内酰胺酶抑制剂的临床应用
- 格式:ppt
- 大小:814.50 KB
- 文档页数:31
β-内酰胺类抗生素β内酰胺酶抑制剂复方制剂临床应用专家共识(2020年版)一、概述革兰阴性菌及少数革兰阳性菌对β-内酰胺类抗生素耐药的最重要机制是产生各种β-内酰胺酶。
β-内酰胺酶抑制剂能够抑制部分β-内酰胺酶,避免β-内酰胺类抗生素被水解而失活。
因此,β-内酰胺类抗生素/β-内酰胺酶抑制剂复方制剂(简称β-内酰胺酶抑制剂复方制剂)是临床治疗产β-内酰胺酶细菌感染的重要选择。
我国临床使用的β-内酰胺酶抑制剂复方制剂的种类和规格繁多,临床工作者对该类制剂的特点了解参差不齐,临床不合理使用问题比较突出。
二、主要β-内酰胺酶及产酶菌流行情况β-内酰胺酶是由细菌产生的,能水解β-内酰胺类抗生素的一大类酶。
β-内酰胺酶种类繁多,有多种分类方法,最主要的分类方法有两种:一、是根据β-内酰胺酶的底物、生化特性及是否被酶抑制剂所抑制的功能分类法(Bush分类法),其将β-内酰胺酶分为青霉素酶、广谱酶、超广谱β-内酰胺酶(ESBLs)、头孢菌素酶(AmpC酶)和碳青霉烯酶等;二、是根据β-内酰胺酶末端的氨基酸序列特征的分子生物学分类法(Ambler分类法),将β-内酰胺酶分为丝氨酸酶(包括A类、C类酶和D 类酶)及金属酶(B类酶)。
目前引用较多的是1995年Bush等基于上述二种方法建立的分类方法,2019年Bush等又将该分类表进一步完善和细化(表1)。
其中临床意义最大的是下列三类β-内酰胺酶:表1 常见β-内酰胺酶分类及特点,常见酶抑制剂抑酶活性1、ESBLs主要属2be\2br\2ber类酶,是由质粒介导的能水解青霉素类、头孢菌素及单环酰胺类等β-内酰胺类抗生素的β-内酰胺酶,其对碳青霉烯类和头霉素类水解能力弱。
ESBLs主要由肠杆菌科细菌产生,以肺炎克雷伯菌、大肠埃希菌、变形杆菌最为常见。
根据编码基因的同源性,ESBLs可分为TEM型、SHV型、CTX-M 型、OXA型和其他型共5大类型。
2、AmpC酶属C类酶,通常由染色体介导,可以被β-内酰胺类抗生素诱导。
β-内酰胺类抗生素β内酰胺酶抑制剂复方制剂临床应用专家共识(2020年版)一、概述革兰阴性菌及少数革兰阳性菌对β-内酰胺类抗生素耐药的最重要机制是产生各种β-内酰胺酶。
β-内酰胺酶抑制剂能够抑制部分β-内酰胺酶,避免β-内酰胺类抗生素被水解而失活。
因此,β-内酰胺类抗生素/β-内酰胺酶抑制剂复方制剂(简称β-内酰胺酶抑制剂复方制剂)是临床治疗产β-内酰胺酶细菌感染的重要选择。
我国临床使用的β-内酰胺酶抑制剂复方制剂的种类和规格繁多,临床工作者对该类制剂的特点了解参差不齐,临床不合理使用问题比较突出。
二、主要β-内酰胺酶及产酶菌流行情况β-内酰胺酶是由细菌产生的,能水解β-内酰胺类抗生素的一大类酶。
β-内酰胺酶种类繁多,有多种分类方法,最主要的分类方法有两种:一、是根据β-内酰胺酶的底物、生化特性及是否被酶抑制剂所抑制的功能分类法(Bush分类法),其将β-内酰胺酶分为青霉素酶、广谱酶、超广谱β-内酰胺酶(ESBLs)、头孢菌素酶(AmpC酶)和碳青霉烯酶等;二、是根据β-内酰胺酶末端的氨基酸序列特征的分子生物学分类法(Ambler 分类法),将β-内酰胺酶分为丝氨酸酶(包括A类、C类酶和D类酶)及金属酶(B类酶)。
