A1.1.1 算法的概念(教、学案)
- 格式:doc
- 大小:61.26 KB
- 文档页数:5
1.1.1算法的概念【学习目的】了解的概念与意义,会用“算法”的思想编制数学问题的算法。
【学习重点】算法的设计与算法意识的的培养【自学设计引导】我们从小学就开始接触算法,熟悉许多问题的算法。
如,做四则运算要先乘除后加减,从里往外去括号,竖式笔算等都是算法,解一元二次方程,一元一次不等式、一元二次不等式,求两个数的最大公因数、最小公倍数都是算法。
因此,算法其实是重要的数学对象。
1、算法的概念:2、算法的特征:(1)有限性:一个算法的步骤序列是有限的,必须在有限操作之后停止,不能是无限的.(2)确定性:算法中的每一步应该是确定的并且能有效地执行且得到确定的结果,而不应当是模棱两可.(3)顺序性与正确性:算法从初始步骤开始,分为若干明确的步骤,每一个步骤只能有一个确定的后继步骤,前一步是后一步的前提,只有执行完前一步才能进行下一步,并且每一步都准确无误,才能完成问题.(4)不唯一性:求解某一个问题的解法不一定是唯一的,对于一个问题可以有不同的算法.(5)普遍性:很多具体的问题,都可以设计合理的算法去解决,如心算、计算器计算都要经过有限的、事先设计好的步骤加以解决.【典型例题】例题1:解一元一次方程0(0)ax b a+=≠的步骤有:①移项;②系数化为1。
“翻译”成算法语言,就是第一步:输入,a b;第二步:计算bxa=-;第三步:输出x的值,结束。
自我检测:写出解一元二次方程20(0,0)ax bx c a++=≠∆>的一个算法。
例题2、正方体的棱长为a,写一个计算正方体的表面积的算法【课堂达标练习】A组1、若长方体的长、宽、高分别为,,a b c,写出求长方体的体积的一个算法。
2、任意给定一个正实数,设计一个算法求以这个数为半径的圆的面积和周长。
B组写出解一元二次方程20++=的一个算法。
ax bx c【课后延伸拓展】两个大人和两个小孩一起渡河,渡口只有一条小船,每次只能渡1 个大人或两个小孩,他们四人都会划船,但都不会游泳。
高中数学人教A版精品教案集:1.1.1算法的概念
教学目标:
1、知识目标:
⑴使学生理解算法的概念。
⑵掌握简单问题算法的表述。
⑶初步了解高斯消去法的思想.
⑷了解利用scilab求二元一次方程组解的方法。
2、能力目标:
①逻辑思维能力:通过分析、抽象、程序化高斯消去法的过程,体会算法的思想,发展有条理
地清晰地思维的能力,提高学生的算法素养。
②创新能力:通过分析高斯消去法的过程,发展对具体问题的过程与步骤的分析能力,发
展从具体问题中提炼算法思想的能力。
3、情感目标:
通过体验算法表述的过程,培养学生的创新意识和逻辑思维能力;通过
应用数学软件解决问题,感受算法思想的重要性,感受现代信息技术的
威力,提高学生的学习兴趣。
一、重点与难点
重点:算法的概念和算法的合理表述。
难点:算法的合理表述、高斯消去法.。
三、教学方法与手段:
采用“问题探究式”教学法,以多媒体为辅助手段,让学生主动发现问
题、分析问题、解决问题,培养学生的探究论证、逻辑思维能力。
二、教学过程:。
1.1.1算法的概念新知初探1.算法的概念在数学中,算法通常是指按照一定规则解决某一类问题的明确和有限的步骤.现在,算法通常可以编成计算机程序,让计算机执行并解决问题.2.算法的特征(1)确定性:算法中每一步都是确定的,并且能有效地执行且得到确定的结果.(2)有限性:一个算法的步骤是有限的,不能无限地进行下去,它能在有限步的操作后解决问题.(3)有序性:算法从初始步骤开始,分为若干明确的步骤,每个步骤只能有一个确定的后继步骤,前一步是后一步的前提,只有执行完前一步才能进行下一步.(4)不唯一性:解决一个问题可以有多种不同的算法.(5)普遍性:给出一个算法的程序步骤,它可以解决一类问题,并且能够多次重复使用.小试身手1.判断下列命题是否正确.(正确的打“√”,错误的打“×”)(1)求解一类问题的算法是唯一的()(2)算法必须在有限步骤操作之后解决问题()(3)算法执行后一定产生确定的结果()2.下列叙述不能称为算法的是()A.从北京到上海先乘汽车到飞机场,再乘飞机到上海B.解方程4x+1=0的过程是先移项再把x的系数化成1C.利用公式S=πr2计算半径为2的圆的面积得π×22D.解方程x2-2x+1=03.下面是某人出家门先打车去火车站,再坐火车去北京的一个算法,请补充完整.第一步,出家门.第二步,________________.第三步,坐火车去北京.题型一算法概念的理解[典例]下列说法正确的是()A.算法就是某个问题的解题过程B.算法执行后可以产生不同的结果C.解决某一个具体问题算法不同,则结果不同D.算法执行步骤的次数不可以很大,否则无法实施类题通法算法实际上是解决问题的一种程序性方法,它通常解决某一个或一类问题,用算法解决问题,体现了从特殊到一般的数学思想.[活学活用]有人对哥德巴赫猜想“任何大于4的偶数都能写成两个奇质数之和”设计了如下操作步骤:第一步,检验6=3+3.第二步,检验8=3+5.第三步,检验10=5+5.……利用计算机一直进行下去!请问:利用这种步骤能够证明猜想的正确性吗?这是一个算法吗?题型二算法的设计[典例]写出求1+2+3+4+5+6的一个算法.类题通法设计具体问题的算法的一般步骤(1)分析问题,找出解决问题的一般数学方法;(2)借助有关变量或参数对算法加以表述;(3)将解决问题的过程划分为若干步骤;(4)用简练的语言将这个步骤表示出来.[活学活用]1.求1×3×5×7×9×11的值的一个算法如下,请补充完整.第一步,求1×3得结果3.第二步,将第一步所得结果3乘以5,得到结果15.第三步,_________________________________________________________________.第四步,再将第三步所得结果105乘以9,得到结果945.第五步,再将第四步所得结果945乘以11,得到结果10 395,即为最后结果.2.写出解方程x2-2x-3=0的一个算法.学业水平达标1.下列关于算法的说法中正确的个数有( )①求解某一类问题的算法是唯一的;②算法必须在有限步骤操作之后停止;③x 2-x >2是一个算法;④算法执行后一定产生确定的结果.A .1B .2C .3D .42.已知直角三角形两直角边长为a ,b ,求斜边长c 的一个算法分下列三步:( )①计算c =a 2+b 2;②输入直角三角形两直角边长a ,b 的值;③输出斜边长c 的值.其中正确的顺序是( )A .①②③B .②③①C .①③②D .②①③3.下列叙述中,①植树需要运苗、挖坑、栽苗、浇水这些步骤;②按顺序进行下列运算:1+1=2,2+1=3,3+1=4,…99+1=100;③从青岛乘火车到济南,再从济南乘飞机到广州;④3x >x +1;⑤求所有能被3整除的正数,即3,6,9,12,….能称为算法的个数为( )A .2B .3C .4D .5 4.下列所给问题中,不能设计一个算法求解的是( )A .用“二分法”求方程x 2-3=0的近似解(精确度0.01)B .解方程组⎩⎪⎨⎪⎧x +y +5=0,x -y +3=0 C .求半径为2的球的体积D .求S =1+2+3+…的值参考答案小试身手1.【解析】由算法具有有限性、确定性和不唯一性可知(1)错,(2)、(3)对.【答案】(1)× (2)√ (3)√2.【解析】选项A,B给出了解决问题的方法和步骤,是算法;选项C是利用公式计算,也属于算法;选项D只提出问题没有给出解决的方法,不是算法.【答案】D3.【答案】打车去火车站[典例]【解析】例如:判断一个整数是否为偶数,结果为“是偶数”和“不是偶数”两种;选项A,算法不能等同于解法;选项C,解决某一个具体问题算法不同,但结果应相同;选项D,算法可以为很多次,但不可以无限次.【答案】B[活学活用]解:利用这种步骤不能证明猜想的正确性.此步骤不满足算法的有限性,因此不是算法.[典例] [解]法一:第一步,计算1+2得到3.第二步,将第一步中的运算结果3与3相加得到6.第三步,将第二步中的运算结果6与4相加得到10.第四步,将第三步中的运算结果10与5相加得到15.第五步,将第四步中的运算结果15与6相加得到21.法二:第一步,将原式变形为(1+6)+(2+5)+(3+4)=3×7.