信号与系统实验题目及答案
- 格式:docx
- 大小:164.59 KB
- 文档页数:6
信 号 与 系 统实 验 教 程(只有答案)(实验报告)这么玩!目录 实验一 信号与系统的时域分析 (2)三、实验内容及步骤 (2)实验二 连续时间信号的频域分析 (14)三、实验内容及步骤 (14)实验三 连续时间LTI 系统的频域分析 (35)三、实验内容及步骤 (35)实验四 通信系统仿真 (41)三、实验内容及步骤 (41)实验五 连续时间LTI 系统的复频域分析 (51)三、实验内容及步骤 (51)实验一信号与系统的时域分析三、实验内容及步骤实验前,必须首先阅读本实验原理,读懂所给出的全部范例程序。
实验开始时,先在计算机上运行这些范例程序,观察所得到的信号的波形图。
并结合范例程序应该完成的工作,进一步分析程序中各个语句的作用,从而真正理解这些程序。
实验前,一定要针对下面的实验项目做好相应的实验准备工作,包括事先编写好相应的实验程序等事项。
Q1-1:修改程序Program1_1,将dt改为0.2,再执行该程序,保存图形,看看所得图形的效果如何?dt = 0.01时的信号波形dt = 0.2时的信号波形这两幅图形有什么区别,哪一幅图形看起来与实际信号波形更像?答:Q1-2:修改程序Program1_1,并以Q1_2为文件名存盘,产生实指数信号x(t)=e-0.5t。
要求在图形中加上网格线,并使用函数axis()控制图形的时间范围在0~2秒之间。
然后执行该程序,保存所的图形。
修改Program1_1后得到的程序Q1_2如下:信号x(t)=e-0.5t的波形图clear, % Clear all variablesclose all, % Close all figure windowsdt = 0.2; % Specify the step of time variablet = -2:dt:2; % Specify the interval of timex = exp(-0.5*t); % Generate the signalplot(t,x)grid on;axis ([0 2 0 1 ])title('Sinusoidal signal x(t)')xlabel('Time t (sec)')Q1-3:修改程序Program1_1,并以Q1_3为文件名存盘,使之能够仿真从键盘上任意输入的一个连续时间信号,并利用该程序仿真信号x(t)=e-2t。
产生离散衰减正弦序列()π0.8sin 4n x n n ⎛⎫= ⎪⎝⎭, 010n ≤≤,并画出其波形图。
n=0:10;x=sin(pi/4*n).*0.8.^n;stem(n,x);xlabel( 'n' );ylabel( 'x(n)' );用MATLAB 生成信号()0sinc at t -, a 和0t 都是实数,410t -<<,画波形图。
观察并分析a 和0t 的变化对波形的影响。
t=linspace(-4,7); a=1;t0=2;y=sinc(a*t-t0); plot(t,y);t=linspace(-4,7); a=2;t0=2;y=sinc(a*t-t0); plot(t,y);t=linspace(-4,7); a=1;t0=2;y=sinc(a*t-t0); plot(t,y);三组对比可得a 越大最大值越小,t0越大图像对称轴越往右移某频率为f 的正弦波可表示为()()cos 2πa x t ft =,对其进行等间隔抽样,得到的离散样值序列可表示为()()a t nT x n x t ==,其中T 称为抽样间隔,代表相邻样值间的时间间隔,1s f T=表示抽样频率,即单位时间内抽取样值的个数。
抽样频率取40 Hz s f =,信号频率f 分别取5Hz, 10Hz, 20Hz 和30Hz 。
请在同一张图中同时画出连续信号()a x t t 和序列()x n nT 的波形图,并观察和对比分析样值序列的变化。
可能用到的函数为plot, stem, hold on 。
fs = 40;t = 0 : 1/fs : 1 ;% ƵÂÊ·Ö±ðΪ5Hz,10Hz,20Hz,30Hz f1=5;xa = cos(2*pi*f1*t) ; subplot(1, 2, 1) ;plot(t, xa) ;axis([0, max(t), min(xa), max(xa)]) ;xlabel('t(s)') ;ylabel('Xa(t)') ;line([0, max(t)],[0,0]) ; subplot(1, 2, 2) ;stem(t, xa, '.') ;line([0, max(t)], [0, 0]) ;axis([0, max(t), min(xa), max(xa)]) ;xlabel('n') ;ylabel('X(n)') ;频率越高,图像更加密集。
