通信原理第8章 差错控制编码1
- 格式:pdf
- 大小:1.65 MB
- 文档页数:86
差错控制概述1。
差错的概念所谓差错,就是在通信接收端收到的数据与发送端实际发出的数据出现不一致的现象.2。
差错类型通信信道的噪声分为热噪声和冲击噪声两种。
由这两种噪声分别产生两种类型的差错,随机差错和突发差错.热噪声是由传输介质导体的电子热运动产生的,它的特点是:时刻存在,幅度较小且强度与频率无关,但频谱很宽,是一类随机噪声。
由热噪声引起的差错称随机差错。
此类差错的特点是:差错是孤立的,在计算机网络应用中是极个别的。
与热噪声相比,冲击噪声幅度较大,是引起传输差错的主要原因。
冲击噪声的持续时间要比数据传输中的每比特发送时间要长,因而冲击噪声会引起相邻多个数据位出错。
冲击噪声引起的传输差错称为突发差错。
常见的突发错是由冲击噪声(如电源开关的跳火、外界强电磁场的变换等)引起,它的特点是:差错呈突发状,影响一批连续的bit(突发长度)。
计算机网络中的差错主要是突发差错。
通信过程中产生的传输差错,是由随机差错和突发差错共同构成的.3。
误码率数据传输过程中可用误码率Pe来衡量信道数据传输的质量,误码率是指二进制码元在数据传输系统中出现差错的概率,可用下式表达:4。
差错控制差错控制是指在数据通信过程中能发现或纠正差错,将差错限制在尽可能小的允许范围内。
差错检测是通过差错控制编码来实现的;而差错纠正是通过差错控制方法来实现的。
差错控制编码差错控制编码的原理是:发送方对准备传输的数据进行抗干扰编码,即按某种算法附加上一定的冗余位,构成一个码字后再发送。
接收方收到数据后进行校验,即检查信息位和附加的冗余位之间的关系,以检查传输过程中是否有差错发生。
差错控制编码分检错码和纠错码两种,检错码是能自动发现差错的编码,纠错码是不仅能发现差错而且能自动纠正差错的编码。
衡量编码性能好坏的一个重要参数是编码效率R:其中,n表示码字的位长,k表示数据信息的位长,r表示冗余位的位长.计算机网络中常用的差错控制编码是奇偶校验码和循环冗余码。
通信原理题库总合(共23页) -本页仅作为预览文档封面,使用时请删除本页-第八章错误控制编码100道题一、选择题1、已知(5,1)重复码,它的两个码组分别为00000和11111,若用于纠错,可以纠正的误码位数至少为:ba、1位b、2位c、3位d、4位2、、发端发送纠错码,收端译码器自动发现并纠正错误,传输方式为单向传输,这种差错控制的工作方式被称为:aa、FECb、ARQc、IFd、HEC3、码长n=7的汉明码,监督位应是:ba、2位b、3位c、4位d、5位4、根据纠错码组中信息元是否隐蔽来分,纠错码组可以分为:ca、线性和非线性码b、分组和卷积码c、系统和非系统码d、二进制和多进制码5、汉明码的最小码距为:ba、2b、3c、4d、56、假设分组码的最小码距为5则它能检测误码的位数至少为:ca、2b、3c、4d、57、假设分组码的最小码距为5则它能纠正的误码位数至少为:aa、2b、3c、4d、58、根据纠错码各码组码元与信息元之间的函数关系来分,纠错码组可以分为:aa、线性和非线性码b、分组和卷积码c、系统和非系统码d、二进制和多进制码9、通常5位奇监督码的信息位数为:ca、2b、3c、4d、510、汉明码能够纠正的误码位数为:aa、1b、2c、3d、411、通常6位偶监督码的信息位数为:da、2b、3c、4d、512、假设分组码的最小码距为8则它能检测误码的位数至少为:ba 、6b 、7c 、8d 、913、、以下哪一个码字属于码长为5的奇监督码ca 、10001b 、10010c 、10011d 、1010014、属于码长为5的偶监督码是:ca 、00001b 、00010c 、00011d 、0010015、在“0”、“1”等概率出现情况下,以下包含直流成分最大码是:aa 、差分码b 、AMI 码c 、单极性归零码d 、HDB3码16、为了解决连0码而无法提取位同步信号的问题,人们设计了ca 、AMI 码b 、多进值码c 、HDB3码d 、差分码17、已知(5,1)重复码,它的两个码组分别为00000和11111,若用于纠错,可以纠正的误码位数至少为:ba 、1位b 、2位c 、3位d 、4位18、在一个码组内纠正t 位错误,同时检测()t e e >个误码,要求最小距离min d 应为 A 。