目前引用较多的是1995年Bush等基于上述二种方法建立的分类方法,2019年Bush等又将该分类表进一步完善和细化(表1)。
其中临床意义最大的是下列三类β-内酰胺酶:表1常见β-内酰胺酶分类及特点,常见酶抑制剂抑酶活性1、ESBLs主要属2be\2br\2ber类酶,是由质粒介导的能水解青霉素类、头孢菌素及单环酰胺类等β-内酰胺类抗生素的β-内酰胺酶,其对碳青霉烯类和头霉素类水解能力弱。
ESBLs主要由肠杆菌科细菌产生,以肺炎克雷伯菌、大肠埃希菌、变形杆菌最为常见。
根据编码基因的同源性,ESBLs可分为TEM型、SHV型、CTX-M型、OXA型和其他型共5大类型。
2、AmpC酶属C类酶,通常由染色体介导,可以被β-内酰胺类抗生素诱导。
β-内酰胺类抗生素β内酰胺酶抑制剂复方制剂临床应用专家共识(2020年版)一、概述革兰阴性菌及少数革兰阳性菌对β-内酰胺类抗生素耐药的最重要机制是产生各种β-内酰胺酶。
β-内酰胺酶抑制剂能够抑制部分β-内酰胺酶,避免β-内酰胺类抗生素被水解而失活。
因此,β-内酰胺类抗生素/β-内酰胺酶抑制剂复方制剂(简称β-内酰胺酶抑制剂复方制剂)是临床治疗产β-内酰胺酶细菌感染的重要选择。
我国临床使用的β-内酰胺酶抑制剂复方制剂的种类和规格繁多,临床工作者对该类制剂的特点了解参差不齐,临床不合理使用问题比较突出。
二、主要β-内酰胺酶及产酶菌流行情况β-内酰胺酶是由细菌产生的,能水解β-内酰胺类抗生素的一大类酶。
β-内酰胺酶种类繁多,有多种分类方法,最主要的分类方法有两种:一、是根据β-内酰胺酶的底物、生化特性及是否被酶抑制剂所抑制的功能分类法(Bush分类法),其将β-内酰胺酶分为青霉素酶、广谱酶、超广谱β-内酰胺酶(ESBLs)、头孢菌素酶(AmpC酶)和碳青霉烯酶等;二、是根据β-内酰胺酶末端的氨基酸序列特征的分子生物学分类法(Ambler分类法),将β-内酰胺酶分为丝氨酸酶(包括A类、C类酶和D 类酶)及金属酶(B类酶)。
目前引用较多的是1995年Bush等基于上述二种方法建立的分类方法,2019年Bush等又将该分类表进一步完善和细化(表1)。
其中临床意义最大的是下列三类β-内酰胺酶:表1 常见β-内酰胺酶分类及特点,常见酶抑制剂抑酶活性素及单环酰胺类等β-内酰胺类抗生素的β-内酰胺酶,其对碳青霉烯类和头霉素类水解能力弱。
ESBLs主要由肠杆菌科细菌产生,以肺炎克雷伯菌、大肠埃希菌、变形杆菌最为常见。
根据编码基因的同源性,ESBLs可分为TEM型、SHV型、CTX-M 型、OXA型和其他型共5大类型。
2、AmpC酶属C类酶,通常由染色体介导,可以被β-内酰胺类抗生素诱导。
部分由质粒介导,常呈持续高水平表达。
内酰胺类抗生素内酰胺酶抑制剂合剂临床应用专家共识一、本文概述《内酰胺类抗生素内酰胺酶抑制剂合剂临床应用专家共识》旨在汇集国内外关于内酰胺类抗生素与内酰胺酶抑制剂合剂在临床应用中的最新研究成果和实践经验,为临床医生提供科学、规范、实用的用药指导。