第一个信号实验得题目1实现下列常用信号(1);(2);(3);(4);(5)2连续信号得基本运算与波形变换已知信号,试画出下列各函数对时间t得波形:(1)(2)(3)(4)(5)3连续信号得卷积运算实现,其中、从第2个题目中任选3对组合。
4连续系统得时域分析(1)描述某连续系统得微分方程为,求当输入信号为时,该系统得零状态响应。
(2)已知描述某连续系统得微分方程为,试用MATLAB绘出该系统得冲激响应与阶跃响应得波形。
实验一答案:(1)在MATLAB软件得输入程序及显示波形如下:(2)在MATLAB软件得输入程序及显示波形如下:(3)在MA TLAB软件得输入程序及显示波形如下:(4)在MA TLAB软件得输入程序及显示波形如下:(5)在MATLAB软件得输入程序及显示波形如下:(1)得输入程序及波形如下:(2)得输入程序及波形如下:(3)得输入程序及波形如下:(2)系统得冲激响应与阶跃响应如下:(4)得输入程序及波形如下:(5)得输入程序及波形如下:(1)与(2)组合得卷积运算如下:(2)与(3)组合得卷积运算如下:(1)与(3)组合得卷积运算如下:(1)系统得零状态响应如下:第二个信号实验题目1(1)用数值法求门函数得傅里叶变换,并给出门函数得幅频特性曲线与相频特性曲线.(2)用符号法给出函数得傅里叶变换。
(3)已知系统函数为,画出该系统得零极点图。
2(1)用数值法给出函数幅频特性曲线与相频特性曲线.(2)对函数进行采样,采样间隔为0、01。
(3)已知输入信号为,载波频率为1000Hz,采样频率为5000Hz,试产生输入信号得调幅信号。
3(1)用符号法实现函数得傅里叶变换,并给出门函数得幅频特性曲线与相频特性曲线。
(2)已知系统函数为,输入信号为,求该系统得稳态响应。
(3)已知输入信号为,载波频率为100Hz,采样频率为400Hz,试产生输入信号得调频信号.4(1)已知系统函数为,画出该系统得零极点图.(2)已知函数用数值法给出函数得幅频特性曲线与相频特性曲线。
实验一 离散时间信号的表示及可视化一、实验目的学会对离散时间信号进行标识和可视化处理。
二、实验源程序 (1)f(n)= )(n δn=-5:1:5; f=dirac(n); plot(n,f,'.'); xlabel('(n)'); ylabel('(f)'); axis([-5 5 -0.5 1.5])(2) f(n)=ε(n)f=Heaviside(n)n=-5:1:5; f=heaviside(n); plot(n,f,'.'); xlabel('(n)'); ylabel('(f)');axis([-5 5 -0.5 1.5]) (3) f(n)= ane (分别取a>0及a<0)a=1时 n=-5:1:5; f=exp(n); plot(n,f,'.');a=-1时 n=-5:1:5; f=exp(-n); plot(n,f,'.');(4) f(n)=R N (n) (分别取不同的N 值)N=10时 n=0:1:9; f=1;plot(n,f,'.');N=15时 n=0:1:14; f=1;plot(n,f,'.') (5) f(n)=Sa(nw)w=0.1时n=-45:1:45;f=sinc(0.1*n);plot(n,f,'.');xlabel('n');ylabel('f');axis([-50 50 -1 1])w=0.2时n=-45:1:45;f=sinc(0.2*n);plot(n,f,'.');xlabel('n');ylabel('f');axis([-50 50 -1 1])(6)f(n)=Sin(nw)(分别取不同的w值)w=100时n=-15:1:15;f=sin(100*n);plot(n,f,'.');xlabel('n');ylabel('f');w=200时n=-15:1:15;f=sin(200*n);plot(n,f,'.');xlabel('n');ylabel('f');三、程序运行结果及波形图(1)(2)(3)-5-4-3-2-1012345(n)(f)-5-4-3-2-1012345(n)(f)(4)0123456789024********(5)(6)-50-40-30-20-1001020304050-1-0.8-0.6-0.4-0.200.20.40.60.81nf-50-40-30-20-1001020304050-1-0.8-0.6-0.4-0.200.20.40.60.81nffnf-15-10-5051015n四、实验调试体会实验二 连续时间信号的表示及可视化一、实验目的熟练掌握连续时间信号的表示及可视化处理。