2.差错控制编码2.1. 引言什么是差错控制编码(纠错编码、信道编码)?为什么要引入差错控制编码?差错控制编码的3种方式?本章主要讲述:前向纠错编码(FEC)、常用的简单编码、线性分组码(汉明码、循环码)、简单介绍RS码*、BCH码*、FIRE码*、交织码,卷积码极其译码、TCM编码*。
一、什么是差错控制编码及为什么引入差错控制编码?在实际信道上传输数字信号时,由于信道传输特性不理想及加性噪声的影响,接收端所收到的数字信号不可避免地会发生错误。
为了在已知信噪比情况下达到一定的误比特率指标,首先应该合理设计基带信号,选择调制解调方式,采用时域、频域均衡,使误比特率尽可能降低。
但若误比特率仍不能满足要求,则必须采用信道编码(即差错控制编码),将误比特率进一步降低,以满足系统指标要求。
随着差错控制编码理论的完善和数字电路技术的发展,信道编码已经成功地应用于各种通信系统中,并且在计算机、磁记录与存储中也得到日益广泛的应用。
差错控制编码的基本思路:在发送端将被传输的信息附上一些监督码元,这些多余的码元与信息码元之间以某种确定的规则相互关联(约束)。
接收端按照既定的规则校验信息码元与监督码元之间的关系,一旦传输发生差错,则信息码元与监督码元的关系就受到破坏,从而接收端可以发现错误乃至纠正错误。
研究各种编码和译码方法是差错控制编码所要解决的问题。
二、差错控制的三种方式1、检错重发(ARQ)检错重发:在接收端根据编码规则进行检查,如果发现规则被破坏,则通过反向信道要求发送端重新发送,直到接收端检查无误为止。
ARQ系统具有各种不同的重发机制:如可以停发等候重发、X.25协议的滑动窗口选择重发等。
ARQ系统需要反馈信道,效率较低,但是能达到很好的性能。
2、前向纠错前向纠错(FEC):发送端发送能纠正错误的编码,在接收端根据接收到的码和编码规则,能自动纠正传输中的错误。
不需要反馈信道,实时性好,但是随着纠错能力的提高,编译码设备复杂。
差错控制编码的基本原理你想啊,在咱们这个信息的世界里,数据就像一个个调皮的小精灵,到处跑来跑去。
可是呢,在传输的过程中,这些小精灵可能就会迷路或者出岔子,就像你给朋友传个小纸条,路上被风吹破了一角啥的。
这时候差错控制编码就像一个超级保镖闪亮登场啦。
差错控制编码呢,其实就是给这些信息小精灵穿上一层特殊的保护衣。
比如说咱们有原始的信息,就像你要送出去的精美小礼物。
这个原始信息可能是一串简单的数字或者字母啥的。
但是直接就这么送出去,它很脆弱的哦。
于是呢,咱们就根据一定的规则,给这个原始信息加上一些额外的东西,这就像是给小礼物包上一层又一层的漂亮包装纸。
这些额外加的东西可不是随便加的,是按照特定的算法来的呢。
打个比方哈,假如咱们的原始信息是“101”,通过差错控制编码的规则,可能就变成了“101110”。
这里面后面的“110”就是咱们给原始信息加上的保护部分。
为啥要这么加呢?这就涉及到它的神奇之处啦。
当这个加了保护衣的信息在传输过程中遇到了干扰,比如说被雷劈了一下信号(当然这是夸张啦),某个数字可能就变了。
如果没有差错控制编码,那接收方收到错误的信息就蒙圈了,根本不知道是啥。
但是有了这个编码就不一样啦。
接收方知道这个编码的规则呀,它就可以根据收到的信息,去检查有没有错误。
就像你朋友收到那个被风吹破一角的纸条,但是因为你之前和他有个小暗号(就像差错控制编码的规则),他就能大概猜出纸条上原来完整的内容。
而且差错控制编码还有不同的类型呢。
有一类叫检错码,这个就像是一个小侦探。
它能发现信息在传输过程中有没有出错,但是它不知道具体哪里错了。
