八年级数学一次函数图象PPT优秀课件
- 格式:ppt
- 大小:170.00 KB
- 文档页数:10
《一次函数与正比例函数》一次函数PPT优秀课件北师大版八年级数学上册《一次函数与正比例函数》一次函数PPT优秀课件,共29页。
素养目标1. 结合具体情境理解一次函数的意义,能结合实际问题中的数量关系写出一次函数的解析式.2. 能辨别正比例函数与一次函数的区别与联系.3. 能利用一次函数解决简单的实际问题.探究新知一次函数与正比例函数的概念问题1 某弹簧的自然长度为3cm,在弹性限度内,所挂物体的质量x每增加1 kg,弹簧长度y增加0.5 cm.(1)计算所挂物体的质量分别为1 kg,2 kg,3 kg,4 kg,5 kg时弹簧的长度,并填入下表:(2)你能写出y与x之间的关系式吗?分析:它们之间的数量关系是:弹簧长度=原长+增加的长度问题2 某辆汽车油箱中原有汽油60 L,汽车每行驶50 km耗油6 L.研讨以下两个函数关系式:(1)y=0.5x+3. (2)y=-0.12x+60.它们的结构有什么特点?解析:1.都是含有两个变量x,y的等式.2.x和y的指数都是一次.3.自变量x的系数都不为0.定义:若两个变量 x,y间的对应关系可以表示成y=kx+b (k, b为常数,k≠0)的形式,则称 y是x的一次函数.函数是一次函数关系式为:y=kx+b(k,b为常数,k≠0)特别地,当b=0时,称y是x的正比例函数.函数是正比例函数关系式为:y=kx(k为常数,k≠0)思考一次函数的结构特征有哪些?答:一次函数的结构特征:(1)k≠0 .(2)x 的次数是1.(3)常数项b可以为一切实数.方法点拨1.判断一个函数是一次函数的条件:自变量是一次整式,一次项系数不为零;2.判断一个函数是正比例函数的条件:自变量是一次整式,一次项系数不为零,常数项为零.一次函数与正比例函数的应用写出下列各题中y与x之间的关系式,并判断:y是否为x的一次函数?是否为正比例函数?(1)汽车以60km/h的速度匀速行驶,行驶路程为y(km)与行驶时间x(h)之间的关系;解:由路程=速度某时间,得y=60x ,y是x的一次函数,也是x的正比例函数.(2)圆的面积y (cm2 )与它的半径x (cm)之间的关系.解:由圆的面积公式,得y=πx2, y不是x的正比例函数,也不是x的一次函数.(3)某水池有水15m3,现打开进水管进水,进水速度为5m3/h,x h后这个水池有水y m3.解:这个水池每时增加5m3水,x h增加5x m3水,因而y=15+5x,y是x的一次函数,但不是x的正比例函数.课堂小结一次函数与正比例函数一次函数形式:y=kx+b(k≠0)特别地,当b=0时,y=kx(k≠0)是正比例函数一次函数的简单应用... ... ...关键词:一次函数与正比例函数PPT课件免费下载,一次函数PPT下载,.PPTX格式;。
精美获奖课件54《一次函数的图像》课件一、教学内容本节课的内容为《一次函数的图像》,选自人教版八年级数学下册第十一章第一节。
详细内容包括:一次函数的定义、图像及其性质;一次函数图像的绘制方法;一次函数图像在实际问题中的应用。
二、教学目标1. 让学生掌握一次函数的定义、图像及其性质,能熟练绘制一次函数的图像。
2. 培养学生运用一次函数图像解决实际问题的能力,提高学生的数学思维。
3. 培养学生合作交流、动手实践的能力。
三、教学难点与重点教学难点:一次函数图像的绘制方法,一次函数图像在实际问题中的应用。
教学重点:一次函数的定义、图像及其性质。
四、教具与学具准备教具:多媒体课件、黑板、粉笔。
学具:直尺、圆规、量角器。
五、教学过程1. 导入:通过展示一次函数在实际生活中的应用实例,激发学生兴趣,引出本节课的主题。
2. 新课导入:(1)讲解一次函数的定义,引导学生理解并掌握。
(2)通过例题讲解,让学生学会一次函数图像的绘制方法。
3. 随堂练习:(1)让学生独立绘制一次函数的图像。
4. 应用拓展:(1)展示一次函数在实际问题中的应用,引导学生学会运用。
(2)分组讨论,让学生互相交流,提高解决问题的能力。
(1)让学生回顾本节课所学内容,加深对一次函数的认识。
六、板书设计1. 定义:一次函数的定义。
2. 图像:一次函数的图像及其性质。
3. 绘制方法:一次函数图像的绘制方法。
4. 应用:一次函数在实际问题中的应用。
七、作业设计1. 作业题目:情境一:小明骑自行车去学校,速度为4km/h,行驶1小时后,距离学校还有6km。
情境二:小华买了一个玩具车,原价100元,每过一年,价值降低10元。
2. 答案:(1)略。
(2)情境一:y = 4x + 10;情境二:y = 10x + 100。
八、课后反思及拓展延伸1. 反思:本节课学生对一次函数的定义和图像绘制方法掌握较好,但在实际问题中的应用还需加强。
2. 拓展延伸:(1)引导学生探究一次函数图像的平移、伸缩变换。