第二步,计算3×7.[活学活用]1.【解析】依据算法功能可知,第三步应为“再将第二步所得结果15乘以7,得到结果105”.【答案】再将第二步所得结果15乘以7,得到结果1052.解:法一:第一步,移项得x2-2x=3.①第二步,①式两边同时加1,并配方得(x-1)2=4.②第三步,②式两边开方,得x-1=±2.③第四步,解③式得x1=3,x2=-1.法二:第一步,计算出一元二次方程的判别式的值,并判断其符号.显然Δ=(-2)2-4×1×(-3)=16>0.第二步,将a=1,b=-2,c=-3代入求根公式x1,2=-b±b2-4ac2a,得x1=3,x2=-1.学业水平达标1.【解析】依据算法的多样性(不唯一性)知①错误;由算法的有限性,确定性知②④正确;因为x2-x>2仅仅是一个数学问题,不能表达一个算法,所以③是错误的;由于算法具有可执行性,正确的有②④.【答案】B2.【解析】明确各步骤间的关系即可知D选项正确.【答案】D3.【解析】根据算法的含义和特征知:①②③都是算法;④⑤不是算法.其中④,3x>x+1不是一个明确的步骤,不符合确定性;⑤的步骤是无穷的,与算法的有限性矛盾.【答案】B4.【解析】对于D,S=1+2+3+…,不知道需要多少步完成,所以不能设计一个算法求解.【答案】D。
1.1.1 算法的概念教学目标1.通过几个具体问题的求解过程,体会算法的基本思想.2.了解算法的含义和特征.3.会用自然语言描述简单的具体问题的算法.教学过程知识点一算法的概念思考有一碗酱油,一碗醋和一个空碗.现要把两碗盛的物品交换一下,试用自然语言表述你的操作方法.【答案】先把醋倒入空碗,再把酱油倒入原来盛醋的碗,最后把倒入空碗中的醋倒入原来盛酱油的碗,就完成了交换.梳理一般地,算法是解决某类问题的一系列步骤或程序,只要按照这些步骤执行,都能使问题得到解决.一般来说,“用算法解决问题”都是可以利用计算机帮助完成的.同一个问题可能存在多种算法,一个算法也可以解决某一类问题.知识点二算法的特点思考设想一下电脑程序需要计算无限多步,会怎么样?【答案】若有无限步,必将陷入死循环,解决不了问题.故算法必须在有限步内解决问题.梳理算法的特点(1)有限性一个算法应包括有限的操作步骤,能在执行有限的操作步骤之后结束.(2)确定性算法的计算规则及相应的计算步骤必须是唯一确定的.(3)可行性算法中的每一个步骤都是可以在有限的时间内完成的基本操作,并能得到确定的结果.题型探究类型一算法的概念例1(1)下列对算法的理解正确的是________.(填上所有正确说法的序号)①算法有一个共同特点就是对一类问题都有效(而不是个别问题);②算法要求是一步步执行,每一步都能得到唯一的结果;③算法一般是机械的,有时要进行大量重复计算,它的优点是一种通法;④任何问题都可以用算法来解决.【答案】①②③【解析】由于算法要求必须在有限步骤内求解某类问题,所以并不是任何问题都可以用算法解决,例如求1+12+13+14+ (1)+…,故④不正确. (2)给出下列叙述:①发电子邮件:先打开电子信箱,点击写邮件,输入发送地址,输入信件内容,然后点击发送;②解一元二次方程的步骤是去分母、去括号、移项、合并同类项,求解;③方程x 2-1=0有两个根;④求1+2+3+4的值,先算1+2=3,再计算3+3=6,6+4=10,最终结果为10. 其中是算法的是________.(写出所有是算法的序号)【答案】①②④【解析】算法强调的是解决一类问题的方法和步骤,③只陈述了有两个根的事实,没有解决如何求两个根的问题,所以不能看成算法.反思与感悟 判断算法的关注点(1)明确算法的含义及算法的特征.(2)判断一个问题是否有算法,关键看是否有解决某一类问题的程序或步骤,这些程序或步骤必须是明确和有效的,而且能够在有限步骤之内完成.(3)算法实际上是一种程序方法,在利用算法解决问题时,体现了特殊与一般的数学思想. 跟踪训练1 给出以下叙述:①过河要走桥;②老师提问说不会;③做米饭需刷锅、淘米、添水、加热这些步骤;④学习要预习、听讲、质疑、练习巩固等步骤.其中能称为算法的是( )A .①②B .②③C .③④D .①④【答案】C【解析】①②不能称为算法,根据算法的含义知③④正确.类型二 算法设计例2 设计一个算法,求840与1 764的最大公因数.解 算法步骤如下:1.先将840进行素因数分解:840=23×3×5×7;2.然后将1 764进行素因数分解:1 764=22×32×72;3.确定它们的公共素因数:2,3,7;4.确定公共素因数的指数:公共素因数2,3,7的指数分别为2,1,1;5.最大公因数为22×31×71=84.反思与感悟 设计一个具体问题的算法,通常按以下步骤:(1)认真分析问题,找出解决此题的一般数学方法.(2)借助有关变量或参数对算法加以表述.(3)将解决问题的过程划分为若干步骤.(4)用简练的语言将这个步骤表示出来.跟踪训练2 设计一个算法,求98与63的最大公因数.解 算法步骤如下:1.先将98进行素因数分解:98=2×72;2.然后将63进行素因数分解:63=32×7;3.确定它们的公共素因数:7;4.确定公共素因数的指数:公共素因数的指数是1;5.最大公因数为7.类型三 选择性执行问题的算法例3 某铁路部门规定甲、乙两地之间旅客托运行李的费用c =⎩⎪⎨⎪⎧0.53×ω,ω≤50,50×0.53+(ω-50)×0.85,ω>50,其中ω(单位:kg)为行李的质量, 如何设计计算托运费用c (单位:元)的算法.解 算法步骤如下:1.输入行李的质量ω;2.如果ω≤50,则令c =0.53×ω后执行第4步,否则执行第3步;3.c =50×0.53+(ω-50)×0.85;4.输出托运费用c .反思与感悟 解决选择性问题的算法的步骤(1)输入自变量的值;(2)对自变量的范围进行判断,选择对应的解析式,求函数值;(3)输出函数值.跟踪训练3 已知函数y =⎩⎪⎨⎪⎧ -x +1,x >0,0,x =0,x +1,x <0,写出给定自变量x 求函数值的一个算法.解 算法步骤如下:1.输入x ;2.若x >0,则令y =-x +1后执行第5步,否则执行第3步;3.若x =0,则令y =0后执行第5步,否则执行第4步;4.令y =x +1;5.输出y 的值.当堂检测1.下列关于算法的说法,正确的个数为( )①求解某一类问题的算法是唯一的;②算法必须在有限步操作之后停止;③算法的每一步操作必须是明确的,不能有歧义或模糊;④算法执行后一定产生确定的结果.A .1B .2C .3D .4【答案】C【解析】由于算法具有有穷性、确定性、输出性等特点,所以②③④正确,而解决某类问题的算法不一定唯一,所以①错误.2.下列四种自然语言叙述中,能称为算法的是( )A .在家里一般是妈妈做饭B .买衣服需要选衣服、试衣服、试衣服、付款这些步骤C .在野外做饭叫野炊D .做饭必须要有米【答案】B【解析】算法是做一件事情或解决一个问题等的程序或步骤,故选B.3.已知一个算法:(1)给出三个数x ,y ,z ;(2)计算M =x +y +z ;(3)计算N =13M ; (4)得出每次计算的结果.则上述算法是( )A .求和B .求余数C .求平均数D .先求和再求平均数【答案】D【解析】由算法过程可知,M 为三数之和,N 为这三数的平均数,故选D.4.看下面的四段话,其中不是解决问题的算法是________.(1)从济南到北京旅游,先坐火车,再坐飞机抵达;(2)解一元一次方程的步骤是去分母、去括号、移项、合并同类项、系数化为1;(3)方程x2-1=0有两个实根;(4)求1+2+3+4+5的值,先计算1+2=3,再计算3+3=6,6+4=10,10+5=15,最终结果为15.【答案】(3)【解析】由于(3)不是解决某一类问题的步骤,故(3)不是解决问题的算法.5.已知直角三角形两直角边长为a,b,求斜边长c的一个算法分下列三步:(1)计算c=a2+b2;(2)输入直角三角形两直角边长a,b的值;(3)输出斜边长c的值.其中正确的顺序是________.【答案】(2)(1)(3)【解析】算法的步骤是有先后顺序的,第一步是输入,最后一步是输出,中间的步骤是赋值、计算.当堂检测算法是建立在解法基础上的操作过程,算法不一定要有运算结果,答案可以由计算机解决,算法没有一个固定的模式,但有以下几个基本要求:(1)符合运算规则,计算机能操作;(2)每个步骤都有一个明确的计算任务;(3)对重复操作步骤返回处理;(4)步骤个数尽可能少;(5)每个步骤的语言描述要准确、简明.。
