湖北省黄冈市浠水县七年级数学上学期期末考试试题(扫描版) 新人教版
- 格式:doc
- 大小:2.72 MB
- 文档页数:11
湖北省黄冈中学人教版七年级上册数学期末试卷及答案百度文库一、选择题1.下列方程中,以32x =-为解的是( ) A .33x x =+B .33x x =+C .23x =D .3-3x x =2.如图,直线AB ⊥直线CD ,垂足为O ,直线EF 经过点O ,若35BOE ∠=,则FOD ∠=( )A .35°B .45°C .55°D .125°3.下列判断正确的是( ) A .有理数的绝对值一定是正数.B .如果两个数的绝对值相等,那么这两个数相等.C .如果一个数是正数,那么这个数的绝对值是它本身.D .如果一个数的绝对值是它本身,那么这个数是正数. 4.下列每对数中,相等的一对是( ) A .(﹣1)3和﹣13 B .﹣(﹣1)2和12 C .(﹣1)4和﹣14D .﹣|﹣13|和﹣(﹣1)35.计算32a a ⋅的结果是( ) A .5a ;B .4a ;C .6a ;D .8a .6.将图中的叶子平移后,可以得到的图案是()A .B .C .D .7.下列分式中,与2x yx y ---的值相等的是()A .2x y y x+-B .2x y x y+-C .2x y x y--D .2x y y x-+8.如图,直线AB ∥CD ,∠C =44°,∠E 为直角,则∠1等于( )A .132°B .134°C .136°D .138°9.下列日常现象:①用两根钉子就可以把一根木条固定在墙上;②把弯曲的公路改直,就能够缩短路程;③体育课上,老师测量某个同学的跳远成绩;④建筑工人砌墙时,经常先在两端立桩拉线,然后沿着线砌墙.其中,可以用“两点确定一条直线”来解释的现象是( ) A .①④ B .②③ C .③D .④10.以下调查方式比较合理的是( )A .为了解一沓钞票中有没有假钞,采用抽样调查的方式B .为了解全区七年级学生节约用水的情况,采用抽样调查的方式C .为了解某省中学生爱好足球的情况,采用普查的方式D .为了解某市市民每天丢弃塑料袋数量的情况,采用普查的方式 11.下列式子中,是一元一次方程的是( ) A .3x+1=4x B .x+2>1 C .x 2-9=0 D .2x -3y=0 12.方程312x -=的解是( ) A .1x =B .1x =-C .13x =- D .13x =13.某中学进行义务劳动,去甲处劳动的有30人,去乙处劳动的有24人,从乙处调一部分人到甲处,使甲处人数是乙处人数的2倍,若设应从乙处调x 人到甲处,则所列方程是( )A .2(30+x )=24﹣xB .2(30﹣x )=24+xC .30﹣x =2(24+x )D .30+x =2(24﹣x )14.正方形ABCD 的轨道上有两个点甲与乙,开始时甲在A 处,乙在C 处,它们沿着正方形轨道顺时针同时出发,甲的速度为每秒1 cm ,乙的速度为每秒5 cm ,已知正方形轨道ABCD 的边长为2 cm ,则乙在第2 020次追上甲时的位置在( )A .AB 上 B .BC 上 C .CD 上D .AD 上15.阅读:关于x 方程ax=b 在不同的条件下解的情况如下:(1)当a≠0时,有唯一解x=ba;(2)当a=0,b=0时有无数解;(3)当a=0,b≠0时无解.请你根据以上知识作答:已知关于x 的方程 3x •a= 2x ﹣ 16(x ﹣6)无解,则a 的值是( ) A .1 B .﹣1 C .±1 D .a≠1二、填空题16.若|x |=3,|y |=2,则|x +y |=_____.17.甲、乙两地海拔高度分别为20米和﹣9米,那么甲地比乙地高_____米. 18.把四张形状大小完全相同的小长方形卡片(如图1)按两种不同的方式,不重叠地放在一个底面为长方形(一边长为4)的盒子底部(如图2、图3),盒子底面未被卡片覆盖的部分用阴影表示.已知阴影部分均为长方形,且图2与图3阴影部分周长之比为5:6,则盒子底部长方形的面积为_____.19.因原材料涨价,某厂决定对产品进行提价,现有三种方案:方案一,第一次提价10%,第二次提价30%;方案二,第一次提价30%,第二次提价10%;方案三,第一、二次提价均为20%.三种方案提价最多的是方案_____________.20.在日常生活中如取款、上网等都需要密码,有一种用“因式分解法”产生的密码,方便记忆,原理是对于多项44x y -,因式分解的结果是()()()22x y x y x y-++,若取9x =,9y =时,则各个因式的值是:()18x y +=,()0x y -=,()22162x y +=,于是就可以把“180162”作为一个六位数的密码,对于多项式324x xy -,取36x =,16y =时,用上述方法产生的密码是________ (写出一个即可).21.据科学家估计,地球的年龄大约是4600000000年,将4600000000用科学记数法表示 为_________. 22.请先阅读,再计算: 因为:111122=-⨯,1112323=-⨯,1113434=-⨯,…,111910910=-⨯, 所以:1111122334910++++⨯⨯⨯⨯ 1111111122334910⎛⎫⎛⎫⎛⎫⎛⎫=-+-+-++- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭11111111911223349101010=-+-+-++-=-= 则111110010110110210210320192020++++=⨯⨯⨯⨯_________.23.按照下面的程序计算:如果输入x 的值是正整数,输出结果是166,那么满足条件的x 的值为___________. 24.在数轴上,与表示-3的点的距离为4的点所表示的数为__________________. 25.如图,点C ,D 在线段AB 上,CB =5cm ,DB =8cm ,点D 为线段AC 的中点,则线段AB 的长为_____.26.五边形从某一个顶点出发可以引_____条对角线.27.如图,∠AOB=∠COD=90°,∠AOD=140°,则∠BOC=_______.28.A 学校有m 个学生,其中女生占45%,则男生人数为________. 29.观察“田”字中各数之间的关系:则c 的值为____________________.30.若4a +9与3a +5互为相反数,则a 的值为_____.三、压轴题31.综合试一试(1)下列整数可写成三个非0整数的立方和:45=_____;2=______.(2)对于有理数a ,b ,规定一种运算:2a b a ab ⊗=-.如2121121⊗=-⨯=-,则计算()()532-⊗⊗-=⎡⎤⎣⎦______. (3)a 是不为1的有理数,我们把11a-称为a 的差倒数.如:2的差倒数是1112=--,1-的差倒数是()11112=--.已知12a =,2a 是1a 的差倒数,3a 是2a 的差倒数,4a 是3a 的差倒数,……,以此类推,122500a a a ++⋅⋅⋅+=______.(4)10位裁判给一位运动员打分,每个人给的分数都是整数,去掉一个最高分,再去掉一个最低分,其余得分的平均数为该运动员的得分.若用四舍五入取近似值的方法精确到十分位,该运动员得9.4分,如果精确到百分位,该运动员得分应当是_____分. (5)在数1.2.3...2019前添加“+”,“-”并依次计算,所得结果可能的最小非负数是______(6)早上8点钟,甲、乙、丙三人从东往西直行,乙在甲前400米,丙在乙前400米,甲、乙、丙三人速度分别为120米/分钟、100米/分钟、90米/分钟,问:______分钟后甲和乙、丙的距离相等.32.如图,从左到右依次在每个小方格中填入一个数,使得其中任意三个相邻方格中所填数之和都相等. 6abx-1-2 ...(1)可求得 x =______,第 2021 个格子中的数为______; (2)若前 k 个格子中所填数之和为 2019,求 k 的值;(3)如果m ,n 为前三个格子中的任意两个数,那么所有的|m -n | 的和可以通过计算|6-a |+|6-b|+|a -b|+|a -6| +|b -6|+|b -a| 得到.若m ,n 为前8个格子中的任意两个数,求所有的|m-n|的和.33.已知数轴上有A 、B 、C 三个点对应的数分别是a 、b 、c ,且满足|a +24|+|b +10|+(c -10)2=0;动点P 从A 出发,以每秒1个单位的速度向终点C 移动,设移动时间为t 秒.(1)求a 、b 、c 的值;(2)若点P 到A 点距离是到B 点距离的2倍,求点P 的对应的数;(3)当点P 运动到B 点时,点Q 从A 点出发,以每秒2个单位的速度向C 点运动,Q 点到达C 点后.再立即以同样的速度返回,运动到终点A ,在点Q 开始运动后第几秒时,P 、Q 两点之间的距离为8?请说明理由.34.如图,已知数轴上点A 表示的数为8,B 是数轴上位于点A 左侧一点,且AB=20,动点P 从A 点出发,以每秒5个单位长度的速度沿数轴向左匀速运动,设运动时间为t (t >0)秒.(1)写出数轴上点B 表示的数______;点P 表示的数______(用含t 的代数式表示) (2)动点Q 从点B 出发,以每秒3个单位长度的速度沿数轴向右匀速运动,若点P 、Q 同时出发,问多少秒时P 、Q 之间的距离恰好等于2?(3)动点Q 从点B 出发,以每秒3个单位长度的速度沿数轴向左匀速到家动,若点P 、Q 同时出发,问点P 运动多少秒时追上Q ?(4)若M 为AP 的中点,N 为BP 的中点,在点P 运动的过程中,线段MN 的长度是否发生变化?若变化,请说明理由,若不变,请你画出图形,并求出线段MN 的长.35.如图①,点C 在线段AB 上,图中共有三条线段AB 、AC 和BC ,若其中有一条线段的长度是另外一条线段长度的2倍,则称点C 是段AB 的“2倍点”. (1)线段的中点__________这条线段的“2倍点”;(填“是”或“不是”) (2)若AB =15cm ,点C 是线段AB 的“2倍点”.求AC 的长;(3)如图②,已知AB =20cm .动点P 从点A 出发,以2c m /s 的速度沿AB 向点B 匀速移动.点Q 从点B 出发,以1c m/s 的速度沿BA 向点A 匀速移动.点P 、Q 同时出发,当其中一点到达终点时,运动停止,设移动的时间为t (s ),当t =_____________s 时,点Q 恰好是线段AP 的“2倍点”.(请直接写出各案)36.如图,12cm AB =,点C 是线段AB 上的一点,2BC AC =.动点P 从点A 出发,以3cm /s 的速度向右运动,到达点B 后立即返回,以3cm /s 的速度向左运动;动点Q 从点C 出发,以1cm/s 的速度向右运动. 设它们同时出发,运动时间为s t . 当点P 与点Q 第二次重合时,P Q 、两点停止运动. (1)求AC ,BC ;(2)当t 为何值时,AP PQ =; (3)当t 为何值时,P 与Q 第一次相遇; (4)当t 为何值时,1cm PQ =.37.如图:在数轴上A 点表示数a ,B 点示数b ,C 点表示数c ,b 是最小的正整数,且a 、c 满足|a+2|+(c-7)2=0.(1)a=______,b=______,c=______;(2)若将数轴折叠,使得A 点与C 点重合,则点B 与数______表示的点重合; (3)点A 、B 、C 开始在数轴上运动,若点A 以每秒1个单位长度的速度向左运动,同时,点B 和点C 分别以每秒2个单位长度和4个单位长度的速度向右运动,假设t 秒钟过后,若点A 与点B 之间的距离表示为AB ,点A 与点C 之间的距离表示为AC ,点B 与点C之间的距离表示为BC .则AB=______,AC=______,BC=______.(用含t 的代数式表示). (4)直接写出点B 为AC 中点时的t 的值. 38.阅读下列材料,并解决有关问题:我们知道,(0)0(0)(0)x x x x x x >⎧⎪==⎨⎪-<⎩,现在我们可以用这一结论来化简含有绝对值的式子,例如化简式子|1||2|x x ++-时,可令10x +=和20x -=,分别求得1x =-,2x =(称1-、2分别为|1|x +与|2|x -的零点值).在有理数范围内,零点值1x =-和2x =可将全体有理数不重复且不遗漏地分成如下三种情况:(1)1x <-;(2)1-≤2x <;(3)x ≥2.