多层螺旋CT螺距
- 格式:doc
- 大小:28.00 KB
- 文档页数:3
胸部多层螺旋CT的临床应用摘要】多层螺旋CT(MSCT)的技术通常可用于长时间屏气、覆盖范围较大的扫描,如胸腹联合或胸腹盆腔联合扫描、大范围的CT血管造影(全下肢CT血管或全肺动脉造影)。
其优点是节省X线球管的损耗,减少X线曝射量。
扫描速度提高。
空间分辨率提高。
本文将论述这一技术在胸部疾病检测的应用。
【关键词】胸部CT 螺旋CT 胸部疾病检测(一)多层螺旋CT(MSCT)的技术在单层螺旋CT(SSCT)中其探测器准直宽(detector collimation)等于X线束准直宽(X-ray beam col- limation)从而产生了层厚。
所以层厚是由X线束准直宽来决定的。
也即CT球管旋转一周只采集一层的原始数据。
而MSCF的层厚是由探测器列数和后重建来决定的。
它采用的是宽探测器技术。
即探测器的排列数增加,可达16~32列,采用可调节宽度的锥形X线束,根据拟采集的层厚选择锥形X线束的宽度,后者可激发不同数目的探测器,从而达到由一次采集却同时获得多层图像信息的效果。
也即 CT球管旋转一周可采集4~8层的数据。
公式为D=N×d。
其中D为X线束准直宽,d为探测器准直宽,N为探测器列数。
MSCT探测器准直宽d是1/N的X线束准直宽。
如果机内有4列探测器(N),其探测器准直宽为1.25mm 时,则X线束准直宽为5mm。
SSCT的螺距即床移动速度与层厚之比,一般选择为1~1.5:1。
若螺距增大,图像质量就可降低;MSCT的螺距概念与SSCT不同,它是床移动速度(table speed):探测器准直宽,也即1/N的X线束准直宽。
假设4列螺旋CT探测器采用1.25mm的探测器准直宽,则X线束准直宽为5mm。
若床移速度设定为7.5mm时,则螺距7.5:1.25=6:1或称螺距6,而不是7.5:5=1.5:1(螺距1.5)。
通过这样的优化采样扫描来提高z轴空间分辨率,从而提高图像质量。
当螺距为6或8时,通常可用于长时间屏气、覆盖范围较大的扫描,如胸腹联合或胸腹盆腔联合扫描、大范围的CT血管造影(全下肢CT血管或全肺动脉造影)。
多层螺旋CT与放射DR平片在脊柱骨折的诊断价值摘要:目的分析比较多层螺旋CT与放射DR平片在脊柱骨折的诊断价值。
方法本次将我院在2022年1-12月收治的100例脊柱骨折患者作为研究的对象,依次采取多层螺旋CT、放射DR平片诊断,进一步对两种诊断方法的诊断结果进行分析比较。
结果(1)多层螺旋CT平均诊断时间明显长于放射DR平片,平均诊断费用明显多于放射DP平片,两组数据差异有显著统计学意义(P<0.05)。
(2)多层螺旋CT诊断漏诊率、误诊率分别为3.00%、2.00%,均分别明显低于放射DR平片的13.00%、11.00%,两组数据差异有显著统计学意义(P<0.05)。
结论脊柱骨折诊断中,多层螺旋CT与放射DR平片比较,诊断时间更长、诊断费用更高,但漏诊率与误诊率更低,能够为患者进一步治疗提供有效参考依据,值得推广及使用。
关键词:多层螺旋CT;放射DR平片;脊柱骨折;诊断结果脊柱骨折,为顾客常见的创伤疾病,在骨折中占比为5%到6%,发生率最高为胸腰段骨折,颈、腰椎次之,胸椎少见[1]。
主要在直接或者间接的外伤影响下诱发此病,患者主要症状为脊柱局限性肿胀、压痛、运动障碍等。
为确保患者临床诊疗的准确性及有效性,需采取有效的诊断技术方法。
鉴于此,本次重点分析比较多层螺旋CT与放射DR平片在脊柱骨折的诊断价值,现将研究成果报告如下。
1.资料和方法1.1一般资料本次纳入研究的100例脊柱骨折患者,纳入时间为我院2022年1-12月,其中男性58例、女性42例;年龄跨度为21岁到83岁,平均年龄为(45.28±1.21)岁;致伤因素:交通事故伤46例、高处坠落伤30例、重物砸伤24例。
因本次涉及同组患者采取不同诊断方法的结果比较,所以有比较的意义。
纳入标准与排除标准如下:(1)纳入标准:①符合临床有关“脊椎骨折”疾病的诊断标准[2];②均知情签署相关诊疗干预同意书;③且均通过医院医学伦理委员会审批。
多层螺旋C T螺距随着多层螺旋CT的普及,螺距(pitch)成为螺旋CT很重要的扫描参数。
螺距是扫描架旋转一周360°进床距离与透过探测器的X线束厚度之比,单层CT的X 线束厚度等于探测器准直宽,即等于采集层厚宽度。
螺距的计算公式:P=S(mm)/D(mm) P:螺距 S:扫描架旋转一周360°进床距离 D:为X线束厚度因多层螺旋CT应用了多排探测器阵列,所以,X线束被多排探测器分为多束更细的X射线,透过探测器的X线束厚度以d(mm)表示,则:d(mm)=D(mm)/N其中:N为探测器排数。