1.1.1 算法的概念教学目标 1.通过几个具体问题的求解过程,体会算法的基本思想(重点).2.了解算法的概念和特征(重点).3.会用自然语言描述简单的具体问题的算法(重、难点).教学过程知识点1算法的概念及特征1.算法的概念在解决某些问题时,需要设计出一系列可操作的或可计算的步骤,通过实施这些步骤来解决问题,通常把这些步骤称为解决这些问题的算法.2.算法的特征(1)有限性:一个算法的步骤序列是有限的,必须在有限的操作之后停止,不能是无限的.(2)确定性:算法中的每一步应该是确定的,并且能有效地执行且得到确定的结果,而不应当模棱两可.(3)顺序性与正确性:算法从初始步骤开始,分为若干明确的步骤,每一个步骤只能有一个确定的后续步骤,前一步是后一步的前提,只有执行完前一步才能进行下一步,并且每一步都准确无误,才能完成问题.(4)不唯一性:求解某一问题的解法不一定是唯一的,对于同一个问题可以有不同的算法.(5)普遍性:很多具体的问题,都可以设计合理的算法去解决,如心算、计算器计算都要经过有限、事先设计好的步骤加以解决.3.算法与计算机计算机解决任何问题都要依赖于算法.只有将解决问题的过程分解为若干个明确的步骤,即算法,并用计算机能够接受的“语言”准确地描述出来,计算机才能够解决问题.教学小测下列关于算法的说法(正确的打√,错误的打×)(1)求解某一类问题的算法是唯一的()(2)算法必须在有限步操作之后停止()(3)算法的每一步操作必须是明确的,不能有歧义或模糊()(4)算法执行后一定产生确定的结果()提示由于算法具有有限性、确定性等特点,因而(2)(3)(4)正确,而解决某类问题的算法不一定唯一,从而(1)错.【答案】 (1)× (2)√ (3)√ (4)√知识点2 算法的设计1.设计算法的目的设计算法的目的实际上是寻求一类问题的算法,它可以通过计算机来完成.设计算法的关键是把过程分解成若干个明确的步骤,然后用计算机能够接受的“语言”准确地描述出来,从而达到让计算机执行的目的.2.设计算法的要求(1)写出的算法必须能解决一类问题.(2)要使算法尽量简单、步骤尽量少.(3)要保证算法步骤有效,且计算机能够执行.教学评价写出一个算法,求任意给出的a ,b ,c ,d 这4个数的平均数.提示 第一步,输入a ,b ,c ,d 这4个数的值.第二步,计算S =a +b +c +d .第三步,计算V =S 4. 第四步,输出V 的值.课堂互动题型一 算法的概念【例1】下列说法中是算法的有________(填序号).①从上海到拉萨旅游,先坐飞机,再坐客车;②解一元一次不等式的步骤是去分母、去括号、移项、合并同类项,系数化为1;③求以A (1,1),B (-1,-2)两点为端点的线段AB 的中垂线方程,可先求出AB 中点坐标,再求k AB 及中垂线的斜率,最后用点斜式方程求得线段AB 的中垂线方程;④求1×2×3×4的值,先计算1×2=2,再计算2×3=6,6×4=24,得最终结果为24; ⑤12x >2x +4. 【解析】①说明了从上海到拉萨的行程安排.②给出了解一元一次不等式这类问题的解法.③给出了求线段的中垂线的方法及步骤.④给出了求1×2×3×4的值的过程并得出结果.故①②③④都是算法.【答案】①②③④规律方法算法实际上是解决问题的一种程序性方法,它通常解决某一个或某一类问题,在用算法解决问题时,体现了特殊与一般的数学思想.【训练1】算法的有穷性是指()A.算法必须包含输出B.算法中的每个步骤都是可执行的C.算法的步骤必须有限且在执行有限步操作后结束D.以上说法都不正确【解析】算法的有穷性是指算法应包括有限的操作步骤,并在有限步内结束.不能步骤无穷,执行时也不能不结束执行步骤.故选C.【答案】C题型二算法的设计【例2】所谓正整数p为素数是指:p的所有约数只有1和p.例如,35不是素数,因为35的约数除了1和35外,还有5与7;29是素数,因为29的约数就只有1和29.试设计一个能够判断一个任意正整数n(n>1)是否为素数的算法.解算法如下:第一步,给出任意一个正整数n(n>1).第二步,若n=2,则输出“2是素数”,判断结束.第三步,令m=1.第四步,将m的值增加1,仍用m表示.第五步,如果m≥n,则输出“n是素数”,判断结束.第六步,判断m能否整除n,①如果能整除,则输出“n不是素数”,判断结束;②如果不能整除,则转第四步.规律方法设计一个具体问题的算法,通常按以下步骤:(1)认真分析问题,找出解决该问题的一般数学方法;(2)借助有关变量或参数对算法加以表述;(3)将解决问题的过程划分为若干步骤;(4)用简练的语言将这个步骤表示出来.【训练2】判断一个大于2的整数是否为质数的算法步骤如何设计?解第一步,给定大于2的整数n.第二步,令i=2.第三步,用i除n,得到余数r.第四步,判断“r=0”是否成立.若是,则n不是质数,结束算法;否则,将i的值增加1,仍用i表示.第五步,判断“i>n-1”是否成立.若是,则n是质数,结束算法;否则,返回第三步.题型三算法的应用【探究1】一位商人有9枚银元,其中有1枚略轻的是假银元,你能用天平(无砝码)将假银元找出来吗?解方法一算法如下.第一步,任取2枚银元分别放在天平的两边,若天平左、右不平衡,则轻的一枚就是假银元,若天平平衡,则进行第二步.第二步,取下右边的银元放在一边,然后把剩下的7枚银元依次放在右边进行称量,直到天平不平衡,偏轻的那一枚就是假银元.方法二算法如下.第一步,把9枚银元平均分成3组,每组3枚.第二步,先将其中两组放在天平的两边,若天平不平衡,则假银元就在轻的那一组;否则假银元在未称量的那一组.第三步,取出含假银元的那一组,从中任取2枚银元放在天平左、右两边称量,若天平不平衡,则假银元在轻的那一边;若天平平衡,则未称量的那一枚是假银元.【探究2】在银行的自动柜员机上取款,要经过插卡、输入密码、操作、取钱、拔卡一系列的过程,请设计一个算法完成这件事.解第一步,将银行卡插入自动柜员机.第二步,输入银行卡的密码.第三步,选择“取款”,并输入所取钱数.第四步,从出款口取钱.第五步,取出银行卡.【探究3】“韩信点兵”问题:韩信是汉高祖手下的大将,他英勇善战,谋略超群,为汉朝的建立立下了不朽功勋.据说他在一次点兵的时候,为保住军事秘密,不让敌人知道自己部队的军事实力,采用下述点兵方法:①先令士兵从1~3报数,结果最后一个士兵报2;②又令士兵从1~5报数,结果最后一个士兵报3;③又令士兵从1~7报数,结果最后一个士兵报4.这样韩信很快算出自己部队里士兵的总数.请设计一个算法,求出士兵至少有多少人. 解第一步,首先确定最小的满足除以3余2的正整数:2;第二步,依次加3就得到所有除以3余2的正整数:2,5,8,11,14,17,20,…第三步,在上列数中确定最小的满足除以5余3的正整数:8.第四步,然后在自然数内,在8的基础上依次加上15的倍数,得到8,23,38,53,….第五步,在上列数中确定最小的满足除以7余4的正整数应为53.规律方法对于查找、变量代换、文字处理等非数值型计算问题,设计算法时,首先建立过程模型,然后根据过程设计步骤,完成算法.课堂达标1.下列四种自然语言叙述中,能称为算法的是()A.在家里一般是妈妈做饭B.做米饭需要刷锅、淘米、添水、加热这些步骤C.在野外做饭叫野炊D.做饭必须要有米【解析】算法是做一件事情或解决一个问题的程序或步骤,故选B.【答案】B2.在用二分法求方程零点的算法中,下列说法正确的是()A.这个算法可以求所有的零点B.这个算法可以求任何方程的零点C.这个算法能求所有零点的近似解D.这个算法可以求变号零点近似解【解析】二分法的理论依据是函数的零点存在定理.它解决的是求变号零点的问题,并不能求所有零点的近似值.【答案】D3.已知直角三角形两直角边长为a ,b ,求斜边长c 的一个算法分下列三步:①计算c =a 2+b 2;②输入直角三角形两直角边长a ,b 的值;③输出斜边长c 的值.其中正确的顺序是________.【解析】算法的步骤是有先后顺序的,第一步是输入,最后一步是输出,中间的步骤是赋值、计算.【答案】②①③4.下面是解决一个问题的算法:第一步:输入x .第二步:若x ≥4,转到第三步;否则转到第四步.第三步:输出2x -1.