从而化简代数式|1||2|x x ++-可分为以下3种情况:(1)当1x <-时,原式()()1221x x x =-+--=-+; (2)当1-≤2x <时,原式()()123x x =+--=; (3)当x ≥2时,原式()()1221x x x =++-=-综上所述:原式21(1)3(12)21(2)x x x x x -+<-⎧⎪=-≤<⎨⎪-≥⎩通过以上阅读,请你类比解决以下问题:(1)填空:|2|x +与|4|x -的零点值分别为 ; (2)化简式子324x x -++.【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【解析】 【分析】把32x =-代入方程,只要是方程的左右两边相等就是方程的解,否则就不是. 【详解】解: A 中、把32x =-代入方程得左边等于右边,故A 对;B 中、把32x =-代入方程得左边不等于右边,故B 错; C 中、把32x =-代入方程得左边不等于右边,故C 错; D 中、把32x =-代入方程得左边不等于右边,故D 错. 故答案为:A. 【点睛】本题考查方程的解的知识,解题关键在于把x 值分别代入方程进行验证即可.2.C解析:C 【解析】 【分析】根据对顶角相等可得:BOE AOF ∠=∠,进而可得FOD ∠的度数. 【详解】解:根据题意可得:BOE AOF ∠=∠,903555FOD AOD AOF ∴∠=∠-∠=-=. 故答案为:C. 【点睛】本题考查的是对顶角和互余的知识,解题关键在于等量代换.3.C解析:C 【解析】试题解析:A ∵0的绝对值是0,故本选项错误. B ∵互为相反数的两个数的绝对值相等,故本选项正确. C 如果一个数是正数,那么这个数的绝对值是它本身. D ∵0的绝对值是0,故本选项错误. 故选C .4.A解析:A 【解析】 【分析】根据乘方和绝对值的性质对各个选项进行判断即可. 【详解】A.(﹣1)3=﹣1=﹣13,相等;B.﹣(﹣1)2=﹣1≠12=1,不相等;C.(﹣1)4=1≠﹣14=﹣1,不相等;D. ﹣|﹣13|=﹣1≠﹣(﹣1)3=1,不相等. 故选A.5.A解析:A 【解析】此题考查同底数幂的乘法运算,即(0)m n m n a a a a +⋅=>,所以此题结果等于325a a +=,选A ;6.A解析:A 【解析】 【分析】根据平移的特征分析各图特点,只要符合“图形的形状、大小和方向都不改变”即为正确答案. 【详解】解:根据平移不改变图形的形状、大小和方向, 将所示的图案通过平移后可以得到的图案是A , 其它三项皆改变了方向,故错误. 故选:A . 【点睛】本题考查了图形的平移,图形的平移只改变图形的位置,而不改变图形的形状、大小和方向,学生易混淆图形的平移,旋转或翻转而误选.7.A解析:A 【解析】 【分析】根据分式的基本性质即可求出答案. 【详解】 解:原式=22x y x yx y y x++-=--, 故选:A . 【点睛】本题考查分式的基本性质,解题的关键熟练运用分式的基本性质,本题属于基础题型.8.B解析:B 【解析】过E 作EF ∥AB ,求出AB ∥CD ∥EF ,根据平行线的性质得出∠C=∠FEC ,∠BAE=∠FEA ,求出∠BAE ,即可求出答案. 解:过E作EF∥AB,∵AB∥CD,∴AB∥CD∥EF,∴∠C=∠FEC,∠BAE=∠FEA,∵∠C=44°,∠AEC为直角,∴∠FEC=44°,∠BAE=∠AEF=90°﹣44°=46°,∴∠1=180°﹣∠BAE=180°﹣46°=134°,故选B.“点睛”本题考查了平行线的性质的应用,能正确作出辅助线是解此题的关键.9.A解析:A【解析】【分析】根据点到直线的距离,直线的性质,线段的性质,可得答案.【详解】①用两根钉子就可以把一根木条固定在墙上,利用了两点确定一条直线,故①正确;②把弯曲的公路改直,就能够缩短路程,利用“两点之间线段最短”,故②错误;③体育课上,老师测量某个同学的跳远成绩,利用了点到直线的距离,故③错误;④建筑工人砌墙时,经常先在两端立桩拉线,然后沿着线砌墙,利用了两点确定一条直线,故④正确.故选A.【点睛】本题考查了线段的性质,熟记性质并能灵活应用是解答本题的关键.10.B解析:B【解析】【分析】抽取样本注意事项就是要考虑样本具有广泛性与代表性,所谓代表性,就是抽取的样本必须是随机的,即各个方面,各个层次的对象都要有所体现.【详解】解:A.为了解一沓钞票中有没有假钞,采用全面调查的方式,故不符合题意;B.为了解全区七年级学生节约用水的情况,采用抽样调查的方式,故符合题意;C.为了解某省中学生爱好足球的情况,采用抽样调查的方式,故不符合题意;D.为了解某市市民每天丢弃塑料袋数量的情况,采用抽样调查的方式,故不符合题意;故选:B.【点睛】本题考查的是抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.11.A解析:A【解析】A. 3x+1=4x是一元一次方程,故本选项正确;B. x+2>1是一元一次不等式,故本选项错误;C. x2−9=0是一元二次方程,故本选项错误;D. 2x−3y=0是二元一次方程,故本选项错误。
第 1 页 共 17 页
2019-2020学年湖北省黄冈市浠水县七年级上期末考试
数学模拟试卷
一.选择题(共7小题,满分21分,每小题3分)
1.小明记录了一星期每天的最低温度,如表.这个星期的平均最低温度是( )摄氏度.
A .﹣1℃
B .0℃
C .+1℃
D .+2℃
2.下列算式中,运算结果为负数的是( ) A .(﹣3
)2
B .﹣(﹣2)3
C .﹣(﹣2)
D .﹣|﹣2|
3.已知|a |=3,b 2=16,且|a +b |≠a +b ,则代数式a ﹣b 的值为( ) A .1或7
B .1或﹣7
C .﹣1或﹣7
D .±1或±7
4.把一副三角板按如图所示那样拼在一起,那么∠ABC 的度数是( )
A .150°
B .135°
C .120°
D .105°
5.图1是一个小正方体的表面展开图,小正方体从图2所示的位置依次翻到第1格、第2格、第3格,这时小正方体朝上一面的字是( )
A .信
B .国
C .友
D .善
6.轮船沿江从A 港顺流行驶到B 港,比从B 港返回A 港少用3小时,若船速为26千米/时,水速为2千米/时,求A 港和B 港相距多少千米.设A 港和B 港相距x 千米.根据题意,可列出的方程是( ) A . B . C .
D .。
2021-2022学年湖北省黄冈市七年级(上)期末数学试卷一、选择题(下列各题的备选答案中,有且仅有一个答案是正确的,每小题3分,共24分)1.(3分)下列四个数中,绝对值最小的是()A.0B.﹣1C.﹣2D.﹣32.(3分)去年南京市接待入境旅游者约876 000人,这个数可以用科学记数法表示为()A.0.876×106B.8.76×105C.87.6×104D.876×1033.(3分)甲看乙的方向是北偏东30°,那么乙看甲的方向是()A.南偏东60°B.南偏西60°C.南偏东30°D.南偏西30°4.(3分)下列各选项中的图形绕虚线旋转一周后,得到的几何体是圆柱的是()A.B.C.D.5.(3分)下列去括号正确的是()A.﹣3(x+y)=﹣3x+y B.﹣3(x+y)=﹣3x﹣3yC.﹣3(x+y)=﹣3x+3y D.﹣3(x+y)=﹣3x﹣y6.(3分)已知x﹣2y=3,则代数式6﹣2x+4y的值为()A.0B.﹣1C.﹣3D.37.(3分)某车间原计划13小时生产一批零件,后来每小时多生产10件,用了12小时不但完成任务,而且还多生产60件,设原计划每小时生产x个零件,则所列方程为()A.13x=12(x+10)+60B.12(x+10)=13x+60C.D.8.(3分)如图,把周长为3个单位长度的圆放到数轴(单位长度为1)上,A,B,C三点将圆三等分,将点A与数轴上表示1的点重合,然后将圆沿着数轴正方向滚动,依次为点B与数轴上表示2的点重合,点C与数轴上表示3的点重合,点A与数轴上表示4的点重合,…,若当圆停止运动时点B正好落到数轴上,则点B对应的数轴上的数可能为()A.2020B.2021C.2022D.2023二、填空题(共8小题,每小题3分,共24分)9.(3分)﹣的倒数是.10.(3分)若(a﹣1)2与|b+1|的值互为相反数,则a+b=.11.(3分)单项式的系数是m,次数是n,则m+n=.12.(3分)如图,已知O是直线AB上一点,∠1=40°,OD平分∠BOC,则∠2的度数是.13.(3分)一个两位数,个位上的数字是十位上数字的3倍,它们的和是12,那么这个两位数是.14.(3分)8点整时,时钟上的时针与分针所夹的角是度.15.(3分)如图1,将一个边长为a的正方形纸片剪去两个小矩形,得到一个“”的图案,如图2所示,再将剪下的两个小矩形拼成一个新的矩形,如图3所示,则新矩形的周长可表示为.16.(3分)已知:如图,点M在线段AN的延长线上,且线段MN=51,第一次操作:分别取线段AM和AN的中点M1,N1;第二次操作:分别取线段AM1和AN1的中点M2,N2;第三次操作:分别取线段AM2和AN2的中点M3,N3;…连续这样操作20次,则M20N20=.三、解答题(本大题共9小题,满分共72分)17.(8分)计算:(1)(﹣2)+(﹣5)﹣(+10)﹣(﹣18);(2)[(﹣1)100+(1﹣)×]÷(﹣32+2).18.(8分)解方程:(1)10﹣3(x﹣1)=x+1;(2).19.(5分)如图,已知四点A、B、C、D.(1)画线段AB与线段CD,并延长CD交AB于点M;(2)画射线AC,连接DB并反向延长DB交AC于点N.20.(5分)先化简,再求值:x﹣2(x﹣y2)+(﹣x+y2),其中x=﹣2,y=.21.(6分)若方程a(x﹣1)=x+3与方程3﹣x=2x+6的解相同,求代数式|a|+a2022﹣的值.22.(6分)利用方程解决下面问题:相传有个人不讲究说话艺术常引起误会,一天他摆宴席请客,他看到还有几个人没来,就自言自语:“怎么该来的还不来呢?”来了的客人听了,心想难道我们是不该来的,于是有三分之一的客人走了,他一看十分着急,又说:“不该走的倒走了!”剩下的人一听,是我们该走啊!又有剩下的五分之三的人离开了,他着急地一拍大腿,连说:“我说的不是他们.”于是最后剩下的四个人也都告辞走了,聪明的你能知道开始来了几位客人吗?23.(8分)已知:如图,点M,点P,点N在线段AB上,点P,点N分别是AB,BP的中点,PM=AM,若MN=12,试求线段AB的长.24.(12分)为了增强市民的节约用水意识,自来水公司实行阶梯收费,具体情况如表:每月用水量收费不超过10吨的部分水费1.6元/吨10吨以上至20吨的部分水费2元/吨20吨以上的部分水费2.4元/吨(1)若小刚家6月份用水18吨,则小刚家6月份应缴水费多少元?(2)若小刚家7月份的平均水费为1.75元/吨,则小刚家7月份的用水量为多少吨?(3)若小刚家8月、9月共用水40吨,9月底共缴水费78.8元,其中含2元滞纳金(水费为每月底缴纳,因8月份的水费未按时缴,所以收取了滞纳金),已知9月份用水比8月份少,求小明8、9月各用多少吨水?25.(14分)已知:如图1,∠AOB=30°,∠BOC=∠AOC.(1)求∠AOC的度数;(2)如图2,若射线OP从OA开始绕点O以每秒旋转10的速度逆时针旋转,同时射线OQ从OB开始绕点O以每秒旋转6°的速度逆时针旋转;其中射线OP到达OC后立即改变运动方向,以相同速度绕O点顺时针旋转,当射线OQ到达OC时,射线OP,OQ 同时停止运动,设旋转的时间为t秒,当∠POQ=10°时,试求t的值;(3)如图3,若射线OP从OA开始绕O点逆时针旋转一周,作OM平分∠AOP,ON 平分∠COP,试求在运动过程中,∠MON的度数是多少?(请直接写出结果)2021-2022学年湖北省黄冈市七年级(上)期末数学试卷参考答案与试题解析一、选择题(下列各题的备选答案中,有且仅有一个答案是正确的,每小题3分,共24分)1.【分析】先求出每个数的绝对值,再根据有理数的大小比较法则比较即可.【解答】解:|0|=0,|﹣1|=1,|﹣2|=2,|﹣3|=3,∵0<1<2<3,∴绝对值最小的是0,故选:A.【点评】本题考查了有理数的大小比较和绝对值,注意:正数都大于0,负数都小于0,正数大于一切负数,两个负数比较大小,其绝对值大的反而小.2.【分析】确定a×10n(1≤|a|<10,n为整数)中n的值是易错点,由于876 000有6位,所以可以确定n=6﹣1=5.【解答】解:876 000=8.76×105.故选:B.【点评】把一个数M记成a×10n(1≤|a|<10,n为整数)的形式,这种记数的方法叫做科学记数法.规律:(1)当|a|≥1时,n的值为a的整数位数减1;(2)当|a|<1时,n的值是第一个不是0的数字前0的个数,包括整数位上的0.3.