就像你发现小礼物的包装纸破了个洞,你知道有问题,但还不清楚里面的礼物到底坏没坏。
还有一类叫纠错码,这个就更厉害啦,它不但能发现错误,还能把错误给纠正过来。
这就好比你朋友收到纸条,发现有个地方模糊不清,但是根据你们的暗号,他能准确地把模糊的字给还原出来。
在实际的通信系统里,差错控制编码可重要啦。
2020年中国科学院大学考研专业课初试大纲中国科学院大学硕士研究生入学考试《通信原理》考试大纲一、基本要求及适用范围:《通信原理》考试大纲适用于中国科学院大学信息与通信工程等专业的硕士研究生入学考试。
通信原理是信息与通信工程学科基础理论课程。
它的主要内容包括信号与随机信号分析,信息论基础,各种模拟调制和数字调制原理,多路复用原理,信道分集和编码技术,同步原理和通信网及交换技术。
要求考生对信源信道编码的基本概念及定理,有较深入的了解,熟练掌握各种通信方法的基本原理和应用,并具有综合运用所学知识分析问题和解决问题的能力。
二、考试形式:闭卷,笔试,考试时间180分钟,总分150分。
试卷结构:选择题:约20%。
填空题:约20%。
简答、计算及证明:约35%。
综合题:约25%。
三、考试内容:(一)绪论1、通信系统概念;2、通信系统的分类及通信方式;3、信息及其度量;4、系统主要性能指标。
(二)随机信号分析1、随机过程的数字特征;2、平稳随机过程的相关函数与功率谱密度;3、高斯过程;4、窄带随机过程;5、正弦波加窄带高斯过程;6、随机过程通过线性系统。
(三)模拟调制1、常规双边带调幅(AM),抑止载波双边带调幅(DSB-SC),单边带调制(SSB)和残留边带调制(VSB)的时域和频域表示,调制和解调方法;2、线性调制的一般模型;3、线性调制系统的抗噪声性能;4、调频(FM)和调相(PM)基本概念;精都考研网(专业课精编资料、一对一辅导、视频网课)。
第8章 通信系统中的差错控制编码技术– 169 – 1211211101212101()(1)i n i n i n n n n i i in n n i n i i i n n n i x T x a x a x a x a x a x a x a x a x a x a x -+-+-----+---------=++++++≡+++++++ 模 (8.34)所以1211201()n n i i n i n i n n i T x a x a x a x a x a ---------'=++++++ (8.35)式中()T x '正是式(8.33)所代表的码组向左移位i 次的结果。
因为已假设()T x 为一循环码,所以()T x '也必为该码组中的一个码组。
下面举例说明。
例8.2 由式(8.27),(7,3)循环码中第三码组的码多项式为521()1T x x x x =+++其码长为7n =,若取3i =,则352185435437()(1)(1)i x T x x x x x x x x x x x x x x =+++=+++≡++++ 模其对应的码组为0111010,它是表8-4所列循环码中的第4码组。
8.4.3 码的生成多项式和生成矩阵我们已经知道,对于(,)n k 线性分组码,有了生成矩阵G ,就可以由k 个信息码元得到全部码组。
而且经过前面的分析已经知道,生成矩阵的每一行都是一个码组,因此若能找到k 个线性无关的码组,就能构成生成矩阵G 。
在循环码中,一个(,)n k 分组码有2k 个不同的码组,若用()g x 表示其中前1k -位皆为“0”的码组,则()g x ,()xg x ,2()x g x ,…,1()k x g x -都是码组,而且这k 个码组都是线性无关的。
因此可以用它们来构造生成矩阵G 。
需要说明的是在循环码中除全“0”码组外,再没有连续k 位均为“0”的码组,即连“0”的长度最多只能有(k − 1)位。