内酰胺类抗生素是一类具有广泛应用价值的抗菌药物,而内酰胺酶抑制剂则能够增强抗生素的疗效,减少耐药性的产生。
本文将从合剂的临床应用、作用机制、适应症、用法用量、不良反应、药物相互作用等方面进行全面深入的探讨,以期为广大临床医生提供有益的参考和借鉴。
本文也期望能够促进内酰胺类抗生素与内酰胺酶抑制剂合剂在临床实践中的合理应用,提高抗生素的治疗效果,降低耐药性的风险,保障患者的用药安全。
二、内酰胺类抗生素概述内酰胺类抗生素,也称为β-内酰胺类抗生素,是一类广泛应用于临床的抗菌药物。
这类药物的主要作用机制是通过抑制细菌细胞壁的合成,从而达到杀菌或抑菌的目的。
β-内酰胺类抗生素主要包括青霉素类、头孢菌素类、碳青霉烯类、单环β-内酰胺类等多个亚类。
自首个内酰胺类抗生素青霉素问世以来,这类药物在感染性疾病的治疗中发挥了重要作用。
随着药物研发的深入,新型的内酰胺类抗生素不断涌现,其抗菌谱更广,对耐药菌的活性更强,不良反应也更少。
然而,随着抗生素的广泛使用,细菌对内酰胺类抗生素的耐药性也逐渐增强,这成为了全球公共卫生面临的一大挑战。
为了应对这一挑战,研究人员在开发新型内酰胺类抗生素的同时,也在探索如何通过联合用药、优化治疗方案等方式,提高内酰胺类抗生素的临床治疗效果。
内酰胺类抗生素酶抑制剂合剂的出现,为解决这一问题提供了新的思路。
酶抑制剂能够抑制细菌产生的β-内酰胺酶,从而保护内酰胺类抗生素免受水解失活,增强抗生素的抗菌活性。
通过合理的合剂组合,可以进一步拓宽内酰胺类抗生素的抗菌谱,提高其对耐药菌的治疗效果。
因此,对于内酰胺类抗生素及其酶抑制剂合剂的临床应用,需要制定科学、规范的专家共识,以指导临床医师合理、有效地使用这些药物,提高治疗效果,减少耐药性的发生,保障患者的用药安全。
3-内酰胺类抗生素B内酰胺酶抑制剂复方制剂临床应用专家共识(2020年版)一、概述革兰阴性菌及少数革兰阳性菌对3 -内酰胺类抗生素耐药的最重要机制是产生各种3 -内酰胺酶。
3 -内酰胺酶抑制剂能够抑制部分3 -内酰胺酶,避免3 -内酰胺类抗生素被水解而失活。
因此,3 -内酰胺类抗生素/ 3-内酰胺酶抑制剂复方制剂(简称3 -内酰胺酶抑制剂复方制剂)是临床治疗产3 -内酰胺酶细菌感染的重要选择。
我国临床使用的3 -内酰胺酶抑制剂复方制剂的种类和规格繁多,临床工作者对该类制剂的特点了解参差不齐,临床不合理使用问题比较突出。
二、主要3-内酰胺酶及产酶菌流行情况3-内酰胺酶是由细菌产生的,能水解3 -内酰胺类抗生素的一大类酶。
3-内酰胺酶种类繁多,有多种分类方法,最主要的分类方法有两种:一、是根据3 -内酰胺酶的底物、生化特性及是否被酶抑制剂所抑制的功能分类法(Bush分类法),其将3 -内酰胺酶分为青霉素酶、广谱酶、超广谱3-内酰胺酶(ESBLs)、头抱菌素酶(AmpC酶)和碳青霉烯酶等;二、是根据3-内酰胺酶末端的氨基酸序列特征的分子生物学分类法(Ambler分类法),将3 -内酰胺酶分为丝氨酸酶(包括A类、C类酶和D类酶)及金属酶(B类酶)。