信号与系统练习题(带答案)1. 信号f(t)的波形如图所示。
分别画出信号(24),(24),(24)f t f t f t '''-+-+-+的波形,并且写出其表达式。
答案:2. 信号f ( t )的图形如下所示,对(a)写出f ' ( t )的表达式,对(b)写出f " ( t )的表达式,并分别画出它们的波形。
解 (a)20,21≤≤tf ' (t)= δ(t -2), t = 2-2δ(t -4), t = 4(b) f " (t ) = 2δ(t ) - 2δ(t -1)-2δ(t -3)+2δ(t -4)3. 已知f(5-2t)的波形如图所示,试画出f(t)的波形。
52:()(2)(2)(52)5252252:(52)(2)(2)()f t f t f t f t t tf t f t f t f t −−−→−−−→-−−−→---=-∴-→-→→ 压缩反转平移左移反转拉伸分析()右移求解过程55[52()]2,22t t t t -+=-∴+ 以代替而求得-2t ,即f(5-2t)左移(52)(2)f t f t -−−−→-时移由(2)反转:f(-2t)中以-t 代替t ,可求得f(2t),表明f(-2t)的波形 以t =0的纵轴为中心线对褶,注意()t δ是偶数,故112()2()22t t δδ--=+(2)(2)f t f t -−−−→反褶由(3)尺度变换:以12t 代替f(2t)中的t ,所得的f(t)波形将是f(2t)波形在时间轴上扩展两倍。
4. 求序列{}12[]1,2,1,0,1,2[][1cos()][]2f n n f n n u n π===+和的卷积和。
解:{}112222[]1,2,1[]2[1][2][]*[][]2[1][2]f n n n n f n f n f n f n f n δδδ==+-+-=+-+-5. 试求下列卷积。
信号与系统练习及答案一、单项选择题1.已知信号f (t )的波形如题1图所示,则f (t )的表达式为( )A .tu(t)B .(t-1)u(t-1)C .tu(t-1)D .2(t-1)u(t-1)2.积分式⎰-δ+δ++4422)]dt -(t 2(t))[23(t t 的积分结果是( ) A .14 B .24 C .26 D .283.已知f(t)的波形如题3(a )图所示,则f (5-2t)的波形为( )4.周期矩形脉冲的谱线间隔与( )A .脉冲幅度有关B .脉冲宽度有关C .脉冲周期有关D .周期和脉冲宽度有关 5.若矩形脉冲信号的宽度加宽,则它的频谱带宽( ) A .不变 B .变窄 C .变宽D .与脉冲宽度无关 6.如果两个信号分别通过系统函数为H (j ω)的系统后,得到相同的响应,那么这两个信号()A .一定相同 B .一定不同 C .只能为零 D .可以不同7.f(t)=)(t u e t 的拉氏变换为F (s )=11-s ,且收敛域为( ) A .Re[s]>0B .Re[s]<0C .Re[s]>1D .Re[s]<1 8.函数⎰-∞-δ=2t dx )x ()t (f 的单边拉氏变换F (s )等于( ) A .1 B .s 1 C .e -2s D .s1e -2s 9.单边拉氏变换F (s )=22++-s e )s (的原函数f(t)等于( ) A .e -2t u(t-1) B .e -2(t-1)u(t-1) C .e -2t u(t-2)D .e -2(t-2)u(t-2)答案: BCCCBDCDA二.填空题1.如果一线性时不变系统的单位冲激响应为h(t),则该系统的阶跃响应g(t)为_________。
2.已知x(t)的傅里叶变换为X (j ω),那么x (t-t 0)的傅里叶变换为_________________。
3.如果一线性时不变系统的输入为f(t),零状态响应为y f (t )=2f (t-t 0),则该系统的单位冲激响应h(t)为_________________。
实验1 信号变换与系统非时变性质的波形绘制●用MA TLAB画出习题1-8的波形。