【分析】根据方位角的概念,画图正确表示出方位角,即可求解.【解答】解:由题意可知∠1=30°,∵AB∥CD,∴∠1=∠2,由方向角的概念可知乙在甲的南偏西30°.故选:D.【点评】本题考查了方向角的知识,属于基础题,解答此类题需要从运动的角度,正确画出方位角,找准中心是解答这类题的关键.4.【分析】根据“面动成体”结合各个选项中图形和旋转轴进行判断即可.【解答】解:将长方形绕着一边所在的直线旋转一周,所得到的几何体是圆柱,故选:C.【点评】本题考查点、线、面、体,理解“面动成体”是正确判断的前提.5.【分析】根据去括号法则,括号前面是负号时,将负号和括号去掉,括号里的每一项负号都发生改变,并都要乘前面的系数.【解答】解:﹣3(x+y)=﹣3x﹣3y;故选:B.【点评】本题主要考查去括号,熟悉掌握去括号法则是解题的关键,注意前面的3要和括号里每一项乘.6.【分析】先把6﹣2x+4y变形为6﹣2(x﹣2y),然后把x﹣2y=3整体代入计算即可.【解答】解:∵x﹣2y=3,∴6﹣2x+4y=6﹣2(x﹣2y)=6﹣2×3=6﹣6=0故选:A.【点评】本题考查了代数式求值:先把所求的代数式根据已知条件进行变形,然后利用整体的思想进行计算.7.【分析】首先理解题意,找出题中存在的等量关系:实际12小时生产的零件数=原计划13小时生产的零件数+60,根据此等式列方程即可.【解答】解:设原计划每小时生产x个零件,则实际每小时生产(x+10)个零件.根据等量关系列方程得:12(x+10)=13x+60.故选:B.【点评】列方程解应用题的关键是找出题目中的相等关系.8.【分析】根据圆的滚动规律可知3次一个循环,将各选项中的数字除以3,根据余数可判定求解.【解答】解:由题意得:圆沿着数轴正方向滚动一次按A,B,C的顺序排列:A.2020÷3=673…1,所以此时点A正好落在数轴上;B.2021÷3=673…2,所以此时点B正好落在数轴上;C.2022÷3=674,所以此时点C正好落在数轴上;D.2023÷3=674…1,所以此时点A正好落在数轴上.故选:B.【点评】本题主要考查数轴,找规律,找到圆的滚动规律是解题的关键.二、填空题(共8小题,每小题3分,共24分)9.【分析】根据倒数的定义直接解答即可.【解答】解:∵(﹣)×(﹣2)=1,∴﹣的倒数是﹣2.【点评】本题考查倒数的基本概念,即若两个数的乘积是1,我们就称这两个数互为倒数.属于基础题.10.【分析】根据相反数及非负数的性质求出a、b的值,再代入所求代数式计算即可.【解答】解:∵(a﹣1)2与|b+1|的值互为相反数,∴(a﹣1)2+|b+1|=0,∴a﹣1=0,b+1=0,∴a=1,b=﹣1.∴a+b=0.【点评】本题考查的知识点是:某个数的平方与另一数的绝对值的和等于0,那么平方数的底数为0,绝对值里面的代数式的值为0.11.【分析】根据单项式的定义求出m,n的值,然后代入式子进行计算即可.【解答】解:∵单项式的系数是m,次数是n,∴m=﹣,n=6,∴m+n=﹣+6=,故答案为:.【点评】本题考查了单项式,熟练掌握单项式的定义求出m,n的值,是解题的关键.12.【分析】根据邻补角求出∠COB,根据角平分线定义求出∠2=∠COB,代入求出即可.【解答】解:∵∠1=40°,∴∠COB=180°﹣∠1=140°,∵OD平分∠COB,∴∠2=∠COB=×140°=70°,故答案为:70°.【点评】本题考查了邻补角和角平分线定义的应用,解此题的关键是能求出∠COB的度数和得出∠2=∠COB,注意:从角的顶点出发的一条射线,把这个角分成两个相等的角,这条射线就叫角的平分线.13.【分析】本题要求这个两位数,就要利用两位数的表示方法设出未知数,利用个位数字加十位数字的和是12作为等量关系列方程求解.【解答】解:设十位上的数字是x,则个位上的数字是3x.则x+3x=12解得:x=33x=9所以该数为:39.【点评】本题主要考查的是利用两位数的表示方法作为等量关系列方程求解.两位数字的表示方法:十位数字×10+个位数字.14.【分析】画出图形,利用钟表表盘的特征解答.【解答】解:∵8点整,时针指向8,分针指向12,时针与分针之间有4格,钟表12个数字,每相邻两个数字之间的夹角为30°,∴8点整分针与时针的夹角正好是4×30°=120°.【点评】本题考查钟表时针与分针的夹角.在钟表问题中,常利用时针与分针转动的度数关系:分针每转动1°时针转动()°,并且利用起点时间时针和分针的位置关系建立角的图形.15.【分析】剪下的两个小矩形的长为a﹣b,宽为(a﹣3b),所以这两个小矩形拼成的新矩形的长为a﹣b,a﹣3b,然后计算这个新矩形的周长.【解答】解:新矩形的周长为2(a﹣b)+2(a﹣3b)=4a﹣8b.故答案为4a﹣8b.【点评】本题考查了列代数式:把问题中与数量有关的词语,用含有数字、字母和运算符号的式子表示出来,就是列代数式.解决本题的关键用a和b表示出剪下的两个小矩形的长与宽.16.【分析】根据题意可得AM﹣AN=MN=51,根据线段的差可得M1N1=AM﹣AN,M2N2=AM1﹣AN1,M3N3=AM2﹣AN2的长度表示,根据规律进行推理即可得出M n N n,即可得出答案.【解答】解:根据题意可得,∵MN=51,∴AM﹣AN=MN=51,∴M1N1===,∴M2N2===,∴M3N3===,.......一次类推,M n N n=,∴M20N20=.故答案为:.【点评】本题主要考查了两点间的距离,熟练掌握两点的距离计算的方法进行计算及根据题意找出问题的规律进行求解是解决本题的关键.三、解答题(本大题共9小题,满分共72分)17.【分析】(1)利用有理数的加减运算的法则进行求解即可;(2)先算乘方及括号里的运算,再算乘法,最后算除法即可.【解答】解:(1)(﹣2)+(﹣5)﹣(+10)﹣(﹣18)=﹣2﹣5﹣10+18=﹣7﹣10+18=﹣17+18=1;(2)[(﹣1)100+(1﹣)×]÷(﹣32+2)=(1+×)÷(﹣9+2)=(1+)÷(﹣7)==﹣.【点评】本题主要考查有理数的混合运算,解答的关键是对相应的运算法则的掌握.18.【分析】(1)方程移项、合并同类项、系数化为1即可;(2)方程去分母、去括号、移项、合并同类项、系数化为1即可.【解答】解:(1)10﹣3(x﹣1)=x+1,去括号,得10﹣3x+3=x+1,移项,得﹣3x﹣x=1﹣3﹣10,合并同类项,得﹣4x=﹣12,系数化为1,得x=3;(2),去分母,得2(2x+1)﹣(x+1)=18,去括号,得4x+2﹣x﹣1=18,移项,得4x﹣x=18+1﹣2,合并同类项,得3x=17,系数化为1,得x=.【点评】本题考查了解一元一次方程,掌握解一元一次方程的基本步骤是解答本题的关键.19.【分析】(1)(2)根据几何语言画出对应的几何图形.【解答】解:(1)如图,线段AB、线段CM为所作;(2)如图,【点评】本题考查了作图﹣复杂作图:解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.也考查了直线、射线和线段.20.【分析】根据整式的加减运算法则进行化简,然后将x与y的值代入原式即可求出答案.【解答】解:原式=x﹣x+y2﹣x+y2=﹣x+y2,当x=﹣2,y=时,原式=2+=.【点评】本题考查整式的加减,解题的关键是熟练运用整式的加减运算法则,本题属于基础题型.21.【分析】先解方程3﹣x=2x+6,求出x的值,然后把x的值代入方程a(x﹣1)=x+3,求出a的值,最后把a的值代入式子进行计算即可解答.【解答】解:3﹣x=2x+6,3x=﹣3,x=﹣1,把x=﹣1代入a(x﹣1)=x+3中得:﹣2a=2,a=﹣1,∴当a=﹣1时,|a|+a2022﹣=1+1+1=3.【点评】本题考查了绝对值,同解方程,准确熟练地进行计算是解题的关键.22.【分析】先设开始来了x为客人,然后根据题意和题目中的数据,可以列出相应的方程,然后求解即可.【解答】解:设开始来了x为客人,由题意可得:x+(x﹣x)+4=x,解得x=15,答:开始来了15位客人.【点评】本题考查一元一次方程的应用,解答本题的关键是明确题意,找出等量关系,列出相应的方程.23.【分析】设PM=a,由已知条件,可得AM=3PM=3a,即可得出AP=AM+PM =4a,由点P,点N分别是AB,BP的中点,可得BP,PN的长度,再由MN=MP+PN =12,即可算出a的值,即可算出答案.【解答】解:设PM=a,∵,∴AM=3PM=3a,∴AP=AM+PM=3a+a=4a,∵点P是线段AB的中点,∴BP=AB==4a,AB=8a,∵点N是线段BP的中点,∴PN==2a,∵MN=MP+PN=12,∴a+2a=12,∴a=4,∴AB=8a=4×8=32.【点评】本题主要考查了两点间的距离,熟练掌握两点的距离计算的方法进行计算是解决本题的关键.24.【分析】(1)利用应缴水费=1.6×10+2×超过10吨的部分,即可求出小刚家6月份的应缴水费;(2)求出用水量为20吨时的平均水费,由1.6<1.75<1.8可得出小刚家7月份的用水量超过10吨且不足20吨,设小刚家7月份的用水量为x吨,根据小刚家7月份的平均水费为1.75元/吨,即可得出关于x的一元一次方程,解之即可求出小刚家7月份的用水量;(3)设小明家9月份用水量为m吨,则8月份的用水量为(40﹣m)吨,分0<m≤10及10<m<20两种情况考虑,根据两个月共缴水费78.8元(含2元滞纳金),即可得出关于m的一元一次方程,解之即可得出小明家9月份的用水量,再将其代入(40﹣m)中可求出小明家8月份的用水量.【解答】解:(1)1.6×10+2×(18﹣10)=1.6×10+2×8=16+16=32(元).答:小刚家6月份应缴水费32元.(2)∵====1.8(元/吨),1.6<1.75<1.8,∴小刚家7月份的用水量超过10吨,不足20吨.设小刚家7月份的用水量为x吨,依题意得:1.6×10+2(x﹣10)=1.75x,解得:x=16.答:小刚家7月份的用水量为16吨.(3)设小明家9月份用水量为m吨,则8月份的用水量为(40﹣m)吨.当0<m≤10时,1.6×10+2×(20﹣10)+2.4(40﹣m﹣20)+2+1.6m=78.8,解得:m=9,∴40﹣m=31;当10<m<20时,1.6×10+2×(20﹣10)+2.4(40﹣m﹣20)+2+1.6×10+2(m﹣10)=78.8,解得:m=8(不合题意,舍去).答:小明家8月份用水量为31吨,9月份的用水量为9吨.【点评】本题考查了一元一次方程的应用以及有理数的混合运算,解题的关键是:(1)根据各数量之间的关系,列式计算;(2)找准等量关系,正确列出一元一次方程;(3)分0<m≤10及10<m<20两种情况,找出关于m的一元一次方程.25.【分析】(1)由题意可得,∠AOB=∠AOC,可直接求解;(2)由射线的运动可知,需要分两种情况讨论,①OP逆时针运动时,OP,OQ相遇前和相遇后;②OP顺时针旋转,OP,OQ相遇前和相遇后,分别画图求解即可;(3)根据射线OP的运动,需要分四种情况,①当射线OP与OA重合前,②当射线OP 与OA重合后,∠AOP=180°前,③∠CON=180°前,④OP与OQ重合前,画出图形,结合角平分线求解即可.【解答】解:(1)∠BOC=∠AOC,∠BOC+∠AOB=∠AOC,∴∠AOB=∠AOC,∵∠AOB=30°,∴∠AOC=120°;(2)由(1)知,∠AOC=120°,∠BOC=90°,①OP逆时针运动时,即0≤t≤12时,由OP,OQ的运动可知,∠AOP=10°t,∠BOQ=6°t,OP,OQ相遇前,如图2(1),∠AOQ=∠AOP+∠POQ=∠AOB+∠BOQ,即10°t+10°=30°+6°t,解得t=5,OP,OQ相遇后,如图2(2),∠AOP=∠AOB+∠BOQ+∠POQ,即10°t=30°+6°t+10°,解得t=10;②OP顺时针旋转时,∠COP=10°t﹣120°,∠BOQ=6°t,OP,OQ相遇前,如图(3),∠BOC=∠COP+∠BOQ+∠POQ,即90°=10°t﹣120°+6°t+10°,解得t=12.5,OP,OQ相遇后,如图(4),∠BOC=∠COP+∠BOQ﹣∠POQ,即90°=10°t﹣120°+6°t﹣10°,解得t=13.75,综上,当t的值为5,10,12.5或13.75时,∠POQ=10°.(3)由(1)知∠AOC=120°,根据射线OP的运动,需要分四种情况,①当射线OP与OA重合前,如图3(1),∵OM平分∠AOP,ON平分∠COP,∴∠POM=∠AOP,∠PON=∠COP,∴∠MON=∠POM+∠PON=∠AOP+∠COP=∠AOC=60°;②当射线OP与OA重合后,∠AOP=180°前,如图3(2),∵OM平分∠AOP,ON平分∠COP,∴∠POM=∠AOP,∠PON=∠COP,∴∠MON=∠POM﹣∠PON=∠AOP﹣∠COP=∠AOC=60°;③∠CON=180°前,如图3(3),∵OM平分∠AOP,ON平分∠COP,∴∠POM=∠AOP,∠PON=∠COP,∴∠MON=∠POM+∠PON=∠AOP+∠COP=(360°﹣∠AOC)=120°;④OP与OQ重合前,如图3(4),∵OM平分∠AOP,ON平分∠COP,∴∠POM=∠AOP,∠PON=∠COP,∴∠MON=∠PON﹣∠POM=∠COP+∠AOP=∠AOC=60°;综上,∠MON的度数为60°或120°.【点评】本题主要考查角度的和差运算,涉及一元一次方程的应用,角度的双角平分线问题,在解题过程中根据角度的变化进行合适分段讨论是解题关键.。