第四步:输出x 2-2x +3.当输入x 的值为________时,输出的数值最小值为________.【解析】所给算法解决的问题是求分段函数f (x )=⎩⎪⎨⎪⎧2x -1 (x ≥4),x 2-2x +3(x <4)的函数值问题,当x ≥4时,f (x )=2x -1≥2×4-1=7;当x <4时,f (x )=x 2-2x +3=(x -1)2+2≥2,所以f (x )min =2,此时x =1.即输入x 的值为1时,输出的数值最小,最小值为2.【答案】1 25.写出解方程x 2-2x -3=0的两种以上的算法.解 方法一 第一步:将方程左边因式分解,得(x -3)(x +1)=0;①第二步:由①得x -3=0,②或x +1=0;③第三步:解②得x =3,解③得x =-1.方法二 第一步:移项,得x 2-2x =3;①第二步:①两边同加1并配方,得(x -1)2=4;②第三步:②式两边开方,得x -1=±2;③第四步:解③得x =3或x =-1.方法三 第一步:计算方程的判别式判断其符号Δ=22+4×3=16>0;第二步:将a =1,b =-2,c =-3,代入求根公式x =-b ±b 2-4ac 2a,得x 1=3,x 2=-1. 课堂小结1.算法的特点:有限性、确定性、顺序性与正确性、不唯一性、普遍性.2.算法设计的要求:(1)写出的算法必须能够解决一类问题,并且能够重复使用.(2)要使算法尽量简单,步骤尽量少.(3)要保证算法正确,且算法步骤能够一步一步执行,在有限步后能得到结果.。
1.1.1算法的概念学习目标:知识与技能1.了解算法的概念,体会算法的思想2.能够用自然语言叙述算法3.会写出解二元一次方程(组)的算法过程与方法:通过求解二元一次方程组,体会解方程的一般性步骤,这些步骤就是算法,不同的问题有不同的算法,同一个问题也可能有多个算法。
情感、态度与价值观了解计算机的算法语言,认识到计算机是人类征服自然的一个有力工具,进一步提高探索,认识世界的能力。
教学过程:1.算法是指2.算法具有、、、、等特点。
思考:1.什么叫质数,4是质数吗?5呢?2.任意给定一个正实数a,设计一个算法求以这个数为半径的圆的面积。
3.判断真假:①求解某一类问题的算法是唯一的。
②算法必须在有限步骤之后停止。
③算法的每一步操作必须是明确的,不能有歧义或摸糊。
④算法执行后一定产生确定的结果。
典例剖析:例1.设计一个算法,判断7是否为质数2.对于任意的整数(n>2),判断n是否为质数3.任意给定一个大于K的正整数n,设计一个算法求出n的所有因数。
第一步:依次以2~(n-1)为除数去除n,检查余数是否为0,若是,则是n的因数,若不是,则不是n 的因数。
第二步:在n 的因数中加入1和n 。
第三步:输出n 的所有因数。
【自我感悟】设计算法要求:1.写出的算法必须能解决一类问题,并能够重复使用2.要使算法尽量简单,步骤尽量少3.要保证算法正确且计算机能够执行例2:用二分法设计一个求方程x 2-2=0(x >0)的近似解的算法 分析:该算法实质是求2的近似值的一个最基本的方法。
学生分组讨论探究并独立在练习本上完成。
巩固练习:(P 5练习)1.计算下列各式中的S 值,能设计算法求解的是()①S =1+2+3+……+100 ②S =1+2+3+……+100+……③S =1+2+3+……+n (n ≥1,且n ∈N )A .①②B .①③C .②③D .①②③2.某一计算机程序的工作步骤如下:第一步:输入数据n第二步:变量A 与k 的初始值为21-=A ,k =1 第三步:若k <n 执行第四步,若k =n 执行第七步 第四步:执行运算A11-=B 第五步:将B 的值给A第六步:将k +1的值赋给k 后执行第三步第七步:输出A若输入n =6,则计算机将输出A =3.设计一个算法:输入一个自变量x 的值,求分段函数⎩⎨⎧≥+=0022<,,)(x x x x x f 的函数值。
必修3第一章 算法初步1.1.1 算法的概念(学案)学案设计:绵阳市开元中学 王小凤老师 学生姓名【学习目标】1.正确理解算法的概念,掌握算法的基本特点; 2.通过例题学习,体会设计算法的基本思路;3.通过有趣的实例了解算法这一概念,激发学习数学的兴趣. 【学习重点】算法的含义及应用.【学习难点】写出解决一类问题的算法. 【学习过程】 一.导入新课思路1(情境导入)大家都看过2000年春晚赵本山与宋丹丹演的小品《钟点工》吧,宋丹丹说了一个笑话:“把大象装进冰箱总共分几步?”答案:第一步:把冰箱门打开; 第二步:把大象装进去; 第三步:把冰箱门关上.上述步骤构成了把大象装进冰箱的算法. 思路2(直接导入)算法不仅是数学及其应用的重要组成部分,也是计算机科学的重要基础.学习算法的应用,目的就是利用已有的数学知识分析问题和解决问题。
在现代社会里,计算机已成为人们日常生活和工作中不可缺少的工具.听音乐、看电影、玩游戏、打字、画卡通画、处理数据等,计算机是怎样工作的呢?要想弄清楚这个问题,算法的学习是一个开始. 二.学习过程 (一)实例探究用加减消元法.....解二元一次方程组⎩⎨⎧=+-=-)2(,12)1(,12y x y x 的步骤: 第一步,①+②⨯2,得 .③ 第二步,解③,得 . 第三步,②﹣①⨯2,得 .④ 第四步,解④,得 .第五步,得到方程组的解为【归纳总结】利用加减消元法.....,对于一般的二元一次方程组⎩⎨⎧=+=+)2(,)1(,222111c y b x a c y b x a (其中01221≠-b a b a ),可以写出类似的求解步骤:第一步,①×b 2﹣②×b 1,得 .③ 第二步,解③,得=x .第三步,②×1a ﹣①×2a ,得 .④ 第四步,解④,得=y .第五步,得到方程组的解为⎪⎪⎩⎪⎪⎨⎧--=--=.,1221122112212112b a b a c a c a y b a b a c b c b x (二)概念理解 【定义】算法的定义:广义的算法是指完成某项工作的方法和步骤,那么我们可以说洗衣机的使用说明书是操作洗衣机的算法,菜谱是做菜的算法等等.在数学中,算法通常是指按照 解决某一类问题的 和 的步骤. 【理解】1. 算法的特征:①确定性:算法的每一步都应当做到准确无误、不重不漏. “不重”是指不是可有可无的,甚至无用的步骤,“不漏” 是指缺少哪一步都无法完成任务.②逻辑性:算法从开始的“第一步”直到“最后一步”之间做到环环相扣,分工明确,“前一步”是“后一步”的前提, “后一步”是“前一步”的继续.③有穷性:算法要有明确的开始和结束,当到达终止步骤时所要解决的问题必须有明确的结果,也就是说必须在有限步内完成任务,不能无限制地持续进行.2.在解决某些问题时,需要设计出一系列可操作或可计算的步骤来解决问题,这些步骤称为解决这些问题的算法.也就是说,算法实际上就是解决问题的一种程序性方法.算法一般是机械的,有时需进行大量重复的计算,它的优点是一种通法,只要按部就班地去做,总能得到结果.因此算法是计算科学的重要基础.(三)应用示例例1 (1)设计一个算法,判断7是否为质数.(2)设计一个算法,判断35是否为质数.算法分析:(1)根据质数的定义,可以这样判断:依次用2—6除7,如果它们中有一个能整除7,则7不是质数,否则7是质数. 算法如下:(1)第一步,用2除7,得到余数 .因为余数不为0,所以2不能整除7.第二步, 第三步,用4除7,得到余数 .因为余数不为0,所以4不能整除7. 第四步,用5除7,得到余数2.因为余数不为0,所以5不能整除7.第五步, 因此,7是质数.(2)类似地,可写出“判断35是否为质数”的算法:第一步,用2除35,得到余数1.因为余数不为0,所以2不能整除35. 第二步,用3除35,得到余数2.因为余数不为0,所以3不能整除35. 第三步,用4除35,得到余数3.因为余数不为0,所以4不能整除35.第四步, 因此,35不是质数.思考:用上述算法判断1997是否为质数,能否可行?【变式训练】写出判断)2(>n n 是否为质数的算法.分析:对于任意的整数)2(>n n ,若用i 表示2~()1-n 中的任意整数,则“判断n 是否为质数”的算法包含下面的重复操作:用i 除n ,得到余数r .判断余数r 是否为0,若是,则不是质数;否则,将i 的值增加1,再执行同样的操作. 这个操作一直要进行到i 的值等于()1-n 为止. 算法如下:第一步,给定大于2的整数n .第二步,令2=i第三步,第四步,判断“0=r ”是否成立.若是,则 ,结束算法;否则, ,仍用i 表示.第五步,判断“()1->n i ”是否成立. 若是,则n 是质数,结束算法;否则,返回第三步. 例2 见教材4P (四)课堂练习 教材5P 练习 第1,2题 (五)课后拓展例 一个人带着三只狼和三只羚羊过河,只有一条船,同船可容纳一个人和两只动物,没有人在的时候,如果狼的数量不少于羚羊的数量就会吃羚羊.该人如何将动物转移过河?请设计算法.分析:任何动物同船不用考虑动物的争斗但需考虑承载的数量,还应考虑到两岸的动物都得保证狼的数量要小于羚羊的数量,故在算法的构造过程中尽可能保证船里面有狼,这样才能使得两岸的羚羊数量占到优势. 解:具体算法如下: 算法步骤:第一步:人带两只狼过河,并自己返回. 第二步: 第三步: 第四步: 第五步: 第六步:第七步: (备注:所需步骤数目不定)。
