整体运动而迁移,这种迁移过程称之为对流。
由于对流作用引起的土壤溶质迁移通量与土壤水分通量和水溶液浓度与关,可表示为wc w J J c =式中:wc J 是对流引起的溶质通量,w J 是土壤水分通量。
地下水溶质运移解析法1、 应用条件求解复杂的水动力弥散方程定解问题非常困难,实际问题中多靠数值方法求解。
但可以用解析解对数值解法进行检验和比较,并用解析解去拟合观测资料以求得水动力弥散系数。
2、 预测模型(1) 一维稳定流动一维水动力弥散问题 1)一维无限长多孔介质柱体,示踪剂瞬时注入tD vt x L L e tD n w m t x C 4)(22/),(-=π (2-1)式中:x —距注入点的距离(m );t —时间(d );),(t x C —t 时刻x 处的示踪剂浓度(mg/L );m —注入的示踪剂质量(kg ); w —横截面面积(m 2);v —水流速度(m/d );n —有效孔隙度;L D —纵向弥散系数(m 2/d ); π—圆周率。
2)一维半无限长多孔介质柱体,一端为定浓度边界)2(21)2(21tD vt x erfc e t D vt x erfc C C L D vxL o L ++-= (2-2)式中:x —距注入点的距离(m );t —时间(d );C —t 时刻x 处的示踪剂浓度(mg/L ); o C —注入的示踪剂浓度(mg/L );v —水流速度(m/d ); L D —纵向弥散系数(m 2/d );()erfc —余误差函数(可查《水文地质手册》获得)。
(2) 一维稳定流动二维水动力弥散问题 1)瞬时注入示踪剂—平面瞬时点源]44)([224/),,(tD y t D vt x T L M T L etD D n M m t y x C +--=π (2-3)式中:x ,y —计算点处的位置坐标;t —时间(d );),,(t y x C —t 时刻点x ,y 处的示踪剂浓度(mg/L );M —承压含水层的厚度(m );M m —长度为M 的线源瞬时注入的示踪剂质量(kg );v —水流速度(m/d );n —有效孔隙度;L D —纵向弥散系数(m 2/d );T D —横向y 方向的弥散系数(m 2/d ); π—圆周率。