2017-2018学年七年级(上)期末数学试卷一、选择题(下列各题的备选答案中,有且只有一个答案是正确的,每小题3分,共21分)1.下表是我县四个景区今年1月份某天6时气温,其中气温最低的景区是()景区白莲河三角山策湖湿地花涧谷气温﹣1℃﹣7℃﹣2℃2℃A.白莲河B.三角山C.策湖湿地D.花涧谷2.下列运算结果为负数的是()A.|﹣2| B.(﹣2)2C.﹣(﹣2)D.﹣(﹣2)23.已知x﹣2y=3,那么代数式3﹣2x+4y的值是()A.﹣3 B.0 C.6 D.94.同一副三角板(两块)画角,不可能画出的角的度数是()A.135°B.75°C.55°D.15°5.中国讲究五谷丰登,六畜兴旺,如图是一个正方体展开图,图中的六个正方形内分别标有六畜:“猪”,“牛”,“羊”,“马”,“鸡”,“狗”,将其围成一个正方体后,则与“牛”相对的是()A.羊B.马C.鸡D.狗6.某车间有26名工人,每人每天可以生产800个螺钉或1000个螺母,1个螺钉需要配2个螺母,为使每天生产的螺钉和螺母刚好配套,设安排x名工人生产螺钉,则下面所列方程正确的是()A.1000(26﹣x)=800x B.1000(13﹣x)=800xC.1000(26﹣x)=2×800x D.2×1000(26﹣x)=800x7.已知线段AB=8cm,在直线AB上画BC,使BC=2cm,则线段AC的长度是()A.6cm B.10cm C.6cm或10cm D.4cm或16cm二、填空题(本大题共8小题,每小题3分,共18分)8.﹣2018的相反数是.9.自中国提出“一带一路,合作共赢”的倡议以来,一大批中外合作项目稳步推进.其中,由中国承建的蒙内铁路(连接肯尼亚首都内罗毕和东非第一大港蒙巴萨港),是首条海外中国标准铁路,已于2017年5月31日正式投入运营,该铁路设计运力为25000000吨,将25000000吨用科学记数法表示,记作吨.10.已知2x6y2和﹣x3m y n是同类项,那么2m+n的值是.11.如图,已知C为线段AB的中点,D在线段CB上.若DA=6,DB=4,则CD=.12.一个角的余角比这个角的少30°,则这个角的度数是.13.方程1﹣=0与方程2x﹣5=1的解相等,则a的值为.14.煤油连桶重8千克,从桶中倒出一半煤油后,连桶重4.5千克,则桶重千克.15.钟表上的时间是13时20分,则此时时针与分针所成的夹角是度.三、解答题(共75分)16.先化简,再求值:﹣9y+6x2+3(y﹣x2),其中x=2,y=﹣1.17.计算:(1)2+(﹣7)﹣(﹣13)(2)5+(﹣7)×(+3)﹣(﹣4÷)(3)(﹣)×(﹣24)﹣4(4)(﹣)×(﹣4)2﹣(﹣1)201818.小王购买了一套一居室,他准备将房子的地面铺上地砖,地面结构如图所示,根据图中所给的数据(单位:米),解答下列问题:(1)用含m,n的代数式表示地面的总面积S;(2)已知n=1.5,且客厅面积是卫生间面积的8倍,如果铺1平方米地砖的平均费用为100元,那么小王铺地砖的总费用为多少元?19.解下列方程:(1)4x+7=12x﹣5;(2)4y﹣3(5﹣y)=6;(3)﹣=1;(4)﹣=1.20.如图,某轮船上午8时在A处,测得灯塔S在北偏东60°的方向上,向东行驶至中午12时,该轮船在B处,测得灯塔S在北偏西30°的方向上(自己完成图形),已知轮船行驶速度为每小时20千米,求∠ASB的度数及AB的长.21.若(m﹣4)x2|m|﹣7﹣4m=0是关于x的一元一次方程,求m2﹣2m+1994的值.22.如图,已知∠AOB=∠COD=90°,OC是∠AOB的平分线,∠BOD=3∠DOE.求∠COE的度数.23.某班将买一些乒乓球和乒乓球拍,现了解情况如下:甲、乙两家商店出售两种同样品牌的乒乓球和乒乓球拍,乒乓球拍每幅定价30元,乒乓球每盒定价5元,经洽谈后,甲店买一副球拍赠一盒乒乓球,乙店全部按定价的9折优惠.该班需球拍5副,乒乓球若干盒(不小于5盒)问:(1)当购买乒乓球多少盒时,两种优惠办法付款一样?(2)当购买15盒、30盒乒乓球时,请你去办这件事,你打算去哪家商店买,为什么?24.已知数轴上三点A,O,B表示的数分别为﹣3,0,1,点P为数轴上任意一点,其表示的数为x.(1)如果点P到点A,点B的距离相等,那么x=;(2)当x=时,点P到点A,点B的距离之和是6;(3)若点P到点A,点B的距离之和最小,则x的取值范围是;(4)在数轴上,点M,N表示的数分别为x1,x2,我们把x1,x2之差的绝对值叫做点M,N之间的距离,即MN=|x1﹣x2|.若点P以每秒3个单位长度的速度从点O沿着数轴的负方向运动时,点E以每秒1个单位长度的速度从点A沿着数轴的负方向运动、点F以每秒4个单位长度的速度从点B沿着数轴的负方向运动,且三个点同时出发,那么运动秒时,点P到点E,点F的距离相等.参考答案与试题解析一.选择题(共7小题)1.下表是我县四个景区今年1月份某天6时气温,其中气温最低的景区是()景区白莲河三角山策湖湿地花涧谷气温﹣1℃﹣7℃﹣2℃2℃A.白莲河B.三角山C.策湖湿地D.花涧谷【分析】将几个有理数比较后即可确定正确的选项.【解答】解:由表格中数据可得:﹣7<﹣2<﹣1<2,则气温最低的景区是:三角山.故选:B.2.下列运算结果为负数的是()A.|﹣2| B.(﹣2)2C.﹣(﹣2)D.﹣(﹣2)2【分析】根据绝对值性质、相反数和有理数乘方的运算法则逐一计算即可得.【解答】解:A、|﹣2|=2,此选项不符合题意;B、(﹣2)2=4,此选项不符合题意;C、﹣(﹣2)=2,此选项不符合题意;D、﹣(﹣2)2=﹣4,此选项符合题意;故选:D.3.已知x﹣2y=3,那么代数式3﹣2x+4y的值是()A.﹣3 B.0 C.6 D.9【分析】将3﹣2x+4y变形为3﹣2(x﹣2y),然后代入数值进行计算即可.【解答】解:∵x﹣2y=3,∴3﹣2x+4y=3﹣2(x﹣2y)=3﹣2×3=﹣3;故选:A.4.同一副三角板(两块)画角,不可能画出的角的度数是()A.135°B.75°C.55°D.15°【分析】本题需先根据两个三角板各个内角的度数分别组合出要求的角,即可得出正确答案.【解答】解:A.135°=90°+45°,故本选项正确;B.75°=45°+30°,故本选项正确;C.55°不能写成90°、60°、45°、30°的和或差,故本选项错误;D.15°=45°﹣30°,故本选项正确.故选:C.5.中国讲究五谷丰登,六畜兴旺,如图是一个正方体展开图,图中的六个正方形内分别标有六畜:“猪”,“牛”,“羊”,“马”,“鸡”,“狗”,将其围成一个正方体后,则与“牛”相对的是()A.羊B.马C.鸡D.狗【分析】正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点作答.【解答】解:正方体的表面展开图,相对的面之间一定相隔一个正方形,“猪”相对的字是“羊”;“马”相对的字是“鸡”;“牛”相对的字是“狗”.故选:D.6.某车间有26名工人,每人每天可以生产800个螺钉或1000个螺母,1个螺钉需要配2个螺母,为使每天生产的螺钉和螺母刚好配套,设安排x名工人生产螺钉,则下面所列方程正确的是()A.1000(26﹣x)=800x B.1000(13﹣x)=800xC.1000(26﹣x)=2×800x D.2×1000(26﹣x)=800x【分析】题目已经设出安排x名工人生产螺钉,则(26﹣x)人生产螺母,由一个螺钉配两个螺母可知螺母的个数是螺钉个数的2倍从而得出等量关系,就可以列出方程.【解答】解:设安排x名工人生产螺钉,则(26﹣x)人生产螺母,由题意得1000(26﹣x)=2×800x,故C答案正确,故选:C.7.已知线段AB=8cm,在直线AB上画BC,使BC=2cm,则线段AC的长度是()A.6cm B.10cm C.6cm或10cm D.4cm或16cm【分析】由于点C的位置不确定,故应分点C在AB之间与点C在AB外两种情况进行讨论.【解答】解:如图1所示,∵线段AB=8cm,BC=2cm,∴AC=AB﹣BC=8﹣2=6(cm);如图2所示,∵线段AB=8cm,BC=2cm,∴AC=AB+BC=8+2=10(cm);综上所述,线段AB的长为6cm或10cm.故选:C.二.填空题(共8小题)8.﹣2018的相反数是2018 .【分析】只有符号不同的两个数叫做互为相反数.【解答】解:有理数﹣2018的相反数是2018.故答案为:2018.9.自中国提出“一带一路,合作共赢”的倡议以来,一大批中外合作项目稳步推进.其中,由中国承建的蒙内铁路(连接肯尼亚首都内罗毕和东非第一大港蒙巴萨港),是首条海外中国标准铁路,已于2017年5月31日正式投入运营,该铁路设计运力为25000000吨,将25000000吨用科学记数法表示,记作 2.5×107吨.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于10时,n是正数;当原数的绝对值小于1时,n是负数.【解答】解:25000000=2.5×107.故答案为:2.5×107.10.已知2x6y2和﹣x3m y n是同类项,那么2m+n的值是 6 .【分析】所含字母相同,并且相同字母的指数也相同,这样的项叫做同类项.【解答】解:∵2x6y2和﹣x3m y n是同类项,∴3m=6,n=2.解得:n=2,∴2m+n=6.故答案为:6.11.如图,已知C为线段AB的中点,D在线段CB上.若DA=6,DB=4,则CD= 1 .【分析】先根据DA=6,DB=4求出线段AB的长,再由C为线段AB的中点求出BC的长,根据CD=BC﹣DB即可得出结论.【解答】解:∵DA=6,DB=4,∴AB=DB+DA=4+6=10,∵C为线段AB的中点,∴BC=AB=×10=5,∴CD=BC﹣DB=5﹣4=1.故答案为:1.12.一个角的余角比这个角的少30°,则这个角的度数是80°.【分析】设这个角为x,则它的余角是90°﹣x,列方程求解即可.【解答】解:设这个角为x,则它的余角是90°﹣x,由题意,得:90°﹣x=x﹣30°,解得:x=80°.即这个角的度数是80°.故答案为:80°.13.方程1﹣=0与方程2x﹣5=1的解相等,则a的值为 2 .【分析】先解出方程2x﹣5=1的根,然后代入方程1﹣=0,得到关于a的方程,从而再解a的值.【解答】解:解方程2x﹣5=1,可得:x=3,把x=3代入方程1﹣=0中,1﹣=0,解得:a=2,故答案为:214.煤油连桶重8千克,从桶中倒出一半煤油后,连桶重4.5千克,则桶重 1 千克.【分析】设桶重为x千克,根据煤油连桶重的总重量减去倒出一半煤油后的重量等于连桶重的重量,列出算式,再进行计算即可.【解答】解:设桶重为x千克,根据题意得:8﹣=4.5,解得:x=1,答:桶重1千克;故答案为:1.15.钟表上的时间是13时20分,则此时时针与分针所成的夹角是80 度.【分析】根据钟表有12个大格,每个大格是30°,时间为13时20分,分针指在4处,时针在1到2之间,从而可以解答本题.【解答】解:∵钟表上的时间指示为1点20分,∴时针与分针所成的角是:(4﹣2)×30°+=60°+20°=80°故答案是:80.三.解答题(共9小题)16.先化简,再求值:﹣9y+6x2+3(y﹣x2),其中x=2,y=﹣1.【分析】原式去括号合并得到最简结果,把x与y的值代入计算即可求出值.【解答】解:原式=﹣9y+6x2+3y﹣2x2=﹣6y+4x2,当x=2、y=﹣1时,原式=﹣6×(﹣1)+4×22=6+16=22.17.计算:(1)2+(﹣7)﹣(﹣13)(2)5+(﹣7)×(+3)﹣(﹣4÷)(3)(﹣)×(﹣24)﹣4(4)(﹣)×(﹣4)2﹣(﹣1)2018【分析】(1)根据有理数的加减法可以解答本题;(2)根据有理数的乘法和加减法可以解答本题;(3)根据有理数的乘法和减法可以解答本题;(4)根据有理数的乘法和减法可以解答本题.