目前引用较多的是1995年Bush等基于上述二种方法建立的分类方法,2019年Bush等又将该分类表进一步完善和细化(表1)。
其中临床意义最大的是下列三类3 -内酰胺酶:表1常见B-内酰胺酶分类及特点,常见酶抑制剂抑酶活性1、E SBLs主要属2be\2br\2ber 类酶,是由质粒介导的能水解青霉素类、头抱菌素及单环酰胺类等B -内酰胺类抗生素的B -内酰胺酶,其对碳青霉烯类和头霉素类水解能力弱。
ESBLs主要由肠杆菌科细菌产生,以肺炎克雷伯菌、大肠埃希菌、变形杆菌最为常见。
根据编码基因的同源性,ESBLs可分为TEM型、SHV型、CTX-M型、OXA型和其他型共5大类型。
β-内酰胺类抗生素β 内酰胺酶抑制剂复方制剂临床应用专家共识( 2020 年版)一、概述革兰阴性菌及少数革兰阳性菌对β-内酰胺类抗生素耐药的最重要机制是产生各种β-内酰胺酶。
β-内酰胺酶抑制剂能够抑制部分β-内酰胺酶,避免β-内酰胺类抗生素被水解而失活。
因此,β-内酰胺类抗生素/β-内酰胺酶抑制剂复方制剂(简称β-内酰胺酶抑制剂复方制剂)是临床治疗产β-内酰胺酶细菌感染的重要选择。
我国临床使用的β-内酰胺酶抑制剂复方制剂的种类和规格繁多,临床工作者对该类制剂的特点了解参差不齐,临床不合理使用问题比较突出。
二、主要β-内酰胺酶及产酶菌流行情况β-内酰胺酶是由细菌产生的,能水解β-内酰胺类抗生素的一大类酶。
β-内酰胺酶种类繁多,有多种分类方法,最主要的分类方法有两种:一、是根据β-内酰胺酶的底物、生化特性及是否被酶抑制剂所抑制的功能分类法( Bush 分类法),其将β-内酰胺酶分为青霉素酶、广谱酶、超广谱β-内酰胺酶( ESBLs)、头孢菌素酶( AmpC 酶)和碳青霉烯酶等;二、是根据β-内酰胺酶末端的氨基酸序列特征的分子生物学分类法(Ambler 分类法),将β-内酰胺酶分为丝氨酸酶(包括 A 类、C 类酶和D 类酶)及金属酶( B 类酶)。
目前引用较多的是 1995 年 Bush 等基于上述二种方法建立的分类方法,2019 年Bush 等又将该分类表进一步完善和细化(表1)。
其中临床意义最大的是下列三类β-内酰胺酶:表 1 常见β-内酰胺酶分类及特点,常见酶抑制剂抑酶活性1、ESBLs 主要属 2be\2br\2ber 类酶,是由质粒介导的能水解青霉素类、头孢菌素及单环酰胺类等β-内酰胺类抗生素的β-内酰胺酶,其对碳青霉烯类和头霉素类水解能力弱。
ESBLs 主要由肠杆菌科细菌产生,以肺炎克雷伯菌、大肠埃希菌、变形杆菌最为常见。
根据编码基因的同源性,ESBLs 可分为 TEM 型、SHV 型、CTX-M 型、OXA 型和其他型共 5 大类型。
β-内酰胺类抗生素β内酰胺酶抑制剂复方制剂临床应用专家共识(2020年版)一、概述革兰阴性菌及少数革兰阳性菌对β-内酰胺类抗生素耐药的最重要机制是产生各种β-内酰胺酶。
β-内酰胺酶抑制剂能够抑制部分β-内酰胺酶,避免β-内酰胺类抗生素被水解而失活。