1.1.1算法的概念学习目标:1.通过回顾解二元一次方程组的方法,了解算法的思想.(重点)2.了解算法的含义和特征.(重点)3.算法特征的使用,及算法的设计.(难点)[自主预习·探新知]一、算法的概念算法的概念由及规定的所构成的完整的解题步骤,或者看成按照要求设计好的的的计算序列,并且这样的步骤或序列能够描述算法的方式可以用和加以叙述,也可以借助形式语言(算法语言)给出精确的说明,也可以用直观地显示算法的全貌思考:某笑话有这样一个问题:把大象装进冰箱总共分几步?答案是分三步.第一步:把冰箱门打开;第二步:把大象装进去;第三步:把冰箱门关上.这是一个算法吗?[提示]符合算法概念,是算法.二、算法的要求1.写出的算法,必须能并且能.2.算法过程要能,每一步执行的操作,必须,不能含混不清,而且经过能得出结果.思考:根据算法的要求,你能简要地概括一下算法有哪些特征吗?[基础自测]1.思考辨析(1)一个算法可解决某一类问题.()(2)算法的步骤是有限的,有些步骤可有可无.()(3)同一个问题可以有不同的算法.()2.下列可以看成算法的是()A.学习数学时,课前预习,课上认真听讲并记好笔记,课下先复习再做作业,之后做适当的练习题B.今天餐厅的饭真好吃C.这道数学题很难做D.方程2x2-x+1=0无实数根3.算法的有限性是指()A.算法必须包含输出B.算法中每个操作步骤都是可执行的C.算法的步骤必须有限D.以上说法均不正确4.以下有六个步骤:①拨号;②等拨号音;③提起话筒(或免提功能);④开始通话或挂机(线路不通);⑤等复话方信号;⑥结束通话.写出一个打本地电话的算法________(只写序号).[合作探究·攻重难]类型1 算法的概念例1(1)下列描述不能看作算法的是()A.解一元一次方程的步骤是去分母,去括号,移项,合并同类项,系数化为1B.洗衣机的使用说明书C.解方程2x2+x-1=0D.利用公式S=πr2计算半径为4的圆的面积,就是计算π×42(2)下列关于算法的说法:①求解某一类问题的算法是唯一的;②算法的每一步操作必须是明确的,不能有歧义或模糊;③算法执行后一定产生明确的结果.其中正确的个数有()A.1个B.2个C.3个D.0个[规律方法]1.算法实际上是解决问题的一种程序性方法,它通常解决某一个或一类问题,在用算法解决问题时,显然体现了特殊与一般的数学思想.2.算法的特点有:①有限性,②确定性,③顺序性和正确性,④不唯一性,⑤普遍性.解答有关算法的概念判断题应根据算法的这五大特点进行判断.[跟踪训练]1.下列叙述中,①植树需要运苗、挖坑、栽苗、浇水这些步骤;②按顺序进行下列运算:1+1=2,2+1=3,3+1=4,…,99+1=100;③从青岛乘动车到济南,再从济南乘飞机到南京;④3x>x+1;⑤求所有能被3整除的正数,即3,6,9,12,….能称为算法的有________.(填序号)类型2 算法的设计[探究问题]1.算法与一般意义上具体问题的解法的区别与联系是什么?2.任何问题都可以设计算法解决吗?3.一个具体问题的算法是不是唯一的?如何评价一个算法的好坏?例2设计一个算法,判断大于2的整数是否为质数.[规律方法]设计一个具体问题的算法,通常按以下步骤:1.认真分析问题,找出解决此题的一般数学方法;2.借助有关变量或参数对算法加以表述;3.将解决问题的过程划分为若干步骤;4.用简练的语言将这个步骤表示出来.[跟踪训练]2.两个大人和两个小孩一起渡河,渡口只有一条小船,每次只能渡一个大人或两个小孩,他们四人都会划船,但都不会游泳.同学们现在想一想,他们怎样渡过河去?请写一写你的渡河方案.类型3 算法的应用例3下面给出一个问题的算法:第一步,输入x.第二步,若x≥4,则输出2x-1,算法结束;否则执行第三步.第三步,输出x2-3x+5.(1)这个算法解决的问题是什么?(2)当输入x的值为1时,输出的结果为多少?[规律方法]给出一个算法,其功能往往并不显而易见,这时我们可以结合具体数值去执行一下,进而总结其算法功能,还可以用此算法解决同类问题.[跟踪训练]3.下面算法要解决的问题是________.S1输入三个数,并分别用a、b、c表示.S2比较a与b的大小,如果a<b,则交换a与b的值.S3比较a与c的大小,如果a<c,则交换a与c的值.S4比较b与c的大小,如果b<c,则交换b与c的值.S5输出a、b、c.[当堂达标·固双基]1.算法的每一步都应该是确定的、能有效执行的,并且得到确定的结果,这里指算法的() A.有穷性B.确定性C.逻辑性D.不唯一性2.结合下面的算法:S1输入x.S2判断x是否小于0.若是,则输出x+2,否则执行第三步.S3输出x-1.当输入的x的值为-1,0,1时,输出的结果分别为()A.-1,0,1 B.-1,1,0C.1,-1,0 D.0,-1,13.输入一个x值,利用y=|x+1|求函数值的算法如下,请将所缺部分补充完整:S1输入x;S2________;S3计算y=-x-1;S4输出y.4.已知长方体的长、宽、高分别为a、b、c,写出求对角线长l的算法如下:S1输入长、宽、高即a,b,c的值.S2计算l=a2+b2+c2的值.S3________.将算法补充完整,横线处应填________.5.设计一个算法,求表面积为16π的球的体积.参考答案[自主预习·探新知]一、算法的概念算法的概念基本运算运算顺序有限确切解决一类问题描述算法的自然语言数学语言框图方式思考:[提示]符合算法概念,是算法.二、算法的要求1.解决一类问题重复使用.2.一步一步执行确切有限步后思考:[提示]有限性、确定性、逻辑性、普遍性、不唯一性.[基础自测]1.思考辨析【解析】(1)√根据算法的概念可知.(2)×算法的步骤是有限的,也是明确的,不能可有可无.(3)√例如二元一次方程组的算法,可用“加减消元法”,也可用“代入消元法”.【答案】(1)√(2)×(3)√2.【答案】A【解析】A是学习数学的一个步骤,所以是算法.3.【答案】C4.【答案】③②①⑤④⑥【解析】结合打电话的流程,顺序应为③②①⑤④⑥.[合作探究·攻重难]类型1 算法的概念例1【答案】(1)C(2)B【解析】(1)A,B,D都描述了解决问题的过程,可以看作算法,而C只描述了一个事实,没说明怎么解决问题,不是算法.(2)根据算法的特征可以知道,算法要有明确的开始与结束,每一步操作都必须是明确而有效的,必须在有限步内得到明确的结果,所以②③正确.而解决某一类问题的算法不一定是唯一的,故①错误.[规律方法]1.算法实际上是解决问题的一种程序性方法,它通常解决某一个或一类问题,在用算法解决问题时,显然体现了特殊与一般的数学思想.2.算法的特点有:①有限性,②确定性,③顺序性和正确性,④不唯一性,⑤普遍性.解答有关算法的概念判断题应根据算法的这五大特点进行判断.[跟踪训练]1.【答案】①②③【解析】根据算法的含义和特征:①②③都是算法;④⑤不是算法.其中④,3x>x+1不是一个明确的步骤,不符合确定性;⑤的步骤是无穷的,与算法的有限性矛盾.类型2 算法的设计[探究问题]1.[提示]它们之间是一般与特殊的关系,要设计出解决某一类问题的算法,可以借助于此类问题中的某一个问题的解决过程和思路进行设计,且此类问题中的任何一个具体问题都可以利用这类问题的算法来解决.2.[提示]不是.