●用MA TLAB画出习题1-10的波形。
Eg 1.8代码如下:function [y]=zdyt(t) %定义函数zdyty=-2/3*(t-3).*(heaviside(-t+3)-heaviside(-t));endt0=-10;t1=4;dt=0.02;t=t0:dt:t1;f=zdyt(t);y=zdyt(t+3);x=zdyt(2*t-2);g=zdyt(2-2*t);h=zdyt(-0.5*t-1);fe=0.5*(zdyt(t)+zdyt(-t));fo=0.5*(zdyt(t)-zdyt(-t));subplot(7,1,1),plot(t,f);title('信号波形的变化')ylabel('f(t)')grid;line([t0 t1],[0 0]);subplot(7,1,2),plot(t,y);ylabel('y(t)')grid;line([t0 t1],[0 0]);subplot(7,1,3),plot(t,x);ylabel('x(t)')grid;line([t0 t1],[0 0]);subplot(7,1,4),plot(t,g);ylabel('g(t)')grid;line([t0 t1],[0 0]);subplot(7,1,5),plot(t,h);ylabel('h(t)')grid;line([t0 t1],[0 0]);subplot(7,1,6),plot(t,fe);ylabel('fe(t)')grid;line([t0 t1],[0 0]);subplot(7,1,7),plot(t,fo);ylabel('fo(t)')grid;line([t0 t1],[0 0]);xlabel('Time(sec)')结果:Eg1.10代码如下:function [u]=f(t) %定义函数f(t) u= heaviside(t)-heaviside(t-2); endfunction [u] =y(t) %定义函数y(t)u=2*(t.*heaviside(t)-2*(t-1).*heaviside(t-1)+(t-2).*heaviside(t-2)); endt0=-2;t1=5;dt=0.01; t=t0:dt:t1; f1=f(t); y1=y(t); f2=f(t)-f(t-2); y2=y(t)-y(t-2); f3=f(t)-f(t+1); y3=y(t)-y(t+1);subplot(3,2,1),plot(t,f1); title('激励——响应波形图') ylabel('f1(t)')grid;line([t0 t1],[0 0]);-10-8-6-4-2024012信号波形的变化f (t)-10-8-6-4-2024012y (t)-10-8-6-4-2024012x (t)-10-8-6-4-2024012g (t)-10-8-6-4-2024012h (t)-10-8-6-4-202400.51f e (t)-10-8-6-4-2024-101f o (t)Time(sec)subplot(3,2,2),plot(t,y1); ylabel('y1(t)')grid;line([t0 t1],[0 0]); subplot(3,2,3),plot(t,f2); ylabel('f2(t)')grid;line([t0 t1],[0 0]); subplot(3,2,4),plot(t,y2); ylabel('y2(t)')grid;line([t0 t1],[0 0]); subplot(3,2,5),plot(t,f3); ylabel('f3(t)')grid;line([t0 t1],[0 0]); subplot(3,2,6),plot(t,y3); ylabel('y3(t)')grid;line([t0 t1],[0 0]); xlabel('Time(sec)')结果:实验2 微分方程的符号计算和波形绘制上机内容用MA TLAB 计算习题2-1,并画出系统响应的波形。