第3章信道编码 (2)3.1差错控制方式 (2)3.2信道编码 (3)3.2.1 差错控制编码的基本原理 (3)3.2.2 差错控制编码的分类 (4)3.2.3 差错控制编码的基本概念 (5)3.3常见的几种检错码 (7)3.3.1 奇偶校验码 (7)3.3.2 水平奇偶校验码 (8)3.3.3 水平垂直奇偶校验码 (9)3.3.4 恒比码 (9)3.3.5群计数码 (10)3.4线性分组码 (11)3.4.1 基本概念 (11)3.4.2 线性分组码的编码 (12)3.4.3 线性分组码的译码 (16)3.5循环码 (18)3.5.1 基本概念 (18)3.5.2 循环码的编码 (25)3.5.3 循环码的译码 (27)3.5.4 常见的几种循环码 (29)3.6BCH码 (30)3.7RS码 (33)3.7.1 RS码的编码 (34)3.7.2 RS码的译码 (35)3.8卷积码 (36)3.8.1 基本概念 (36)3.8.2 卷积码的图解表示 (38)3.8.3 卷积码的译码 (40)3.9几种新的编码方法 (42)3.9.1 网格编码调制(TCM) (42)3.9.2 TURBO码 (47)8.9.3LDPC码 (49)3.9.4喷泉码 (51)本章小结 (56)习题 (57)第3章信道编码在数字通信系统中,干扰会使信号产生变形,致使接收端产生误码,这将严重影响数字通信系统的可靠性。
为了提高数字通信系统的可靠性,除了可采用均衡技术来消除乘性干扰引起的码间串扰外,还可以通过对所传数字信息进行特殊的处理(即信道编码)对误码进行检错和纠错,进一步降低误码率,以满足通信的传输要求。
因此,信道编码是提高数字通信系统可靠性的有效措施之一,能提高传输质量1~2个数量级。
信道编码的目的就是通过加入冗余码来减小误码,进而提高数字通信的可靠性。
香农第二定理指出:对于一个给定的有扰信道,若该信道容量为C,则只要信道中的信息传输速率R小于C,就一定存在一种编码方式,使编码后的误码率随着码长n的增加而按指数下降到任意小的值。
差错控制与信道编码数据通信原理1. 引言在数据通信中,差错控制和信道编码是两个重要的概念。
差错控制是指通过在发送端和接收端添加一些冗余信息,以检测和纠正数据传输中出现的错误。
信道编码则是通过对数据进行编码,在发送端添加一些冗余信息,以提高在有噪声或其他干扰的信道中的传输质量。
本文将介绍差错控制和信道编码的基本原理及其在数据通信中的应用。
2. 差错控制差错控制是一种在数据传输中检测和纠正错误的技术。
它可以有效地减少在数据传输过程中产生的差错,提高数据传输的可靠性。
差错控制一般包括两个主要方面:错误检测和错误纠正。
2.1 错误检测错误检测是指通过在数据中添加冗余信息,使接收端能够检测出在传输过程中是否发生了错误。
常见的错误检测方法包括纵向冗余校验(Vertical Redundancy Check,简称VRC)、循环冗余校验(Cyclic Redundancy Check,简称CRC)等。
在VRC中,数据在传输前会添加一个校验位,该校验位是通过对数据中每个字节进行奇偶校验得到的。
接收端在接收到数据后,会重新计算校验位,并与接收到的校验位进行比较,从而判断出是否存在错误。
在CRC中,数据在传输前会进行一系列的运算,生成一段校验码,并将该校验码添加到数据中。
接收端在接收到数据后,会重新进行运算,生成校验码,并与接收到的校验码进行比较,从而判断是否存在错误。
CRC具有更高的错误检测能力,广泛应用于数据通信中。
2.2 错误纠正错误纠正是指通过添加冗余信息,使接收端能够检测出并纠正在传输过程中发生的错误。
常见的错误纠正方法包括海明码(Hamming Code)和奇偶校验码等。
在海明码中,数据会经过一系列的运算,生成一段冗余码,并将该冗余码添加到数据中。
接收端在接收到数据后,会进行一系列的运算,检测并纠正数据中的错误。
海明码具有较好的纠错能力,广泛应用于存储介质和数据通信中。
在奇偶校验码中,数据在传输前会进行奇偶校验处理,生成一个校验位,并将该校验位添加到数据中。