【解答】解:(1)2+(﹣7)﹣(﹣13)=2+(﹣7)+13=8;(2)5+(﹣7)×(+3)﹣(﹣4÷)=5+(﹣21)+4×2=5+(﹣21)+8=﹣8;(3)(﹣)×(﹣24)﹣4=()×(﹣24)﹣4=3﹣4=﹣1;(4)(﹣)×(﹣4)2﹣(﹣1)2018=(﹣)×16﹣1=(﹣10)+(﹣1)=﹣11.18.小王购买了一套一居室,他准备将房子的地面铺上地砖,地面结构如图所示,根据图中所给的数据(单位:米),解答下列问题:(1)用含m,n的代数式表示地面的总面积S;(2)已知n=1.5,且客厅面积是卫生间面积的8倍,如果铺1平方米地砖的平均费用为100元,那么小王铺地砖的总费用为多少元?【分析】(1)根据总面积等于四个部分矩形的面积之和列式整理即可得解;(2)根据题意求出m的值,把m,n的值代入计算即可.【解答】解:(1)S=2n+6m+3×4+2×3=6m+2n+18.(2)n=1.5时2n=3根据题意,得6m=8×3=24,∵铺1平方米地砖的平均费用为100元,∴铺地砖的总费用为:100(6m+2n+18)=100×(24+3+18)=4500.答:铺地砖的总费用4500元.19.解下列方程:(1)4x+7=12x﹣5;(2)4y﹣3(5﹣y)=6;(3)﹣=1;(4)﹣=1.【分析】(1)根据解一元一次方程的基本步骤依次:移项、合并同类项、系数化为1即可得;(2)根据解一元一次方程的基本步骤依次:去括号、移项、合并同类项、系数化为1即可得;(3)根据解一元一次方程的基本步骤依次:去分母、去括号、移项、合并同类项、系数化为1即可得;(4)先将方程的分母化为整数,再根据解一元一次方程的基本步骤依次:去分母、去括号、移项、合并同类项、系数化为1即可得.【解答】解:(1)移项,得:4x﹣12x=﹣5﹣7,合并同类项,得:﹣8x=﹣12,系数化为1,得:x=;(2)去括号,得:4y﹣15+3y=6,移项,得:4y+3y=6+15,合并同类项,得:7y=21,系数化为1,得:y=3;(3)去分母,得:3(3x﹣1)﹣2(5x﹣7)=12,去括号,得:9x﹣3﹣10x+14=12,移项,得:9x﹣10x=12+3﹣14,合并同类项,得:﹣x=1,系数化为1,得:x=﹣1;(4)整理,得:﹣=1,去分母,得:3(20a﹣3)﹣5(10a+4)=15,去括号,得:60a﹣9﹣50a﹣20=15,移项,得:60a﹣50a=15+9+20,合并同类项,得:10a=44,系数化为1,得:a=4.4.20.如图,某轮船上午8时在A处,测得灯塔S在北偏东60°的方向上,向东行驶至中午12时,该轮船在B处,测得灯塔S在北偏西30°的方向上(自己完成图形),已知轮船行驶速度为每小时20千米,求∠ASB的度数及AB的长.【分析】根据方位角的概念,可以知道∠SAB=30°,∠SBA=60°,画图正确表示出方位角,根据三角形内角和为180°从而求得∠ASB的度数;从上午8时到中午12时历时4个小时,又知道轮船的时速,从而求得AB的长.【解答】解:能正确画出图形给(4分)由题意可知∠SAB=30°,∠SBA=60°,∴由三角形内角和等于180°,计算得:∠ASB=180°﹣60°﹣30°=90°,AB=(12﹣8)×20=80(千米).故∠ASB的度数为90°,AB的长为80千米.21.若(m﹣4)x2|m|﹣7﹣4m=0是关于x的一元一次方程,求m2﹣2m+1994的值.【分析】只含有一个未知数(元),且未知数的次数是1,这样的方程叫一元一次方程.【解答】解:∵(m﹣4)x2|m|﹣7﹣4m=0是关于x的一元一次方程,∴m﹣4≠0且2|m|﹣7=1,解得:m=﹣4,∴原式=16+8+1994=2018.22.如图,已知∠AOB=∠COD=90°,OC是∠AOB的平分线,∠BOD=3∠DOE.求∠COE的度数.【分析】依据∠AOB=90°,OC是∠AOB的平分线,即可得到∠BOC=45°,再根据∠COD =90°,即可得出∠BOD的度数,再根据∠BOD=3∠DOE,即可得到∠BOE的度数,根据∠COE=∠BOC+∠BOE进行计算即可.【解答】解:∵∠AOB=90°,OC是∠AOB的平分线,∴∠BOC=45°,又∵∠COD=90°,∴∠BOD=90°﹣∠BOC=90°﹣45°=45°.又∵∠BOD=3∠DOE.∴∠BOE=∠BOD=30°,∴∠COE=∠BOC+∠BOE=45°+30°=75°.23.某班将买一些乒乓球和乒乓球拍,现了解情况如下:甲、乙两家商店出售两种同样品牌的乒乓球和乒乓球拍,乒乓球拍每幅定价30元,乒乓球每盒定价5元,经洽谈后,甲店买一副球拍赠一盒乒乓球,乙店全部按定价的9折优惠.该班需球拍5副,乒乓球若干盒(不小于5盒)问:(1)当购买乒乓球多少盒时,两种优惠办法付款一样?(2)当购买15盒、30盒乒乓球时,请你去办这件事,你打算去哪家商店买,为什么?【分析】(1)设该班购买乒乓球x盒,根据乒乓球拍每幅定价30元,乒乓球每盒定价5元,经洽谈后,甲店买一副球拍赠一盒乒乓球,乙店全部按定价的9折优惠.可列方程求解.(2)根据各商店优惠条件计算出所需款数确定去哪家商店购买合算.【解答】解:(1)设购买x盒乒乓球时,两种优惠办法付款一样,根据题意有:30×5+(x﹣5)×5=(30×5+5x)×0.9,解得x=20,答:购买20盒乒乓球时,两种优惠办法付款一样.(2)①当购买15盒时,甲店需付款30×5+(15﹣5)×5=200元.乙店需付款(30×5+15×5)×0.9=202.5元.因为200<202.5,所以去甲店合算.②当购买30盒时,甲店需付款30×5+(30﹣5)×5=275元.乙店需付款(30×5+30×5)×0.9=270元.因为275>270,去乙店合算.24.已知数轴上三点A,O,B表示的数分别为﹣3,0,1,点P为数轴上任意一点,其表示的数为x.(1)如果点P到点A,点B的距离相等,那么x=﹣1 ;(2)当x=﹣4或2 时,点P到点A,点B的距离之和是6;(3)若点P到点A,点B的距离之和最小,则x的取值范围是﹣3≤x≤1 ;(4)在数轴上,点M,N表示的数分别为x1,x2,我们把x1,x2之差的绝对值叫做点M,N之间的距离,即MN=|x1﹣x2|.若点P以每秒3个单位长度的速度从点O沿着数轴的负方向运动时,点E以每秒1个单位长度的速度从点A沿着数轴的负方向运动、点F以每秒4个单位长度的速度从点B沿着数轴的负方向运动,且三个点同时出发,那么运动或2 秒时,点P到点E,点F的距离相等.【分析】(1)根据数轴上两点间的距离的表示列出方程求解即可;(2)根据AB的距离为4,小于6,分点P在点A的左边和点B的右边两种情况分别列出方程,然后求解即可;(3)根据两点之间线段最短可知点P在点AB之间时点P到点A,点B的距离之和最小最短,然后写出x的取值范围即可;(4)设运动时间为t,分别表示出点P、E、F所表示的数,然后根据两点间的距离的表示列出绝对值方程,然后求解即可.【解答】解:(1)由题意得,|x﹣(﹣3)|=|x﹣1|,解得x=﹣1;(2)∵AB=|1﹣(﹣3)|=4,点P到点A,点B的距离之和是6,∴点P在点A的左边时,﹣3﹣x+1﹣x=6,解得x=﹣4,点P在点B的右边时,x﹣1+x﹣(﹣3)=6,解得x=2,综上所述,x=﹣4或2;(3)由两点之间线段最短可知,点P在AB之间时点P到点A,点B的距离之和最小,所以x的取值范围是﹣3≤x≤1;(4)设运动时间为t,点P表示的数为﹣3t,点E表示的数为﹣3﹣t,点F表示的数为1﹣4t,∵点P到点E,点F的距离相等,∴|﹣3t﹣(﹣3﹣t)|=|﹣3t﹣(1﹣4t)|,∴﹣2t+3=t﹣1或﹣2t+3=1﹣t,解得t=或t=2.故答案为:(1)﹣1;(2)﹣4或2;(3)﹣3≤x≤1;(4)或2.。
2015-2016学年湖北省黄冈市浠水县七年级(上)期末数学试卷一、选择题:每小题3分,共21分1.的倒数是( )A. B. C. D.2.下面的计算正确的是( )A.6a﹣5a=1 B.a+2a2=3a3C.﹣(a﹣b)=﹣a+b D.2(a+b)=2a+b3.下列说法错误的是( )A.2x2﹣3xy﹣1是二次三项式B.﹣x﹣1不是单项式C.﹣πxy2的系数是﹣πD.﹣22xab2的次数是64.如图,对于直线AB,线段CD,射线EF,其中能相交的图是( )A. B. C. D.5.如果∠A和∠B互补,且∠A>∠B,给出下列四个式子:①90°﹣∠B;②∠A﹣90°;③(∠A+∠B);④(∠A﹣∠B),其中表示∠B余角的式子有( )A.4个B.3个C.2个D.1个6.一件夹克衫先按成本提高50%标价,再以8折(标价的80%)出售,结果获利20元,若设这件夹克衫的成本是x元,根据题意,可得到的方程是( )A.(1+50%)x×80%=x﹣20 B.(1+50%)x×80%=x+20C.(1+50%x)×80%=x﹣20 D.(1+50%x)×80%=x+207.如图,已知数轴上点A、B、C所表示的数分别为a、b、c,点C是线段AB的中点,且AB=2,如果原点O的位置在线段AC上,那么|a+b﹣2c|等于( )A.3 B.2 C.1 D.0二、填空题:每小题3分,共24分8.“太阳能”是一种既无污染又节省地下能源的能量,据科学家统计,平均每平方千米的地面一年从太阳中获得的能量,相当于燃烧130 000 000千克的煤所产生的能量,用科学记数法表示这个数量是__________千克.9.在数﹣2,3,﹣5,7中,最小的数是__________.10.如图,已知直线AB、CD相交于点O,OE平分∠COB,若∠EOB=50°,则∠BOD的度数是__________.11.如果代数式x2﹣x+1的值为2,那么代数式2x2﹣3x﹣1的值为__________.12.如图是一个正方体的表面展开图,则原正方体中与“祝”字所在的面相对的面上标的是__________.13.小林在做解方程作业时,不小心将方程中的一个常数污染看不清楚,被污染的方程是2y﹣=y﹣※,小林翻看了书后的答案是y=﹣,则这个常数是__________.14.下列四个生活、生产现象:①用两个钉子就可以把木条固定在墙上;②植树时,只要定出两棵树的位置,就能确定同一行所在的直线;③从A地到B地,架设电线,总是尽可能沿着线段AB架设;④把弯曲的公路改直,就能缩短路程.其中可用定理“两点之间,线段最短”来解释的现象有__________.(填序号)15.A、B两地相距40千米,上午6时张强步行从A地出发于下午5时到达B地;上午10时王丽骑自行车从A地出发于下午3时到达B地,问王丽是在__________小追上张强的?三、解答下列各题,共75分16.(16分)计算:(1)6+(﹣)﹣2﹣(﹣1.5)(2)(﹣2)2×5﹣(﹣2)3÷4(3)×(4)[﹣12016+(﹣2)]﹣|﹣5|17.(16分)解方程:(1)+2=6(2)﹣8y=3﹣y(3)m﹣=7﹣(4)﹣6.5=﹣7.5.18.化简求值:(1)(3m﹣2m2)﹣(3m﹣7)+(m2+1),其中m=﹣2.(2)5(a2b﹣3a)﹣2(a﹣2a2b)+20a,其中a=﹣2,b=﹣.19.小明从A点出发向北偏东60°方向走了80m米到达B地,从B地他又向西走了160m 到达C地.(1)用1:4000的比例尺(即图上1cm等于实际距离40m)画出示意图,并标上字母;(2)用刻度尺出AC的距离(精确到0.01cm),并求出C但距A点的实际距离(精确到1m);(3)用量角器测出C点相对于点A的方位角.20.已知A=2x2+3xy﹣2x﹣1,B=﹣x2+xy﹣1:(1)求3A+6B;(2)若3A+6B的值与x无关,求y的值.21.已知如图,∠AOB:∠BOC=3:2,OD是∠BOC的平分线,OE是∠AOC的平分线,且∠BOE=12°,求∠DOE的度数.22.为弘扬中华优秀文化传统,某中学在2014年元旦前夕,由校团委组织全校学生开展一次书法比赛,为了表彰在书法比赛中优秀学生,计划购买钢笔30支,毛笔20支,共需1070元,其中每支毛笔比钢笔贵6元.(1)求钢笔和毛笔的单价各为多少元?(2)①后来校团委决定调整设奖方案,扩大表彰面,需要购买上面的两种笔共60支(每种笔的单价不变).张老师做完预算后,向财务处王老师说:“我这次买这两种笔需支领1322元.”王老师算了一下,说:“如果你用这些钱只买这两种笔,那么帐肯定算错了.”请你用学过的方程知识解释王老师为什么说他用这些钱只买这两种笔的帐算错了.②张老师突然想起,所做的预算中还包括校长让他买的一支签字笔.如果签字笔的单价为不大于10元的整数,请通过计算,直接写出签字笔的单价可能为__________元.23.