因此,β-内酰胺类抗生素/β-内酰胺酶抑制剂复方制剂(简称β-内酰胺酶抑制剂复方制剂)是临床治疗产β-内酰胺酶细菌感染的重要选择。
我国临床使用的β-内酰胺酶抑制剂复方制剂的种类和规格繁多,临床工作者对该类制剂的特点了解参差不齐,临床不合理使用问题比较突出。
二、主要β-内酰胺酶及产酶菌流行情况β-内酰胺酶是由细菌产生的,能水解β-内酰胺类抗生素的一大类酶。
β-内酰胺酶种类繁多,有多种分类方法,最主要的分类方法有两种:一、是根据β-内酰胺酶的底物、生化特性及是否被酶抑制剂所抑制的功能分类法(Bush分类法),其将β-内酰胺酶分为青霉素酶、广谱酶、超广谱β-内酰胺酶(ESBLs)、头孢菌素酶(AmpC酶)和碳青霉烯酶等;二、是根据β-内酰胺酶末端的氨基酸序列特征的分子生物学分类法(Ambler分类法),将β-内酰胺酶分为丝氨酸酶(包括A类、C类酶和D 类酶)及金属酶(B类酶)。
目前引用较多的是1995年Bush等基于上述二种方法建立的分类方法,2019年Bush等又将该分类表进一步完善和细化(表1)。
其中临床意义最大的是下列三类β-内酰胺酶:表1 常见β-内酰胺酶分类及特点,常见酶抑制剂抑酶活性1、ESBLs主要属2be\2br\2ber类酶,是由质粒介导的能水解青霉素类、头孢菌素及单环酰胺类等β-内酰胺类抗生素的β-内酰胺酶,其对碳青霉烯类和头霉素类水解能力弱。
ESBLs主要由肠杆菌科细菌产生,以肺炎克雷伯菌、大肠埃希菌、变形杆菌最为常见。
根据编码基因的同源性,ESBLs可分为TEM型、SHV型、CTX-M型、OXA型和其他型共5大类型。
2、AmpC酶属C类酶,通常由染色体介导,可以被β-内酰胺类抗生素诱导。
阿莫西林克拉维酸钾的主要相互作用有哪些?阿莫西林克拉维酸钾是一种联合使用的药物,包含阿莫西林和克拉维酸钾两种成分。
阿莫西林是一种青霉素类抗生素,用于治疗细菌感染,而克拉维酸钾则属于β-内酰胺酶抑制剂,能够增强阿莫西林的抗菌作用。
由于两种成分的相互作用,阿莫西林克拉维酸钾在临床上被广泛应用于多种感染的治疗。
下面将详细介绍阿莫西林克拉维酸钾的主要相互作用。
1. 抗菌作用增强:阿莫西林和克拉维酸钾的联合使用,能够增强抗菌作用。
阿莫西林主要通过抑制细菌细胞壁合成来发挥抗菌作用,而克拉维酸钾则能够抑制一些产β-内酰胺酶的细菌,从而阻断细菌对青霉素的降解,增强了阿莫西林的杀菌活性。
2. 调整药物代谢:阿莫西林克拉维酸钾的联合使用可能会对药物的代谢产生一定的影响。
研究表明,克拉维酸钾可以通过抑制肝细胞中的酶系统,影响阿莫西林的消除过程,从而增加阿莫西林在体内的浓度和生物利用度。
3. 肾功能影响:阿莫西林克拉维酸钾的使用可能会对肾脏功能产生一定的影响。
过量使用会引起药物在肾脏中的沉积,导致肾脏负担增加,从而引起肾功能损害。
特别是对于那些存在肾功能障碍的患者,使用该药物时需要特别小心。
4. 与其他药物的相互作用:阿莫西林克拉维酸钾与一些其他药物的联合使用可能会发生相互作用。
例如,与抗凝血药物、硫酸铁等一些药物一起使用时,可能会影响它们的药效。
此外,阿莫西林克拉维酸钾也可能与卡马西平、环丙沙星等一些药物发生相互作用,导致不良反应的发生。