只有能按照一定规则解决的、明确的、有限的操作步骤的问题才可以设计算法来解决.3.[提示]解决一个问题的算法可以有多个,其中结构简单,步骤少、速度快的算法是好算法.例2 [思路探究]由于大于2的整数有无数个,但对于每一个数的判断方法是相同的,故应设计一个可以循环的步骤.[解]S1给定一个大于2的整数n.S2令i=2.S3用i除n,得到余数r.S4判断“r=0”是否成立.若是,则n不是质数,结束算法;否则,将i的值增加1,仍用i表示.S5判断“i>n-1”是否成立.若是,则n是质数,结束算法;否则,返回S3.[规律方法]设计一个具体问题的算法,通常按以下步骤:1.认真分析问题,找出解决此题的一般数学方法;2.借助有关变量或参数对算法加以表述;3.将解决问题的过程划分为若干步骤;4.用简练的语言将这个步骤表示出来.[跟踪训练]2.[解]因为一次只能渡过一个大人,而船还要回来渡其他人,所以只能让两个小孩先过河,渡河的方法与步骤为:第一步,两个小孩子同船渡过河;第二步,一个小孩划船回来;第三步,一个大人独自划船渡过河;第四步,对岸的小孩划船回来;第五步,两个小孩再同船划船渡过河去;第六步,一个小孩划船回来;第七步,余下的一个大人独自划船渡过河;第八步,对岸的小孩划船回来;第九步,两个小孩再同船划船渡过河去.类型3 算法的应用例3 [解](1)这个算法是求分段函数f (x )=⎩⎪⎨⎪⎧2x -1,x ≥4x 2-3x +5,x <4的函数值. (2)x =1<4,则f (1)=12-3×1+5=3.故当x 输入1时,输出的结果为3. [规律方法] 给出一个算法,其功能往往并不显而易见,这时我们可以结合具体数值去执行一下,进而总结其算法功能,还可以用此算法解决同类问题.[跟踪训练]3.【答案】输入三个数a ,b ,c ,并按从大到小的顺序输出【解析】第一步是给a 、b 、c 赋值.第二步运行后a >b .第三步运行后a >c .第四步运行后b >c ,所以a >b >c .第五步运行后,显示a 、b 、c 的值,且从大到小排列.[当 堂 达 标·固 双 基]1.【答案】B【解析】算法的过程和每一步的结果都是确定的,即确定性.2.【答案】C【解析】根据x 值与0的关系,选择执行不同的步骤.当x =-1时,输出x +2,即输出1;当x =0时,输出x -1,即输出-1;当x =1时,输出x -1,即输出0.3.【答案】当x ≥-1时,计算y =x +1,否则执行S3【解析】含绝对值的函数的函数值的算法要注意分类讨论思想的应用,本题中当x ≥-1时y =x +1;当x <-1时y =-x -1,由此可完善算法.4.【答案】输出对角线长l 的值【解析】算法要有输出,故第三步应为输出结果l 的值.5.[解] 法一:S1 取S =16π.S2 计算R =S 4π(由于S =4πR 2). S3 计算V =43πR 3. S4 输出运算结果.法二:S1 取S =16π.S2 计算V =43π⎝⎛⎭⎫S 4π3.S3输出运算结果.。
1.1.1算法的概念【自主预习】1.算法的概念思考:解决一个问题的算法是唯一的吗?2.算法的特征(1)有限性:一个算法的步骤是的,它应在有限步骤操作之后停止.(2)确定性:算法中的每一步应该是的,并且能有效地执行且得到确定的结果,而不是模棱两可的.(3)逻辑性:算法从初始步骤开始,分为若干个明确的步骤,前一步是后一步的前提,只有完成前一步,才能进行下一步,而且每一步都是正确无误的,从而组成具有很强逻辑性的.(4)普遍性:一个确定的算法,应该能够解决一类问题.(5)不唯一性:求解某一个问题的算法不一定只有唯一的一个,也可以有不同的算法.3.算法的设计目的计算机解决任何问题都要依赖于算法,只有将解决问题的过程分解为若干个,即,并用计算机能够接受的准确地描述出来,计算机才能够解决问题.【基础自测】1.下列可以看成算法的是()A.学习数学时,课前预习,课上认真听讲并记好笔记,课下先复习再做作业,之后做适当的练习题B .今天餐厅的饭真好吃C .这道数学题难做D .方程2x 2-x +1=0无实数根2.下列对算法的理解不正确的是( )A .算法可以无止境地运行下去B .算法的步骤是不可逆的C .同一个问题可以有不同的算法D .算法中的每一步都应当有效地执行,并得到确定的结果3.下列问题中,不可以设计一个算法求解的是( )A .二分法求方程x 2-3=0的近似解B .解方程组⎩⎪⎨⎪⎧x +y +5=0x -y +3=0 C .求半径为3的圆的面积D .判断函数y =x 2在R 上的单调性4.下面是某人出家门先打车去火车站,再坐火车去北京的一个算法,请补充完整. 第一步,出家门.第二步,______________.第三步,坐火车去北京.【合作探究】【例1】 计算下列各式中S 的值,能设计算法求解的是( ) ①S =12+14+18+…+12100; ②S =12+14+18+…+12100+…; ③S =12+14+18+…+12n (n ≥1且n ∈N *). A .①② B .①③ C .②③ D .①②③【规律方法】解答这类问题的方法为特征判断法主要从以下三个方面判断:(1)看是否满足可执行性;(2)看是否满足确定性;(3)看是否满足有限性.此外,算法的不唯一性也要考虑到.【跟踪训练】1.下列描述不能看作算法的是( )A .做米饭需要刷锅,淘米,添水,加热这些步骤B .洗衣机的使用说明书C .解方程2x 2+x -1=0D .利用公式S =πr 2计算半径为4的圆的面积,就是计算π×42【例2】 下面给出了一个问题的算法:第一步,输入三个数,并分别用a ,b ,c 表示.第二步,比较a 与b 的大小,如果a <b ,则交换a 与b 的值.第三步,比较a 与c 的大小,如果a <c ,则交换a 与c 的值.第四步,比较b 与c 的大小,如果b <c ,则交换b 与c 的值.第五步,输出a ,b ,c .以上算法要解决的问题是________,如果输入的三个数分别是6,28,14,则输出三数的顺序为________.思路点拨:可尝试先赋a ,b ,c 的值为6,28,14,用具体数值去执行算法步骤,从而得到启示.输入三个数a ,b ,c ,并按从大到小的顺序输出 28,14,6【规律方法】算法作用的理解方法一个算法的作用往往并不显而易见,这时我们可以结合具体数值去执行一下并从中得出规律.【跟踪训练】2.下面给出了一个问题的算法:第一步,输入三角形的底边长a ,底边上的高h .第二步,计算S =ah 2. 第三步,输出S .这个算法解决的问题是____________________________________________________________________________________________.[探究问题]假设家中生火烧水泡茶有以下几个步骤:a .生火;b.将凉水倒入锅中;c.找茶叶;d.洗茶壶、茶碗;e.用开水冲茶.1.你能说出在家中泡茶的步骤吗?2.从上述例子分析,你能说出设计算法步骤的要求吗?【例3】 已知函数y =⎩⎪⎨⎪⎧-x 2-1(x ≤-1),x 3(x >-1),试设计一个算法输入x 的值,求对应的函数值. 思路点拨:↓↓[母题探究]1.(变条件)该例条件若改为“已知函数y =⎩⎪⎨⎪⎧-x +1, x >00, x =0x +1, x <0”试设计一个算法输入x 的值,求对应的函数值.2.(变结论)已知函数y =⎩⎪⎨⎪⎧-x 2-1 (x ≤-1)x 3 (x >-1),下面是输入x 的值,求对应的函数值的一个算法,请填空:第一步,输入x .第二步,若x >-1,输出________;否则执行第三步.第三步,输出________.当输入x 的值为1时,输出的结果为________.【规律方法】分段函数求值问题的算法设计分段函数求值的算法要运用分类讨论思想进行设计,对算法中可能遇到的情况一定要考虑周全,满足与不满足都要有相应的步骤.【课堂小结】1.算法的特点:有限性、确定性、逻辑性、普遍性、不唯一性.2.算法设计的要求(1)写出的算法必须能够解决一类问题(如判断一个整数是否为质数,求任意一个方程的近似解等),并且能够重复使用.(2)要使算法尽量简单,步骤尽量少.(3)要保证算法正确,且算法步骤能够一步一步执行,每步执行的操作必须确切,不能含混不清,而且在有限步后能得到结果.【当堂达标】1.