已知关于m的方程的解也是关于x的方程2(x﹣3)﹣n=3的解.(1)求m、n的值;(2)已知线段AB=m,在直线AB上取一点P,恰好使,点Q为PB的中点,求线段AQ 的长.24.已知:b是最小的正整数,且a、b满足(c﹣5)2+|a+b|=0,请回答问题(1)请直接写出a、b、c的值.a=__________,b=__________,c=__________(2)a、b、c所对应的点分别为A、B、C,点P为易动点,其对应的数为x,点P在0到2之间运动时(即0≤x≤2时),请化简式子:|x+1|﹣|x﹣1|+2|x+5|(请写出化简过程)(3)在(1)(2)的条件下,点A、B、C开始在数轴上运动,若点A以每秒1个单位长度的速度向左运动,同时,点B和点C分别以每秒2个单位长度和5个单位长度的速度向右运动,假设t秒钟过后,若点B与点C之间的距离表示为BC,点A与点B之间的距离表示为AB.请问:BC﹣AB的值是否随着时间t的变化而改变?若变化,请说明理由;若不变,请求其值.2015-2016学年湖北省黄冈市浠水县七年级(上)期末数学试卷一、选择题:每小题3分,共21分1.的倒数是( )A. B. C. D.【考点】倒数.【分析】先化为假分数,再根据乘积是1的两个数互为倒数解答.【解答】解:﹣1=﹣,∵(﹣)×(﹣)=1,∴﹣1的倒数是﹣.故选C.【点评】本题考查了互为倒数的定义,是概念题,注意先把带分数化为假分数.2.下面的计算正确的是( )A.6a﹣5a=1 B.a+2a2=3a3C.﹣(a﹣b)=﹣a+b D.2(a+b)=2a+b【考点】去括号与添括号;合并同类项.【分析】根据合并同类项法则:把同类项的系数相加,所得结果作为系数,字母和字母的指数不变;去括号法则:如果括号外的因数是正数,去括号后原括号内各项的符号与原来的符号相同;如果括号外的因数是负数,去括号后原括号内各项的符号与原来的符号相反,进行计算,即可选出答案.【解答】解:A、6a﹣5a=a,故此选项错误;B、a与2a2不是同类项,不能合并,故此选项错误;C、﹣(a﹣b)=﹣a+b,故此选项正确;D、2(a+b)=2a+2b,故此选项错误;故选:C.【点评】此题主要考查了合并同类项,去括号,关键是注意去括号时注意符号的变化,注意乘法分配律的应用,不要漏乘.3.下列说法错误的是( )A.2x2﹣3xy﹣1是二次三项式B.﹣x﹣1不是单项式C.﹣πxy2的系数是﹣πD.﹣22xab2的次数是6【考点】单项式;多项式.【分析】分别利用多项式以及单项式的次数与其定义分析得出即可.【解答】解:A、2x2﹣3xy﹣1是二次三项式,正确,不合题意;B、﹣x﹣1不是单项式,正确,不合题意;C、﹣πxy2的系数是﹣π,正确,不合题意;D、﹣22xab2的次数是4,故此选项错误,符合题意.故选:D.【点评】此题主要考查了单项式与多项式,正确把握相关定义是解题关键.4.如图,对于直线AB,线段CD,射线EF,其中能相交的图是( )A. B. C. D.【考点】直线、射线、线段.【分析】根据直线、射线、线段的定义对各选项分析判断利用排除法求解.【解答】解:A、直线AB与线段CD不能相交,故本选项错误;B、直线AB与射线EF能够相交,故本选项正确;C、射线EF与线段CD不能相交,故本选项错误;D、直线AB与射线EF不能相交,故本选项错误.故选B.【点评】本题考查了直线、射线、线段,熟记定义并准确识图是解题的关键.5.如果∠A和∠B互补,且∠A>∠B,给出下列四个式子:①90°﹣∠B;②∠A﹣90°;③(∠A+∠B);④(∠A﹣∠B),其中表示∠B余角的式子有( )A.4个B.3个C.2个D.1个【考点】余角和补角.【分析】用∠A表示出∠B,进而让90°减去表示∠B的代数式即可.【解答】解:∵∠A和∠B互补,∴∠B=180°﹣∠A,∴表示∠B余角的式子是①90°﹣∠B;②90°﹣(180°﹣∠A)=∠A﹣90°;④(∠A﹣∠B).故选B.【点评】考查余角补角的相关计算;用到的知识点为:互余的2个角和为90°,互补的2个角和为180°.6.一件夹克衫先按成本提高50%标价,再以8折(标价的80%)出售,结果获利20元,若设这件夹克衫的成本是x元,根据题意,可得到的方程是( )A.(1+50%)x×80%=x﹣20 B.(1+50%)x×80%=x+20C.(1+50%x)×80%=x﹣20 D.(1+50%x)×80%=x+20【考点】由实际问题抽象出一元一次方程.【分析】根据售﹣进价=利润,求得售价,进一步列出方程解答即可.【解答】解:设这件夹克衫的成本是x元,由题意得(1+50%)x×80%﹣x=20也就是(1+50%)x×80%=x+20.故选:B.【点评】此题考查了由实际问题抽象出一元一次方程的知识,掌握销售问题中基本数量关系是解决问题的关键.7.如图,已知数轴上点A、B、C所表示的数分别为a、b、c,点C是线段AB的中点,且AB=2,如果原点O的位置在线段AC上,那么|a+b﹣2c|等于( )A.3 B.2 C.1 D.0【考点】有理数的混合运算;数轴;绝对值.【专题】计算题.【分析】由题意,根据数轴上点的位置得到a+b=2c,代入原式计算即可得到结果.【解答】解:由题意及数轴上点的位置得:(a+b)÷2=c,即a+b=2c,则原式=0.故选D【点评】此题考查了有理数的混合运算,数轴,以及绝对值,熟练掌握运算法则是解本题的关键.二、填空题:每小题3分,共24分8.“太阳能”是一种既无污染又节省地下能源的能量,据科学家统计,平均每平方千米的地面一年从太阳中获得的能量,相当于燃烧130 000 000千克的煤所产生的能量,用科学记数法表示这个数量是1.3×108千克.【考点】科学记数法—表示较大的数.【专题】应用题.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于10时,n是正数;当原数的绝对值小于1时,n是负数.【解答】解:130 000 000=1.3×108千克.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.9.在数﹣2,3,﹣5,7中,最小的数是﹣5.【考点】有理数大小比较.【分析】先根据有理数的大小比较法则比较大小,即可得出答案.【解答】解:∵﹣5<﹣2<3<7,∴最小的数是﹣5,故答案为:﹣5.【点评】本题考查了对有理数的大小比较法则的应用,注意:正数都大于0,负数都小于0,正数都大于负数,两个负数比较大小,其绝对值大的反而小.10.如图,已知直线AB、CD相交于点O,OE平分∠COB,若∠EOB=50°,则∠BOD的度数是80°.【考点】对顶角、邻补角;角平分线的定义.【分析】首先根据角平分线的性质可得∠EOB=∠COE,进而得到∠COB的度数,再根据邻补角互补可算出∠BOD的度数.【解答】解:∵OE平分∠COB,∴∠EOB=∠COE,∵∠EOB=50°,∴∠COB=100°,∴∠BOD=180°﹣100°=80°.故答案为:80°.【点评】此题主要考查了邻补角的性质,角平分线的性质,关键是掌握邻补角互补.11.如果代数式x2﹣x+1的值为2,那么代数式2x2﹣3x﹣1的值为2.【考点】代数式求值.【分析】根据题意先列出方程,求出2x2﹣3x的值,再整体代入即可.【解答】解:∵x2﹣x+1的值为2,∴x2﹣x+1=2,∴2x2﹣3x+3=6,∴2x2﹣3x=3,∴2x2﹣3x﹣1=3﹣1=2,故答案为2.【点评】本题考查了代数式的值,整体思想的运用是解题的关键.12.如图是一个正方体的表面展开图,则原正方体中与“祝”字所在的面相对的面上标的是利.【考点】专题:正方体相对两个面上的文字.【分析】正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点作答.【解答】解:正方体的表面展开图,相对的面之间一定相隔一个正方形,“祝”与“利”是相对面,“你”与“试”是相对面,“考”与“顺”是相对面.故答案为:利.【点评】本题考查了正方体的展开图,注意正方体的空间图形,从相对面入手,分析及解答问题.13.小林在做解方程作业时,不小心将方程中的一个常数污染看不清楚,被污染的方程是2y﹣=y﹣※,小林翻看了书后的答案是y=﹣,则这个常数是3.【考点】一元一次方程的解.【专题】计算题;一次方程(组)及应用.【分析】把y的值代入方程计算即可确定出所求常数.【解答】解:把y=﹣代入方程整理得:﹣[2×(﹣)﹣﹣×(﹣)]=﹣(﹣﹣+=﹣﹣)=3,故答案为:3.【点评】此题考查了一元一次方程的解,方程的解即为能使方程左右两边相等的未知数的值.14.下列四个生活、生产现象:①用两个钉子就可以把木条固定在墙上;②植树时,只要定出两棵树的位置,就能确定同一行所在的直线;③从A地到B地,架设电线,总是尽可能沿着线段AB架设;④把弯曲的公路改直,就能缩短路程.其中可用定理“两点之间,线段最短”来解释的现象有③④.(填序号)【考点】线段的性质:两点之间线段最短.【分析】由题意,认真分析题干,运用线段的性质直接做出判断即可.【解答】解:①②现象可以用两点可以确定一条直线来解释;③④现象可以用两点之间,线段最短来解释.故答案为:③④.【点评】本题主要考查两点之间线段最短和两点确定一条直线的性质,应注意理解区分.15.A、B两地相距40千米,上午6时张强步行从A地出发于下午5时到达B地;上午10时王丽骑自行车从A地出发于下午3时到达B地,问王丽是在下午1点20分小追上张强的?【考点】一元一次方程的应用.【分析】根据题意知道:张强每小时走这段路程的,王丽每小时走这段路程的,并且张强比王丽早出发4小时,可以设王丽x小时追上甲,那么根据王丽x小时走的路程和张强(x+4)路程相等即可列出方程,解此方程即可.【解答】解:设王丽x小时追上张强,依题意得()x=4×,∴x=(小时),∴王丽下午1点20分追上张强的.故答案为:下午1点20分.【点评】此题解题思想比较新颖,把行程问题当做工程问题去解决.在很多行程问题中有时无法利用行程问题的思想直接解决就采用这种方法,注意使用这种方法.三、解答下列各题,共75分16.(16分)计算:(1)6+(﹣)﹣2﹣(﹣1.5)(2)(﹣2)2×5﹣(﹣2)3÷4(3)×(4)[﹣12016+(﹣2)]﹣|﹣5|【考点】有理数的混合运算.【专题】计算题;实数.【分析】(1)原式利用减法法则变形,计算即可得到结果;(2)原式先计算乘方运算,再计算乘除运算,最后算加减运算即可得到结果;(3)原式先计算括号中的减法运算,再计算乘除运算即可得到结果;(4)原式先计算乘方及绝对值运算,再计算乘除运算,最后算加减运算即可得到结果.【解答】解:(1)原式=6﹣0.2﹣2+1.5=7.5﹣2.2=5.3;(2)原式=4×5+8÷4=20+2=22;(3)原式=×(﹣)××=﹣;(4)原式=(﹣1﹣2)×(﹣3)﹣5=9﹣5=4.【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.17.(16分)解方程:(1)+2=6(2)﹣8y=3﹣y(3)m﹣=7﹣(4)﹣6.5=﹣7.5.【考点】解一元一次方程.【专题】计算题.【分析】(1)先移项,然后把x的系数化为1即可;(2)先移项,然后合并同类项,再把y的系数化为1即可;(3)先把方程两边乘以15得到15m﹣5(m﹣1)=105﹣3(m+3),再去括号、移项,然后合并同类项后把x的系数化为1即可;(4)先把方程两边乘以0.02得到15m﹣5(m﹣1)=105﹣3(m+3),再去括号、移项,然后合并同类项后把x的系数化为1即可.【解答】解:(1)x=4,所以x=8;(2)y﹣8y=3﹣,﹣y=,所以y=﹣;(3)15m﹣5(m﹣1)=105﹣3(m+3),15m﹣5m+5=105﹣3m﹣9,15m﹣5m+3m=105﹣9﹣5,13m=91,所以m=7;(4)2(4﹣6x)﹣0.13=0.02﹣2x﹣0.15,8﹣12x﹣0.13=0.02﹣2x﹣0.15,﹣12x+2x=0.02﹣0.15+0.13﹣8,﹣10x=﹣8,所以x=0.8.【点评】本题考查了解一元一次方程:去分母、去括号、移项、合并同类项、系数化为1,这仅是解一元一次方程的一般步骤,针对方程的特点,灵活应用,各种步骤都是为使方程逐渐向x=a形式转化.解一元一次方程时先观察方程的形式和特点,若有分母一般先去分母;若既有分母又有括号,且括号外的项在乘括号内各项后能消去分母,就先去括号.18.化简求值:(1)(3m﹣2m2)﹣(3m﹣7)+(m2+1),其中m=﹣2.(2)5(a2b﹣3a)﹣2(a﹣2a2b)+20a,其中a=﹣2,b=﹣.【考点】整式的加减—化简求值.【专题】计算题;整式.