需要特别注意的是,阿莫西林克拉维酸钾可能会引发过敏反应。
一些患者在接受该药物治疗后,可能会出现呼吸急促、皮肤发红、荨麻疹等过敏症状。
此外,由于阿莫西林克拉维酸钾是一种抗生素,过度或长期的使用可能会导致耐药菌株的产生,从而降低该药物的疗效。
因此,在使用该药物时,需要根据患者的具体情况和感染情况,合理控制用药剂量和疗程。
总结来说,阿莫西林克拉维酸钾是一种联合使用的抗生素药物,具有抗菌作用增强、药物代谢调整、肾功能影响以及与其他药物的相互作用等特点。
浅谈β-内酰胺类抗生素与酶抑制剂联用【摘要】随着β-内酰胺类抗生素广泛发展,各种细菌对其耐药性随之增多,由于该类抗生素易被致病菌所产生的β-内酰胺酶水解,产酶耐药菌引起的感染已成为临床急需解决的问题。
解决此类抗生素耐药性的途径之一是通过与β-内酰胺酶抑制剂组方,恢复抗生素原有的抗菌活性和抗菌谱,从而提高其临床疗效。
1 β-内酰胺的结构与作用机制如图:β-内酰胺结构典型—青霉素结构式β-内酰胺能与青霉素结合蛋白(PBPs)结合,能抑制细胞壁粘肽合成酶,从而阻碍细胞壁粘肽合成,使细菌胞壁缺损,菌体膨胀裂解,引起细菌细胞死亡。
2 β-内酰胺类药物的分类与介绍β-内酰胺类药物是指是指氨基在内酰胺环中的β位碳原子上的一类药物。
其分类及抗菌谱见表一表一β-内酰胺类药物的分类介绍及抗菌谱分类代表药物抗菌谱天然青霉素青霉素G G+菌(球菌、杆菌)、G-球菌(脑膜炎球菌)、致病螺旋体(梅毒、钩端、鼠咬热螺旋体)半合成青霉素耐酸青霉素青霉素V 主要用于轻度细菌感染,恢复期的巩固和防止感染复发耐酶青霉素氟氯西林主要用于治疗耐青霉素金黄色葡萄球菌的严重感染,以及呼吸道感染广谱青霉素氨苄西林、羟氨苄西林用于G-杆菌感染,严重者与氨基糖苷类合用抗绿脓杆菌青霉素羧苄西林、美洛西林广谱,对绿脓杆菌作用强,不受病灶脓液影响抗G-杆菌青霉素美西林、替莫西林窄谱,对G-杆菌作用强头孢菌素第1代头孢噻吩、头孢唑啉、头孢氨苄对大多数G+ G-有效,对绿脓杆菌等感染疗效差。
主要用于耐PG的金葡菌感染第2代头孢孟多、头孢呋辛、头孢克洛对G–作用,对β-内酰胺酶稳定性大于1代,对G+菌小于一代,适用于大肠、变形、厌氧菌,肾功能不良、青霉素过敏者感染第3代头孢哌酮、头孢他定、头孢曲松、头孢噻肟对G–作用及对β-内酰胺酶稳定性大于1、2代,对G+小于1、2代,一般不作为一线抗感染药。
主要用于重症G–杆菌感染,危及生命的G–杆菌、绿脓杆菌感染第4代头孢匹罗、头孢吡肟对G+ G-厌氧菌作用及对β-内酰胺酶稳定性大于3代,主要用于耐甲氧西林金黄色葡萄球菌、肺炎球菌、阴沟杆菌、绿脓杆菌等感染其他β-内酰胺类头霉素类头孢西丁、拉氧头孢用于盆腔、腹腔、妇科、需氧厌氧混合感染碳青霉烯类亚胺培南、美罗培南对军团菌、沙眼衣原体、肺炎支原体无效,对其他菌作用强单环β-内酰胺类氨曲南对G-菌、绿脓杆菌作用强大,对G+菌、厌氧菌很弱或无效3 β-内酰胺酶作用机制β-内酰胺酶使β-内酰胺类抗生素开环失活,它通过与β-内酰胺环上的羰基共价结合,水解酰胺键使β-内酰胺类抗生素失活。