判断下列结论的正误(正确的打“√”,错误的打“×”)(1)求解一类问题的算法是唯一的.()(2)算法必须在有限步骤操作之后解决问题.()(3)算法执行后一定产生确定的结果.()2.下列叙述中,①植树需要运苗、挖坑、栽苗、浇水这些步骤;②按顺序进行下列运算:1+1=2,2+1=3,3+1=4,…99+1=100;③从青岛乘火车到济南,再从济南乘飞机到广州;④3x>x+1;⑤求所有能被3整除的正数,即3,6,9,12,….能称为算法的个数为()A.2B.3 C.4 D.53.已知一个学生的语文成绩为89分,数学成绩为96分,外语成绩为99分.求他的总分和平均分的一个算法为:第一步,取A=89,B=96,C=99.第二步,____________________________________________.第三步,____________________________________________.第四步,输出计算的结果.4.设计一个算法,求表面积为16π的球的体积.【参考答案】【自主预习】1.算术运算一定规则明确有限计算机程序思考:[提示]不唯一.如解二元一次方程组的算法有加减消元法和代入消元法两种,但不同的算法有优劣之分.2.(1)有限(2)确定(3)步骤序列3.算法的设计目的算法明确的步骤算法“语言”【基础自测】1.A[A是学习数学的一个步骤,所以是算法.]2.A[A项中,由于算法具有有限性,因此不可能无止境地运行下去,不正确;B项中,算法中的步骤是按照顺序一步步进行下去的,因此是不可逆的,正确;C、D项符合算法的特征,正确.]3.D[A、B、C选项中的问题都可以设计算法解决,D选项中的问题由于x在R上取值无穷尽,所以不能设计一个算法求解.]4.[答案]打车去火车站【合作探究】【例1】B[算法是用来求解一类问题的,在实际算法中n的值是具体确定的,算法会根据具体确定的n来求值计算,所以①③能设计算法.算法的步骤是有限的,即执行有限步后一定能解决问题,而②显然不符合有限性,所以②不能设计算法.]【跟踪训练】1.C[A、B、D项都描述了解决问题的过程,可以看作算法,而C项只描述了一个事实,没说明怎么解决问题,不是算法.]【例2】[法一:特殊值法:第一步,输入a=6,b=28,c=14.第二步,因为a<b,则令a=28,b=6.第三步,因为a>c,不做变化.第四步,因为b<c,故令b=14,c=6.第五步,输出28,14,6.通过上述过程可知,此算法解决的问题是:对任意输入的三个数a,b,c,按从大到小的顺序输出.法二:一般方法:第一步是给a,b,c赋值.第二步运行后a>b.第三步运行后a>c.第四步运行后b>c,所以a>b>c.第五步运行后,显示a,b,c的值,且从大到小排列.]【跟踪训练】2.[答案]已知三角形的底边长a,底边上的高为h,求这个三角形的面积[探究问题]1.[提示]b→a→c→d→e2.[提示](1)算法必须要解决一类问题.(2)要保证算法步骤合理有效.(3)要使算法步骤尽量简洁实用.【例3】[解]算法如下:第一步,输入x的值.第二步,当x≤-1时,计算y=-x2-1;否则执行第三步.第三步,计算y=x3.第四步,输出y .[母题探究]1.[解] 算法如下:第一步,输入x 的值.第二步,若x >0,则y =-x +1,然后执行第四步;否则执行第三步.第三步,若x =0,则y =0,然后执行第四步,否则y =x +1.第四步;输出y 的值.2.[答案] x 3 -x 2-1 1【当堂达标】1.[答案] (1)× (2)√ (3)√2.B [由算法的含义与特征知:①②③都是算法;④中,3x >x +1不是明确的步骤,不满足确定性;⑤中步骤是无穷的,与有限性矛盾.]3.[答案] 计算总分D =A +B +C计算平均分E =D 34.[解] 法一:第一步,取S =16π.第二步,计算R =S 4π(由于S =4πR 2). 第三步,计算V =43πR 3. 第四步,输出运算结果.法二:第一步,取S =16π.第二步,计算V =43π⎝⎛⎭⎫S 4π3. 第三步,输出运算结果.。
§1.1.1 算法的概念(人教A版·必修3)教学目标1.知识与技能(1)初步了解算法的含义和概念,了解算法的概括性、逻辑性、有穷性、不惟一性和普遍性等特征。
(2)初步了解消去法的思想。
(3)体会算法的思想,能说明解决简单问题的算法步骤。
2.过程与方法(1)通过实例,发展对具体问题的过程与步骤的分析能力,发展从具体问题中提炼算法思想的能力。
(2)通过模仿与操作,能对所给问题设计相应的算法。
3.情感、态度与价值观(1)通过分析消去法的过程,体会算法的思想,发展有条理的、清晰的思维能力,提高人的一般素质。
(2)通过应用数学软件解决问题,感受算法思想的重要性,感受现代技术的魅力。
教学重点算法的含义、概念及特征。
教学难点算法的理解及设计。
教辅手段幻灯片、多媒体投影仪(有条件的话)教学过程一、情景设置处理方式给学生播放一段“钟点工”的视频,其中有这么一段:宋丹丹说:要把大象装冰箱,总共分几步?哈哈哈哈,三步。
第一步,把冰箱门打开;第二步,把大象装进去;第三步,把冰箱门带上。
大家能从中感受到数学气息吗?这其中蕴含的就是我们今天要学习的算法的思想,即按一定的程序进行一系列机械的操作来完成一件事。
二、 新知探究(一)引入概念处理方式【问题1】请同学们解二元一次方程组x-2y=-1, ①2x+y=1, ②求解过程,我们可以归纳出以下步骤:第一步:②-①×2,得5y=3;第二步:解③得y=3/5;第三步:将y=3/5代入①,得x=1/5;第四步:得到方程组的解为通过上面的例子我们可以总结出算法的概念:算法这个词出现于12世纪,指的是用阿拉伯数字进行算术运算的过程。
在数学中,现代意义的“算法”是指可以用计算机来解决的某一类问题的程序或步骤,这些程序或步骤必须是明确和有效的,而且能够在有限步之内完成。
(二)深入探究【问题2】对于一般的二元一次方程组 其中a 1b 2-a 2b 1≠0,设计一个算法。
1. 1.1 算法的概念
【教学目标】
1.了解算法的含义,体会算法的思想。
2.能够用自然语言叙述算法。
3.掌握正确的算法应满足的要求。
【重点与难点】
教学重点:算法的含义、解二元一次方程组和判断一个数为质数的算法设计。
教学难点:把自然语言转化为算法语言。
【教学过程】
1.情境导入:
算法作为一个名词,在中学教科书中并没有出现过,我们在基础教育阶段还没有接触算法概念。
但是我们却从小学就开始接触算法,熟悉许多问题的算法。
如,做四则运算要先乘除后加减,从里往外脱括弧,竖式笔算等都是算法,至于乘法口诀、珠算口诀更是算法的具体体现。
我们知道解一元二次方程的算法,求解一元一次不等式、一元二次不等式的算法,解线性方程组的算法,求两个数的最大公因数的算法等。
因此,算法其实是重要的数学对象。
2.探索研究
算法(algorithm)一词源于算术(algorism),即算术方法,是指一个由已知推求未知的运算过程。
后来,人们把它推广到一般,把进行某一工作的方法和步骤称为算法。
广义地说,算法就是做某一件事的步骤或程序。
菜谱是做菜肴的算法,洗衣机的使用说明书是操作洗衣机的算法,歌谱是一首歌曲的算法。
在数学中,主要研究计算机能实现的算法,即按照某种机械程序步骤一定可以得到结果的解决问题的程序。
比如解方程的算法、函数求值的算法、作图的算法,等等。
3.例题分析
例1.任意给定一个大于1的整数n,试设计一个程序或步骤对n是否为质数做出判定。
解析:根据质数的定义判断
解:算法如下:
第一步:判断n是否等于2,若n=2,则n是质数;若n>2,则执行第二步。
第二步:依次从2至(n-1)检验是不是n的因数,即整除n的数,若有这样的数,则n不是质数;若没有这样的数,则n是质数。
这是判断一个大于1的整数n是否为质数的最基本算法。
点评:通过例1明确算法具有两个主要特点:有限性和确定性。
变式训练1:一个人带三只狼和三只羚羊过河,只有一条船,同船可以容纳一个人和两只动物.没有人在的时候,如果狼的数量不少于羚羊的数量,狼就会吃掉羚羊.请设计过河的算法。
解:算法或步骤如下:
S1 人带两只狼过河;
S2 人自己返回;
S3 人带一只羚羊过河;
S4 人带两只狼返回;
S5 人带两只羚羊过河;
S6 人自己返回;
S7 人带两只狼过河;
S8 人自己返回;
S9 人带一只狼过河.