【分析】(1)原式去括号合并得到最简结果,把m的值代入计算即可求出值;(2)原式去括号合并得到最简结果,把a与b的值代入计算即可求出值.【解答】解:(1)原式=3m﹣2m2﹣3m+7+m2+1=﹣m2+8,当m=﹣2时,原式=﹣4+8=4;(2)原式=5a2b﹣15a﹣2a+4a2b+20a=9a2b+3a,当a=﹣2,b=﹣时,原式=﹣18﹣6=﹣24.【点评】此题考查了整式的加减﹣化简求值,熟练掌握运算法则是解本题的关键.19.小明从A点出发向北偏东60°方向走了80m米到达B地,从B地他又向西走了160m 到达C地.(1)用1:4000的比例尺(即图上1cm等于实际距离40m)画出示意图,并标上字母;(2)用刻度尺出AC的距离(精确到0.01cm),并求出C但距A点的实际距离(精确到1m);(3)用量角器测出C点相对于点A的方位角.【考点】方向角.【分析】(1)根据叙述,利用方向角的定义即可作出图形;(2)利用刻度尺测量,然后根据图上1cm等于实际距离40m即可求得实际距离;(3)利用量角器测量即可.【解答】解:(1)如图;(2)AC=3.46cm,则C距A的实际距离是:3.46×40=138(m);(3)C点相对于A的方向角是:北偏西75°.【点评】本题考查的是方向角的概念及比例尺,根据题意正确画出方向角是解答此题的关键.20.已知A=2x2+3xy﹣2x﹣1,B=﹣x2+xy﹣1:(1)求3A+6B;(2)若3A+6B的值与x无关,求y的值.【考点】整式的加减.【分析】(1)把A、B代入3A+6B,再按照去括号法则去掉整式中的小括号,再合并整式中的同类项,将3A+6B化到最简即可.(2)根据3A+6B的值与x无关,令含x的项系数为0,解关于y的一元一次方程即可求得y的值.【解答】解:(1)3A+6B=3(2x2+3xy﹣2x﹣1)+6(﹣x2+xy﹣1)=6x2+9xy﹣6x﹣3﹣6x2+6xy ﹣6=15xy﹣6x﹣9;(2)原式=15xy﹣6x﹣9=(15y﹣6)x﹣9要使原式的值与x无关,则15y﹣6=0,解得:y=.【点评】本题考查整式的加减,解决此类题目的关键是熟记去括号法则,熟练运用合并同类项的法则,这是各地中考的常考点.21.已知如图,∠AOB:∠BOC=3:2,OD是∠BOC的平分线,OE是∠AOC的平分线,且∠BOE=12°,求∠DOE的度数.【考点】角的计算;角平分线的定义.【分析】首先设∠AOB=3x,∠BOC=2x,再根据角平分线性质可得∠AOE═,再根据角的和差关系可得∠BOE=∠AOB﹣∠AOE=,进而得到,再解方程即可得到x=24°,进而得到答案.【解答】解:设∠AOB=3x,∠BOC=2x.则∠AOC=∠AOB+∠BOC=5x.∵OE是∠AOC的平分线,∴∠AOE═,∴∠BOE=∠AOB﹣∠AOE=,∵∠BOE=12°,∴,解得,x=24°,∵OD是∠BOC的平分线,∴,∴∠DOE=∠DOB+∠BOE=24°+12°=36°.【点评】此题主要考查了角的计算,以及角的平分线定义,关键是注意分析角之间的和差关系.22.为弘扬中华优秀文化传统,某中学在2014年元旦前夕,由校团委组织全校学生开展一次书法比赛,为了表彰在书法比赛中优秀学生,计划购买钢笔30支,毛笔20支,共需1070元,其中每支毛笔比钢笔贵6元.(1)求钢笔和毛笔的单价各为多少元?(2)①后来校团委决定调整设奖方案,扩大表彰面,需要购买上面的两种笔共60支(每种笔的单价不变).张老师做完预算后,向财务处王老师说:“我这次买这两种笔需支领1322元.”王老师算了一下,说:“如果你用这些钱只买这两种笔,那么帐肯定算错了.”请你用学过的方程知识解释王老师为什么说他用这些钱只买这两种笔的帐算错了.②张老师突然想起,所做的预算中还包括校长让他买的一支签字笔.如果签字笔的单价为不大于10元的整数,请通过计算,直接写出签字笔的单价可能为2或8元.【考点】一元一次方程的应用.【专题】应用题.【分析】(1)设钢笔得单价为x元,则毛笔单价为(x+4)元,根据题意列出方程,求出方程的解即可得到结果;(2)①设单价为19元得钢笔y支,则单价为25元的毛笔为(60﹣y)支,根据题意列出方程,求出方程的解即可得到结果;②设单价为19元的钢笔z支,签字笔的单价为a元,根据题意列出关系式,根据z,a为整数,确定出a与z的值,即可得到结果.【解答】解:(1)设钢笔的单价为x元,则毛笔的单价为(x+6)元,由题意得:30x+20(x+6)=1070,解得:x=19,则x+6=25,答:钢笔的单价为19元,毛笔的单价为25元;(2)①设单价为19元的钢笔y支,则单价为25元的毛笔为(60﹣y)支,根据题意得:19y+25(60﹣y)=1322,解得:y=,不合题意,即王老师肯定搞错了;②设单价为19元的钢笔z支,签字笔的单价为a元,根据题意得:19z+25(60﹣z)=1322﹣a,即6z=178+a,由a,z都是整数,且178+a应被6整除,经验算当a=2时,6z=180,即z=30,符合题意;当a=8时,6z=186,即z=31,符合题意,则签字笔的单价为2元或8元.故答案为:2或8.【点评】此题考查了一元一次方程的应用,找出题中的等量关系是解本题的关键.23.已知关于m的方程的解也是关于x的方程2(x﹣3)﹣n=3的解.(1)求m、n的值;(2)已知线段AB=m,在直线AB上取一点P,恰好使,点Q为PB的中点,求线段AQ 的长.【考点】同解方程;两点间的距离.【分析】(1)先求出方程的解,然后把m的值代入方程2(x﹣3)﹣n=3,求出n的值;(2)分两种情况:①点P在线段AB上,先由AB=6,,求出AP=,BP=,然后由点Q为PB的中点,可求PQ=BQ=BP=,最后由AQ=AP+PQ即可求出答案;②点P在线段AB的延长线上,先由AB=6,,求出PB=3,然后点Q为PB的中点,可求PQ=BQ=,最后由AQ=AB+BQ即可求出答案.【解答】解:(1),m﹣16=﹣10,m=6,∵关于m的方程的解也是关于x的方程2(x﹣3)﹣n=3的解.∴x=m,将m=6,代入方程2(x﹣3)﹣n=3得:2(6﹣3)﹣n=3,解得:n=3,故m=6,n=3;(2)由(1)知:AB=6,,①当点P在线段AB上时,如图所示:∵AB=6,,∴AP=,BP=,∵点Q为PB的中点,∴PQ=BQ=BP=,∴AQ=AP+PQ==;②当点P在线段AB的延长线上时,如图所示:∵AB=6,,∴PB=3,∵点Q为PB的中点,∴PQ=BQ=,∴AQ=AB+BQ=6+=.故AQ=或.【点评】此题考查了一元一次方程的解,以及两点间的距离,熟练掌握运算法则是解本题的关键.24.已知:b是最小的正整数,且a、b满足(c﹣5)2+|a+b|=0,请回答问题(1)请直接写出a、b、c的值.a=﹣1,b=1,c=5(2)a、b、c所对应的点分别为A、B、C,点P为易动点,其对应的数为x,点P在0到2之间运动时(即0≤x≤2时),请化简式子:|x+1|﹣|x﹣1|+2|x+5|(请写出化简过程)(3)在(1)(2)的条件下,点A、B、C开始在数轴上运动,若点A以每秒1个单位长度的速度向左运动,同时,点B和点C分别以每秒2个单位长度和5个单位长度的速度向右运动,假设t秒钟过后,若点B与点C之间的距离表示为BC,点A与点B之间的距离表示为AB.请问:BC﹣AB的值是否随着时间t的变化而改变?若变化,请说明理由;若不变,请求其值.【考点】数轴;非负数的性质:绝对值;非负数的性质:偶次方.【分析】(1)根据b是最小的正整数,即可确定b的值,然后根据非负数的性质,几个非负数的和是0,则每个数是0,即可求得a,b,c的值;(2)根据x的范围,确定x+1,x﹣1,x+5的符号,然后根据绝对值的意义即可化简;(3)根据A,B,C的运动情况即可确定AB,BC的变化情况,即可确定AB﹣BC的值.【解答】解:(1)∵b是最小的正整数,∴b=1.根据题意得:,∴a=﹣1,b=1,c=5;(2)当0≤x≤1时,x+1>0,x﹣1≤0,x+5>0,则:|x+1|﹣|x﹣1|+2|x+5|=x+1﹣(1﹣x)+2(x+5)=x+1﹣1+x+2x+10=4x+10;当1<x≤2时,x+1>0,x﹣1>0,x+5>0.∴|x+1|﹣|x﹣1|+2|x+5|=x+1﹣(x﹣1)+2(x+5)=x+1﹣x+1+2x+10=2x+12;(3)不变.∵点A以每秒1个单位长度的速度向左运动,点B每秒2个单位长度向右运动,∴A,B每秒钟增加3个单位长度;∵点B和点C分别以每秒2个单位长度和5个单位长度的速度向右运动,∴B,C每秒钟增加3个单位长度.∴BC﹣AB=2,BC﹣AB的值不随着时间t的变化而改变.【点评】本题考查了数轴与绝对值,正确理解AB,BC的变化情况是关键.。
第 1 页 共 17 页2017-2018学年湖北省黄冈市浠水县七年级上期末数学试卷一、选择题(下列各题的备选答案中,有且只有一个答案是正确的,每小题3分,共21分)1.下表是我县四个景区今年1月份某天6时气温,其中气温最低的景区是( )A .白莲河B .三角山C .策湖湿地D .花涧谷2.下列运算结果为负数的是( )A .|﹣2|B .(﹣2)2C .﹣(﹣2)D .﹣(﹣2)23.已知x﹣2y =3,那么代数式3﹣2x +4y 的值是( )A .﹣3B .0C .6D .94.同一副三角板(两块)画角,不可能画出的角的度数是( )A .135°B .75°C .55°D .15°5.中国讲究五谷丰登,六畜兴旺,如图是一个正方体展开图,图中的六个正方形内分别标有六畜:“猪”,“牛”,“羊”,“马”,“鸡”,“狗”,将其围成一个正方体后,则与“牛”相对的是( )A .羊B .马C .鸡D .狗6.某车间有26名工人,每人每天可以生产800个螺钉或1000个螺母,1个螺钉需要配2个螺母,为使每天生产的螺钉和螺母刚好配套,设安排x 名工人生产螺钉,则下面所列方程正确的是( )A .1000(26﹣x )=800xB .1000(13﹣x )=800xC .1000(26﹣x )=2×800xD .2×1000(26﹣x )=800x 7.已知线段AB =8cm ,在直线AB 上画BC ,使BC =2cm ,则线段AC 的长度是( )A .6cmB .10cmC .6cm 或10cmD .4cm 或16cm二、填空题(本大题共8小题,每小题3分,共18分)8.﹣2018的相反数是 .9.自中国提出“一带一路,合作共赢”的倡议以来,一大批中外合作项目稳步推进.其中,由中国承建的蒙内铁路(连接肯尼亚首都内罗毕和东非第一大港蒙巴萨港),是首条海外。
七年级(上)期末数学试卷(4)2013-2014学年湖北省黄冈市浠水县七年级(上)期末数学试卷一、选择题(共7小题,每小题3分,满分21分)1.(3分)在下列各数﹣(+3)、﹣x 、22、﹣、﹣(﹣1)、2013、﹣|﹣4|中,负数的个数是( ). C D .5.(3分)下列计算:①0﹣(﹣5)=﹣5;②(﹣3)+(﹣9)=﹣12;③;④(﹣36)÷(﹣第1个数:; 第2个数:;第3个数:;… 第n 个数:.8.(3分)﹣2的倒数是 _________ ,|﹣5|= _________ ,最大的负整数是 _________ .9.(3分)一个两位数,个位数字是a+2,十位数字是2a ﹣1,则这个两位数用A 表示为 _________ .10.(3分)若整式5x+的值与5(x ﹣)的值互为相反数,则x 的值为 _________ .11.(3分)如图,C 是AB 上的一点,AC=7cm ,CB=3cm ,D 是AB 的中点,则CD 的长为 _________ .12.(3分)如图是2005年5月份的日历,如图中那样,用一个圈竖着圈住3个数,如果被圈住的三个数的和为30,则这三个数最小一个所表示的日期为2005年5月_________日.13.(3分)十•一期间,百货大楼推出全场打八折的优惠活动,持贵宾卡可在八折基础上继续打折,小明妈妈持贵宾卡买了标价为1200元的商品,共节省336元,则用贵宾卡又享受了_________折优惠.14.(3分)如图所示,O是直线AC上一点,OB是一条射线,OD平分∠AOB,OE在∠BOC内,∠BOE=∠EOC,∠DOE=60°,则∠EOC的度数是_________.15.(3分)有理数a、b、c在数轴上的位置如图所示,则化简|a﹣c|﹣|c﹣2b|+|a+c|﹣|a+b|正确的结果为_________.三、解答题(共9小题,满分75分)16.(16分)计算:(1)﹣+15.5+(﹣);(2)23÷[(﹣2)2﹣(﹣4)];(3)16÷(﹣2)3﹣(﹣)×(﹣4);(4)﹣24﹣(1﹣0.5)2××|3﹣(﹣3)2|.17.(16分)解方程:(1)4x﹣15=9;(2)5y﹣2=7y+8;(3)=2﹣;(4)(200+x)﹣(300﹣x)=300×.18.