信号和系统试题及答案一、选择题(每题4分,共20分)1. 信号的频谱分析中,傅里叶变换的物理意义是什么?A. 信号的时域表示B. 信号的频域表示C. 信号的相位信息D. 信号的幅度信息答案:B2. 在线性时不变系统中,系统的输出与输入的关系是什么?A. 线性关系B. 非线性关系C. 时变关系D. 随机关系答案:A3. 下列哪个函数不是周期函数?A. sin(t)B. cos(2t)C. e^(-t)D. cos(2πt)答案:C4. 系统稳定性的判定可以通过什么方法?A. 奈奎斯特准则B. 伯德图C. 相位裕度D. 所有以上答案:D5. 系统函数H(s)的零点和极点分别代表什么?A. 系统输入和输出B. 系统稳定性和不稳定性C. 系统增益和衰减D. 系统频率响应答案:B二、填空题(每题4分,共20分)1. 连续时间信号的傅里叶变换定义为:X(jω) = ____________。
答案:∫x(t)e^(-jωt)dt2. 如果一个系统的冲激响应h(t)是因果的,则系统的零状态响应y(t)与输入x(t)的关系为:y(t) = ____________。
答案:∫h(t-τ)x(τ)dτ3. 一个线性时不变系统的特性可以用其系统函数H(s)来描述,其中s 是复频域变量,代表的是 ____________。
答案:拉普拉斯变换4. 如果一个系统的频率响应H(jω)在ω=ω0处有极点,则在时域中对应的响应h(t)将具有 ____________。
答案:振荡特性5. 系统的因果性意味着系统的输出不会在输入之前出现,这可以用系统的冲激响应h(t)满足的条件来表示:h(t) = ____________。
答案:0,t < 0三、简答题(每题10分,共30分)1. 请简述傅里叶级数与傅里叶变换的区别。
答案:傅里叶级数适用于周期信号,是将周期信号分解为正弦和余弦函数的和,而傅里叶变换适用于非周期信号,是将信号分解为复指数函数的积分。
信号与系统实验及参考答案1、信号的产⽣(sin,square,sinc,exp ):利⽤matlab 函数产⽣下列信号波形:正弦波,周期⽅波,Sinc 函数,指数函数。
2、信号的运算:(1)已知x (t)=sin(t )/t ,画出x (t +3)、x (2t +3)和x (-2t +3)的波形;(2)卷积运算)],2()()[2cos()(),(5.1)(5.1)(2321??=?+=?t u t u t t x t u e t u e t x t t 其卷积积分为)(*)()(211t x t x t y =;],2[)2(]1[)1(][],1[)3/2(][2143+?=??=?+n u n u n x n u n x n n n 其卷积和为][*][][432n x n x n y =;图⽰出所有函数及卷积积分/和的波形。
3、信号的分解:将⼀个周期性连续⽅波信号分解为傅⾥叶级数(1)将⽅波分解为多次谐波之和(1,3,5…19次)。
画成如图3-1所⽰的形式。
(2)⽐较最⾼谐波次数为6次、12次和24次时的⽅波波形,如图3-2所⽰。
图3-1 图3-2电⽓信息学院2009春“信号与系统”实验1参考答案1、(图)y=sin(2*t) y=square(4*pi*t) y=sinc(t) y=exp(-t)2、(1)(参考.m⽂件及图)syms t;x=sym('sin(t)/t'); %定义符号函数x(t)=sin(t)/tx1=subs(x,t,t+3); %对x进⾏时移x2=subs(x1,t,2*t); %对x1进⾏尺度变换x3=subs(x2,t,-t); %对x2进⾏反转subplot(2,2,1);ezplot(x,[-8,8]);grid on; %ezplot是符号函数绘图命令subplot(2,2,2);ezplot(x1,[-8,8]);grid on;subplot(2,2,3);ezplot(x2,[-8,8]);grid on;subplot(2,2,4);ezplot(x3,[-8,8]);grid on;(注:也可⽤⼀条指令:subs(x,t,-2*t+3)实现到x(-2t+3)的变换)x(t) x(t+3)x(2t+3) x(-2t+3)2、(2)(参考.m ⽂件及图)cleart=linspace(-10,10,1001);x1=1.5*exp(-2*t).*stepfun(t,0);x2=cos(2*t).*(stepfun(t,0)-stepfun(t,2));x12=1.5*exp(3*t).