例2 给出求解方程组274511
x y x y +=⎧⎨+=⎩的一个算法. 解析:解线性方程组的常用方法是加减消元法和代入消元法,这两种方法没有本质的差别,为了适用于解一般的线性方程组,以便于在计算机上实现,我们用高斯消元法(即先将方程组化为一个三角形方程组,在通过回代过程求出方程组的解)解线性方程组.
解:用消元法解这个方程组,步骤是:
第一步:方程①不动,将方程②中x 的系数除以方程①中x 的系数,得到乘数422
m ==; 第二步:方程②减去m 乘以方程①,消去方程②中的x 项,得到 2733x y y +=⎧⎨=-⎩
; 第三步:将上面的方程组自下而上回代求解,得到1y =-,4x =.
所以原方程组的解为41
x y =⎧⎨=-⎩. 点评:通过例2再次明确算法特点:有限性和确定性
变式训练2:写出求过两点M(-2,-1)、N(2,3)的直线与坐标轴围成面积的一个算法。
解:算法:第一步:取x 1=-2,y 1=-1,x 2=2,y 2=3; 第二步:计算1
21121x x x x y y y y --=--; 第三步:在第二步结果中令x =0得到y 的值m ,得直线与y 轴交点(0,m);
第四步:在第二步结果中令y =0得到x 的值n ,得直线与x 轴交点(n,0);
第五步:计算S=||||2
1n m •; 第六步:输出运算结果 例3 用二分法设计一个求解方程x 2–2=0的近似根的算法。
算法分析:回顾二分法解方程的过程,并假设所求近似根与准确解的差的绝对值不超过0.005,则不难设计出以下步骤:
第一步:令f(x)=x 2–2。
因为f(1)<0,f(2)>0,所以设x 1=1,x 2=2。
第二步:令m=(x 1+x 2)/2,判断f(m)是否为0,若则,则m 为所长;若否,则继续判断f(x 1)·f(m)大于0还是小于0。
第三步:若f(x 1)·f(m)>0,则令x 1=m ;否则,令x 2=m 。
第四步:判断|x 1–x 2|<0.005是否成立?若是,则x 1、x 2之间的任意取值均为满足条件的近似根;若否,则返回第二
点评:渗透循环的思想,为后面教学做铺垫。
变式训练3 给出求1+2+3+4+5的一个算法.
解: 算法1 按照逐一相加的程序进行.
第一步:计算1+2,得到3;
第二步:将第一步中的运算结果3与3相加,得到6;
第三步:将第二步中的运算结果6与4相加,得到10;
第四步:将第三步中的运算结果10与5相加,得到15.
算法2 运用公式123n ++++=L 2)1(+n n 直接计算. 第一步:取n =5; 第二步:计算2
)1(+n n ; 第三步:输出运算结果.
算法3 用循环方法求和.
第一步:使1S =,;
第二步:使2I =;
第三步:使S S I =+;
第四步:使1I I =+;
第五步:如果5I ≤,则返回第三步,否则输出S .
点评:一个问题的算法可能不唯一.
4.回顾小结
1.算法的概念:对一类问题的机械的、统一的求解方法.算法是由基本运算及规定的运算顺序所构成的完整的解题步骤,或者是按照要求设计好的有限的计算序列,并且这样的步骤或序列能解决一类问题.
2.算法的重要特征:
(1)有限性:一个算法在执行有限步后必须结束;
(2)确定性:算法的每一个步骤和次序必须是确定的;
(3)输入:一个算法有0个或多个输入,以刻划运算对象的初始条件.所谓0个输入是指
算法本身定出了初始条件.
(4)输出:一个算法有1个或多个输出,以反映对输入数据加工后的结果.没有输出的
算法是毫无意义的.
5.课后作业 写出求111123100
+
+++L 的一个算法 解:第一步:使1S =,;
第二步:使2I =;
第三步:使1n I
=; 第四步:使S S n =+;
第五步:使1I I =+;
第六步:如果100I ≤,则返回第三步,否则输出S .
1.1.1. 算法的概念
课前预习学案
一、预习目标:了解算法的含义,体会算法的思想。
二、预习内容:
1.算法的概念及其特点
2.判断一个数为质数的算法设计
三、提出疑惑:如何快速准确的写出一个问题的算法?
课内探究学案
一、学习目标:
1.了解算法的含义,体会算法的思想;
2.能够用自然语言叙述算法;
3.知道算法应满足的要求。
二、学习重点:算法的含义、判断一个数为质数的算法设计。
学习难点:把自然语言转化为算法语言。
三、学习过程:
(一)、自主学习:
1.算法的概念
2.算法的重要特征:
(二)、例题分析:
例1. 任意给定一个大于1的整数n ,试设计一个程序或步骤对n 是否为质数做出判定 变式训练1:一个人带三只狼和三只羚羊过河,只有一条船,同船可以容纳一个人和两只动物.没有人在的时候,如果狼的数量不少于羚羊的数量,狼就会吃掉羚羊.请设计过河的算法。
例2 给出求解方程组274511x y x y +=⎧⎨+=⎩
的一个算法. 变式训练2:写出求过两点M(-2,-1)、N(2,3)的直线与坐标轴围成面积的一个算法。
例3 用二分法设计一个求解方程x 2–2=0的近似根的算法。
变式训练3 给出求1+2+3+4+5的一个算法
(三)、回顾小结:
(1)算法的概念
(2)算法的重要特征
(四)、当堂检测: 写出求111123100
+
+++L 的一个算法 解:第一步:使1S =,;
第二步:使2I =;
第三步:使1n I
=; 第四步:使S S n =+;
第五步:使1I I =+;
第六步:如果100I ≤,则返回第三步,否则输出S . 课后练习与提高:
1. 下列关于算法的说法中,正确的是( ).
A . 算法就是某个问题的解题过程
B . 算法执行后可以不产生确定的结果
C . 解决某类问题的算法不是惟一的
D . 算法可以无限地操作下去不停止
2.有一堆形状大小相同的珠子,其中只有一粒质量比其他的轻,某同学利用科学的算法,两次利用天平找出这粒最轻的珠子,则这堆珠子最多有多少粒( )
A. 4
B.5
C.7
D.9
3下列各式中的S 值不可以用算法求解的是( )
A.S=1+2+3+4
B.S=1+2+3+4+….
C.S=111123100
++++L D.S=1+2+3+4+…+100
4.已知一个学生的语文成绩为89,数学成绩为96,外语成绩为99。
求它的总分和平均分的一个算法为:
第一步:取A=89,B=99;
第二步:
第三步:
第四步:输出计算结果。
5.写出解方程2x+3=0的算法。
第一步:
第二步:
第三步:
6. 给出一个判断点P ),(00y x 是否在直线y=x-1上的一个算法。
感谢您的阅读,祝您生活愉快。