(5分)一个小虫从点O出发在一条直线上来回爬行,若向右爬行的路程记为正数,向左爬行的路程为负数,爬行的路程依次为(单位:厘米):+5,﹣3,+10,﹣8,﹣6,+12,﹣10(1)小虫最后是否能回到出发点O?若不能,则在点O的什么方向?距离点O多远?(2)在爬行过程中,如果每爬1厘米奖励两粒芝麻,则小虫共可得多少粒芝麻?19.(5分)如图,OA的方向是北偏东10°,OB的方向是北偏西40°.(1)若∠AOC=∠AOB,则OC的方向是_________;(2)若OD是OB的反向延长线,则OD的方向是_________;(3)∠BOD可看作是OB绕点O顺时针方向转至OD,作∠BOD的平分线OE,则OE的方向是_________;(4)在(1)、(2)、(3)的条件下,∠COE=_________.20.(8分)化简,求值:(1)(﹣x2+5+4x3)+(﹣x3+5x﹣4),其中x=﹣2.(2)(4a﹣3b﹣2ab)﹣(a﹣6b﹣ab),其中a+b=4,ab=﹣2.21.(6分)如图,已知AC=3AB,BC=18,点D是线段AC的中点,求BD的长度.22.(6分)请根据图中提供的信息,回答下列问题:(1)一个暖瓶与一个水杯分别是多少元?(2)甲、乙两家商场同时出售同样的暖瓶和水杯.为了迎接新年,两家商场都在搞促销活动.甲商场规定:这两种商品都打九折;乙商场规定:买一个暖瓶赠送一个水杯.若某单位想要买4个暖瓶和15个水杯,请问选择哪家商场购买更合算,并说明理由.23.(6分)如图所示,直线AB、CD相交于点O,OM⊥AB,(1)若∠1=∠2,求∠NOD的度数(2)若∠1=∠BOC,求∠AOC和∠MOD的度数.24.(7分)某批发商欲将一批水果由A地运往B地,汽车货运公司和铁路货运公司均开办此项运输业务,设运输(1)设该两地间的距离为x千米,汽车货运公司和铁路货运公司所要收取的费用分别为y1(元)和y2(元),试求y1与x的关系和y2与x的关系;(2)如果汽车的总费用比火车的总费用多1100元,求A,B两地的距离为多少千米?(3)若两地间距离为200千米,且火车,汽车在路上耽误的时间为2小时,3.1小时,若你是经理,选择哪种运输方式更合算些?2013-2014学年湖北省黄冈市浠水县七年级(上)期末数学试卷参考答案与试题解析一、选择题(共7小题,每小题3分,满分21分)个数:=个数:=﹣=.8.﹣,5,﹣1.9.21a﹣8.10..11.2cm.3.13.9.14.90°.15.﹣a﹣3b﹣c.;()﹣16∠××。
2024年最新人教版七年级数学(上册)期末试卷一、选择题(每小题2分,共20分)1. 下列数中,最小的正整数是()A. 1B. 2C. 3D. 42. 下列数中,最大的负整数是()A. 1B. 2C. 3D. 43. 下列数中,是正分数的是()A. 3/4B. 3/4C. 3/2D. 3/24. 下列数中,是负分数的是()A. 3/4B. 3/4C. 3/25. 下列数中,是整数的是()A. 3/4B. 3/4C. 3/2D. 3/26. 下列数中,是正数的是()A. 3/4B. 3/4C. 3/2D. 3/27. 下列数中,是负数的是()A. 3/4B. 3/4C. 3/2D. 3/28. 下列数中,是分数的是()A. 3/4B. 3/4C. 3/2D. 3/29. 下列数中,是正整数的是()A. 3/4B. 3/4D. 3/210. 下列数中,是负整数的是()A. 3/4B. 3/4C. 3/2D. 3/2二、填空题(每小题2分,共20分)11. 下列数中,是整数的是()A. 3/4B. 3/4C. 3/2D. 3/212. 下列数中,是正数的是()A. 3/4B. 3/4C. 3/2D. 3/213. 下列数中,是负数的是()A. 3/4B. 3/4C. 3/2D. 3/214. 下列数中,是分数的是()B. 3/4C. 3/2D. 3/215. 下列数中,是正整数的是()A. 3/4B. 3/4C. 3/2D. 3/216. 下列数中,是负整数的是()A. 3/4B. 3/4C. 3/2D. 3/217. 下列数中,是整数的是()A. 3/4B. 3/4C. 3/2D. 3/218. 下列数中,是正数的是()A. 3/4B. 3/4C. 3/2D. 3/219. 下列数中,是负数的是()A. 3/4B. 3/4C. 3/2D. 3/220. 下列数中,是分数的是()A. 3/4B. 3/4C. 3/2D. 3/2三、解答题(每小题5分,共25分)21. 解答:请计算下列各式的值。
一、选择题(每题5分,共50分)1. 下列数中,是正整数的是()A. -3B. 0C. 2D. -52. 下列各数中,是偶数的是()A. 1.5B. 2.3C. 4D. 5.73. 下列各数中,是质数的是()A. 10B. 11C. 12D. 144. 下列各数中,是互质数的是()A. 8和9B. 15和20C. 21和24D. 25和305. 下列各数中,是同底数幂的是()A. 2^3和2^4B. 3^2和3^5C. 5^3和5^2D. 7^4和7^66. 下列各数中,是同类二次根式的是()A. √9和√16B. √18和√24C. √27和√36D. √45和√647. 下列各数中,是正比例函数图象上的点的是()A. (1, 2)B. (2, 1)C. (3, 6)D. (4, 8)8. 下列各数中,是反比例函数图象上的点的是()A. (1, 2)B. (2, 4)C. (3, 6)D. (4, 8)9. 下列各数中,是等腰三角形底边长度的是()A. 3B. 5C. 7D. 910. 下列各数中,是直角三角形斜边长度的是()A. 3B. 5C. 7D. 9二、填空题(每题5分,共50分)11. 2的平方根是______,3的立方根是______。
12. 下列数中,质数有______个,合数有______个。
13. 下列各数中,互质数有______对。
14. 下列各数中,同类二次根式有______组。
15. 下列各数中,正比例函数图象上的点有______个。
16. 下列各数中,反比例函数图象上的点有______个。
17. 下列各数中,等腰三角形的底边长度是______。
18. 下列各数中,直角三角形的斜边长度是______。
三、解答题(每题10分,共40分)19. (1)求下列各数的平方和立方:- 2的平方- 3的立方(2)求下列各数的平方根和立方根:- 16的平方根- 27的立方根20. (1)已知一个数的平方是64,求这个数。
湖北省黄冈市2023-2024学年七年级上学期期末数学试题学校:___________姓名:___________班级:___________考号:___________一、单选题1.下列四个数中,绝对值最大的是()A .3-B .1-C .0D .22.我国约有9600000平方千米的土地,平均1平方千米土地一年从太阳得到的能量相当于燃烧150000吨煤所产生的能量,把150000用科学记数法可表示为()A ..41510⨯B .41510⨯C .51.510⨯D .51510⨯3.如图所示的平面图形绕直线l 旋转一周,可以得到的立体图形是()A .B .C .D .4.下列计算正确的是()A .233a a a +=B .235a b ab +=C .32ab ab ab --=D .32ab ab ab-+=-5.如图,直线AB ,CD 相交于点O ,射线OM 平分AOC ∠,ON OM ⊥.若70AOC ∠=︒,则CON ∠的度数为()A .35︒B .45︒C .55︒D .60︒6.小石家的脐橙成熟了!今年甲脐橙园有脐橙7000千克,乙脐橙园有脐橙5000千克,因客户订单要求,需要从乙脐橙园运部分脐橙到甲脐橙园,使甲脐橙园脐橙数量刚好是乙脐橙园的2倍.设从甲脐橙园运脐橙x 千克到乙脐橙园,则可列方程为().A .()700025000x =+B .700025000x -=⨯C .()700025000x x -=+D .()700025000x x +=-7.某商店换季促销,将一件标价为240元的T 恤7折售出,获利20%,则这件T 恤的成本为()A .138元B .140元C .162元D .170元8.如图,将一些形状相同的小五角星按图中所示放置,据此规律,第59个图形五角星的个数为()A .3600B .3500C .3599D .3499二、填空题14.钟表上2时35分时,时针与分针所成的角是15.如图所示,在长方形ABCD 中,AD 的边长为m ,正方形GBIH 的边长为16.如图,将一段长为100cm 绳子AB 拉直铺平后折叠(绳子无弹性,折叠处长度忽略不计),使绳子与自身一部分重叠.若将绳子(1)如图1,若120AOB ∠=︒,求EOF ∠的度数;(2)如图2,若AOB a ∠=,求EOF ∠的度数;(3)若将题中的“平分”的条件改为“23EOB ∠=其他条件不变,求EOF ∠的度数.(用含α23.某超市在春节期间开展打折促销活动,方案如下:一次性购物优惠办法少于300元不予优惠低于600元但不低于300元九折优惠600元或超过600元其中600元部分给予九折优惠,超过优惠(1)求A 和B 两点之间的距离;t(秒);①分别表示甲、乙两小球到原点的距离(用t表示);②求甲、乙两小球到原点的距离相等时经历的时间.。
湖北省黄冈市浠水县2013年秋季期末调研考试
七年级数学试题
浠水县2013年秋季期末调研考试
七年级数学试题参考答案
一、选择题(每小题3分,共21分)
1.C 2.B 3.B 4.D 5.B 6.B 7.A
二、填空题(每小题3分,共24分)
8.—21,5,—1 9.21a —8 10.10
1 11.2cm 12.3 13.9 14.90° 15.—a —3b —c
三、解答下列各题(共75分)
16.(1)14.5 (2)8
23 (3)-25 (4)-1621 (请按步骤斟情给分步分)
17.(1)x =6 (2)y =-5 (3)m =3 (4)x =216
18.(1)能回到出发点; ………………………… 3分
(2)108粒. ………………………… 5分
19.(1)北偏东60°; (1分) (2)南偏东40°; (1分)
(3)北偏东50°; (1分) (4)10°. (2分)
20.(1)3x 3-x 2+5x +1=-37 (化简3分,结果1分)
(2)3a +3b -ab =14 (化简3分,结果1分)
21.解:∵ AC =3AB
∴ BC =2AB ………………………… 2分
∵ BC =18 ∴ AB =9
∴ AC =27 ………………………… 4分
∵ 点D 是线段AC 的中点
∴ AD =13.5 ………………………… 5分
∴ BD =4.5 ………………………… 6分
22.(1)设一个暖瓶x 元,则一个水杯(38-x )元,
根据题意得:2x +3(38-x )=84. ………………………… 2分 解得:x =30. ………………………… 3分 一个水杯=38-30=8.
故一个暖瓶30元,一个水杯8元; ………………………… 4分
(2)若到甲商场购买,则所需的钱数为:(4×30+15×8)×90%=216元.
若到乙商场购买,则所需的钱数为:4×30+(15-4)×8=208元.
∵208<216. ∴到乙家商场购买更合算. ………………………… 6分
23.(1)∵OM ⊥AB ,∠1=∠2,
∴∠1+∠AOC =∠2+∠AOC =90°,即∠CON =90°;
又∵ ∠NOC +∠NOD =180°,
∴∠NOD =90°; ………………………… 3分
(2)∵OM ⊥AB ,∠1=4
1∠BOC , ∴∠BOC =120°, ∠1=30°;
又∠AOC +∠BOC =180°,
11 ∴ ∠AOC =60°; ………………………… 5分 而 ∠AOC =∠BOD ,
∴ ∠MOD =150° ………………………… 6分
24.(1)由题意得:y 1=20x +900, ………………………… 1分
y 2=15x +2000; ………………………… 2分
(2)由题意得:20x +900=15x +2000+1100, ………………………… 3分
解得:x =440,
答:A ,B 两地的距离为440千米; ………………………… 4分
(3)汽车运输所需要的费用:(80
200+3.1)×200+900+20×200=6020(元), 火车运输所需要的费用:(100
200+2)×200+2000+15×200=5800(元), 答:选择火车运输方式更合算些. ………………………… 7分。