*(stepfun(t,-10)-stepfun(t,0.0));x6=(20/1001)*conv2(x1,x2,'same');x7=(20/1001)*conv2(x2,x12,'same');subplot 231;plot(t,x1+x12);axis([-5 5 -1.5 1.5]);grid on;xlabel('{\itx}_1({\itt})')subplot 232;plot(t,x2,'k');axis([-5 5 -1.5 1.5]);grid on;xlabel('{\itx}_2({\itt})')subplot 233;plot(t,x6+x7,'r');axis([-5 5 -1.5 1.5]);grid on;xlabel('{\ity}_1({\itt})')nmin=-20;nmax=20;nleng=nmax-nmin+1;n=nmin:nmax;x3=(-2/3).^n.*stepfun(n,1);x4=(-1).^(n+1).*stepfun(n,-1)-(-2).^(n-2).*stepfun(n,2);y2=conv2(x3,x4,'same');subplot 234;stem(n,x3,'.');axis([-4 6 -1 1]);grid on;xlabel('{\itx}_3[{\itn}]')subplot 235;stem(n,x4,'.');axis([-4 6 -20 10]);grid on;xlabel('{\itx}_4[{\itn}]')subplot 236;stem(n,y2,'.');axis([-4 6 -10 7]);grid on;xlabel('{\ity}_2[{\itn}]')][3n x ][4n x ][2n y )(1t x )(2t x )(1t y3、(1) ⽅波分解为多次谐波之和clearclose allt=0:0.01:2*pi;y=zeros(10,max(size(t)));x=zeros(size(t));for k=1:2:19 x=x+sin(k*t)/k;y((k+1)/2,:)=x;endsubplot(211),plot(t,y(1:9,:)),grid on;line([0,pi+0.5],[pi/4,pi]); text(pi+0.5,pi/4,'pi/4'); axis([0,2*pi,-1,1])halft=ceil(length(t)/2);subplot(212),mesh(t(1:halft),[1:10],y(:,1:halft))3、(2)⽅波的傅⾥叶级数,最⾼谐波次数为6, 12和34的波形⽐较tau_T=3/4; % 占空⽐3/4n_max=[6 12 34]; % 最⾼谐波次数:6,12,34 N=length(n_max); % 计算N次t=-1.1:.002:1.1;omega_0=2*pi; % 基波频率for k=1:Nn=[];n=[-n_max(k):n_max(k)];L_n=length(n);F_n=zeros(1,L_n);for i=1:L_n % 计算傅⾥叶复系数Fn F_n(i)=tau_T*sinc(tau_T*n(i))*exp(-j*tau_T*n(i)*pi);endF=F_n*exp(j*omega_0*n'*t); % 计算前⼏项的部分和subplot(N,1,k),plot(t,real(F),'linewidth',2); % 在N幅图中的第k⼦图画实部波形 axis([-1.1 1.1 -0.5 1.5]);line([-1.1 1.1],[0 0],'color','r'); % 画直线,表⽰横轴,线为红⾊ line([0 0],[-0.5 1.5],'color','r'); % 画直线,表⽰纵轴,线为红⾊bt=strcat('最⾼谐波次数=',num2str(n_max(k))); % 字符串连接title(bt); % 在N幅图中的第k⼦图上写标题end。
第一个信号实验的题目 1实现下列常用信号(1)(5)u t +;(2)(1)t δ-;(3)cos(3)sin(2)t t +;(4)()[(1)(2)]f t t u t t u t t =⨯---;(5)0.5()4cos(),010t f t e t t π-=⨯=2连续信号的基本运算与波形变换 已知信号22,21()330t t f t ⎧-+-≤≤⎪=⎨⎪⎩,试画出下列各函数对时间t 的波形:(1)()f t -(2)(2)f t -+(3)(2)f t (4)1(1)2d f t dt +(5)(2)t f d ττ-∞-⎰ 3连续信号的卷积运算 实现12()()f t f t *,其中1()f t 、2()f t 从第2个题目中任选3对组合。
4连续系统的时域分析(1) 描述某连续系统的微分方程为()2()()()2()y t y t y t f t f t ''''++=+,求当输入信号为2()2()t f t e u t -=时,该系统的零状态响应()y t 。
(2) 已知描述某连续系统的微分方程为2()()3()()y t y t y t f t '''+-=,试用MATLAB 绘出该系统的冲激响应和阶跃响应的波形。
实验一答案:(1)(5)u t +在MATLAB 软件的输入程序及显示波形如下:(2)(1)t δ-在MATLAB 软件的输入程序及显示波形如下:(3)cos(3)sin(2)t t +在MATLAB 软件的输入程序及显示波形如下:(4)()[(1)(2)]f t t u t t u t t =⨯---在MATLAB 软件的输入程序及显示波形如下:(5)0.5()4cos(),010t f t e t t π-=⨯=在MATLAB 软件的输入程序及显示波形如下:(1)()f t -的输入程序及波形如下:(2)(2)f t -+的输入程序及波形如下:(3)(2)f t 的输入程序及波形如下:(2)系统的冲激响应和阶跃响应如下:(4)1(1)2d f t dt +的输入程序及波形如下: (5)(2)t f d ττ-∞-⎰的输入程序及波形如下:(1)()f t -和(2)(2)f t -+组合的卷积运算如下:(2)(2)f t -+和(3)(2)f t 组合的卷积运算如下:(1)()f t -和(3)(2)f t 组合的卷积运算如下:(1)系统的零状态响应()y t 如下:第二个信号实验题目1(1)用数值法求门函数4()G t 的傅里叶变换,并给出门函数的幅频特性曲线和相频特性曲线。
(2)用符号法给出函数5()2()()3t f t e u t -=的傅里叶变换。
(3)已知系统函数为3421()3s s H s s s ++=++,画出该系统的零极点图。
2(1)用数值法给出函数5(2)2()(2)3t f t e u t --=-幅频特性曲线和相频特性曲线。
(2)对函数5(2)2()(2)3t f t e u t --=-进行采样,采样间隔为0.01。
(3)已知输入信号为()sin(100)f t t =,载波频率为1000Hz ,采样频率为5000 Hz ,试产生输入信号的调幅信号。
3(1)用符号法实现函数4()G t 的傅里叶变换,并给出门函数的幅频特性曲线和相频特性曲线。
(2)已知系统函数为3421()3s s H s s s ++=++,输入信号为()sin(100)f t t =,求该系统的稳态响应。
(3)已知输入信号为()sin(100)f t t =,载波频率为100Hz ,采样频率为400 Hz ,试产生输入信号的调频信号。
4(1)已知系统函数为231()3s s H s s s ++=++,画出该系统的零极点图。
(2)已知函数5()2()()3t f t e u t -=用数值法给出函数(3)f t 的幅频特性曲线和相频特性曲线。
(3)实现系统函数3421()3s s H s s s ++=++的频率响应。
(4)已知输入信号为()cos(100)f t t =,载波频率为100Hz ,采样频率为400 Hz ,试产生输入信号的调相信号。
5(1)用数值法给出函数5(2)2()(2)3t f t e u t -+=+幅频特性曲线和相频特性曲线。
(2)用符号法实现函数22i ω+的傅里叶逆变换。
(3)已知输入信号为()5sin(200)f t t =,载波频率为1000Hz ,采样频率为5000 Hz ,试产生输入信号的调频信号。
实验二答案:(1) 用数值法求门函数4()G t 的傅里叶变换,并给出门函数的幅频特性曲线和相频特性曲线。
t=linspace(-4,4,200);f=0*t;f(t>=-2&t<=2)=1;W=linspace(-4*pi,4*pi,200);F=0*W;for N=1:200for M=1:200F(N)=F(N)+8/200*f(M).*exp(-j*W(N)*t(M));endendsubplot(4,4,1);plot(t,f);subplot(4,4,2);plot(W,F);subplot(4,4,3);plot(W,abs(F));H=freqs(6,9,W);subplot(4,4,4);plot(W,angle(F))(2) 用符号法给出函数5()2()()3t f t e u t -=的傅里叶变换。
syms t f ;f=sym('(2/3)*exp(-5*t)*heaviside(t)');F=fourier(f);pretty(F) (3) 已知系统函数为3421()3s s H s s s ++=++,画出该系统的零极点图。
num=[0 1 0 1 1];den=[1 0 1 0 3];G=tf(num,den);subplot(2,2,1);pzmap(G);第3个信号实验题目1计算序列)(2)(1n u n f n =与序列)5()()(2--=n u n u n f 的卷积和;2已知离散系统的差分方程为()5(1)6(2)()y n y n y n f n --+-=,求系统的频率响应,若()2()n f n u n =,求系统的零状态响应。
3利用SIMULINK 画出(2)的系统框图。
实验三答案:1. 计算序列)(2)(1n u n f n =与序列)5()()(2--=n u n u n f 的卷积和;n=0:1:10;x=2.^nstem(n,x)n=0:1:4x1=ones(1,5)stem(n1,x1)y=conv(x,x1)n2=0:1:14stem(n2,y)2. 已知离散系统的差分方程为()5(1)6(2)()y n y n y n f n --+-=,求系统的频率响应,若()2()n f n u n =,求系统的零状态响应。
b=[1];a=[1,-5,6];w=linspace(0,50,200);freqs(b,a,w)n=[0:10];f=2.^n;a=[1,-5,6];b=[1];y=[0];xic=filtic(b,a,y);y1=filter(b,a,f,xic)第4个信号实验题目1求()cos()()f n an u n =的Z 变换和2()()az F z z a =-的Z 反变换。
2已知某离散系统的系统函数为23221()0.50.0050.3z z H z z z z ++=--+,试用MATLAB 求出该系统的零极点,并画出零极点图,求系统的单位冲激响应和幅频响应,并判断系统是否稳定。
3 一系统的微分方程为()5()10()()y t y t y t f t '''++=,试利用MATLAB 求其系统的状态方程。
4 已知某连续时间系统的状态方程和输出方程为试用M ATLAB 计算其系统函数矩阵()H s 。
实验四答案:求()cos()()f n an u n =的Z 变换和2()()az F z z a =-的Z 反变换。
1. syms a nf=cos(a*n);F=ztrans(f);pretty(F)syms k zFz=a*z/(z-a)^2;fk=iztrans(Fz,k);pretty(fk); 2. 已知某离散系统的系统函数为23221()0.50.0050.3z z H z z z z ++=--+,试用MATLAB 求出该系统的零极点,并画出零极点图,求系统的单位冲激响应和幅频响应,并判断系统是否稳定。
b=[0,1,2,1]a=[1,-0.5,-0.005,0.3][R,P,K]=tf2zp(b,a)figure(1)zplane(b,a)legend('零点','极点');grid on ;num=[0 1 2 1]den=[1 -0.5 -0.005 0.3]h=impz(num,den)figure(2)stem(h)[H,w]=freqz(num,den)figure(3)plot(abs(H))3. 一系统的微分方程为()5()10()()y t y t y t f t '''++=,试利用MATLAB 求其系统的状态方程。
a=[1]; a = 1b=[1 5 10 ]; b = 1 5 10[A B C D]=tf2ss(a,b); A = -5 -10 B = 11C = 0 1 D= 04. 已知某连续时间系统的状态方程和输出方程为.111.222()()()230101()10()()x t x t f t x t f t x t ⎡⎤⎡⎤⎡⎤⎡⎤⎡⎤⎢⎥=⋅+⋅⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦⎣⎦⎣⎦⎣⎦ 试用MATLAB 计算其系统函数矩阵()H s 。
A=[2 3; 0 -1]; num1 = 1 0 -1B=[0 1;1 0]; 1 -2 0C=[1 1;0 -1]; den1 = 1 -1 -2D=[1 0;1 0]; num2 = 0 1 1[num1,den1]=ss2tf(A,B,C,D,1) 0 0 0[num2,den2]=ss2tf(A,B,C,D,2) den2 = 1 -1 -2。