多层螺旋CT的螺距以P表示:则多层螺旋CT的螺距公式: P=S(mm)/D(mm)/N螺距决定CT的容积覆盖速度,影响图象的质量。
扫描区域确定后,其它扫描参数不变,增加螺距时,完成总的容积扫描时间将缩短,但获得的容积体积不发生变化,图像质量将受到影响。
那么如何更好的应用螺距(pitch),将从三个方面考虑:(1)扫描范围(2)扫描时间(3)图象质量[pitch of screws] 螺纹上相邻两牙对应点之间的轴向距离,代号是P。
如果带电粒子进入均匀磁场B时,其速度v与B之间成θ角,则粒子将作螺旋运动。
而粒子在磁场中回转一圈所前进的距离叫做螺距(h):h=2πmvcosθ/(qB)单线螺纹的螺距等于导程,多线螺纹的螺距等于导程除以线数。
螺距亦称牙距。
在英制中,以每一英寸(25.4mm)中的牙数来表明牙距。
螺旋CT的问世产生了一个新的概念,螺距(pitch,P)。
对早期的单层螺旋,各厂家对此定义是统一的,即螺距=球管旋转360°进床距离/准直宽度。
对于多层螺旋CT螺距的概念有点复杂,多层CT的一个准直宽度包含了多个相邻的图像。
这样,厂家的不协商(或者说不妥协)导致了多层螺旋螺距公式中分母:准直宽度定义的混乱。
例如:MARCONI等多层CT将整个准直宽度作为公式的分母(层数x单个准直器宽度),而GE等则将每一层图像的准直宽度作为分母。
ct螺距的概念随着科技的不断发展,计算机断层扫描(CT)技术在医学、工程、材料等领域中得到越来越广泛的应用。
在CT扫描中,螺旋扫描(helical scanning)是一种重要的扫描方式,而CT螺距(pitch)则是螺旋扫描中的一个重要参数。
本文将介绍CT螺距的概念、计算方法、影响因素以及在螺旋扫描中的应用。
一、CT螺距的概念CT螺距是指螺旋扫描中X射线束每旋转一周所扫描的距离与X射线束的宽度之比。
具体来说,设X射线束的宽度为D,X射线束旋转一周所扫描的距离为P,则CT螺距可以表示为:pitch = P/DCT螺距通常用于描述螺旋扫描中图像重叠程度的大小。
较小的CT螺距意味着X射线束在扫描过程中的重叠程度较高,这可以提高图像的空间分辨率和图像质量,但同时也会增加辐射剂量。
较大的CT螺距意味着X射线束在扫描过程中的重叠程度较低,这可以降低辐射剂量,但同时也会降低图像的空间分辨率和图像质量。
二、CT螺距的计算方法对于螺旋扫描,CT螺距的计算方法取决于扫描方式和设备类型。
在单层螺旋扫描中,CT螺距可以通过下式计算:pitch = table feed per rotation / beam collimation 其中,table feed per rotation是指扫描台每旋转一周所移动的距离,beam collimation是指X射线束的宽度。
在多层螺旋扫描中,CT螺距的计算方法略有不同,具体可以参考设备的说明书。
三、CT螺距的影响因素CT螺距的大小会影响图像的质量和辐射剂量。
在实际应用中,需要根据具体情况选择适当的CT螺距。
以下是影响CT螺距的因素: 1. 扫描部位:不同的扫描部位对CT螺距的要求不同。
例如,对于头部扫描,较小的CT螺距可以提高图像质量,而对于肝脏扫描,较大的CT螺距可以降低辐射剂量。
2. 扫描目的:不同的扫描目的对CT螺距的要求也不同。
例如,对于诊断肺栓塞,需要较大的CT螺距以减少辐射剂量,而对于评估动脉硬化斑块,需要较小的CT螺距以提高图像质量。
随着多层螺旋CT的普及,螺距(pitch)成为螺旋CT很重要的扫描参数。
螺距是扫描架旋转一周360°进床距离与透过探测器的X线束厚度之比,单层CT的X线束厚度等于探测器准直宽,即等于采集层厚宽度。
螺距的计算公式:P=S(mm)/D(mm) P:螺距 S:扫描架旋转一周360°进床距离 D:为X线束厚度
因多层螺旋CT应用了多排探测器阵列,所以,X线束被多排探测器分为多束更细的X 射线,透过探测器的X线束厚度以d(mm)表示,则:d(mm)=D(mm)/N其中:N为探测器排数。
多层螺旋CT的螺距以P表示:则多层螺旋CT的螺距公式: P=S(mm)/D(mm)/N
螺距决定CT的容积覆盖速度,影响图象的质量。
扫描区域确定后,其它扫描参数不变,增加螺距时,完成总的容积扫描时间将缩短,但获得的容积体积不发生变化,图像质量将受到影响。
那么如何更好的应用螺距(pitch),将从三个方面考虑:(1)扫描范围(2)扫描时间(3)图象质量
[pitch of screws] 螺纹上相邻两牙对应点之间的轴向距离,代号是P。
如果带电粒子进入均匀磁场B时,其速度v与B之间成θ角,则粒子将作螺旋运动。
而粒子在磁场中回转一圈所前进的距离叫做螺距(h):
h=2πmvcosθ/(qB)
单线螺纹的螺距等于导程,多线螺纹的螺距等于导程除以线数。
螺距亦称牙距。
在英制中,以每一英寸(25.4mm)中的牙数来表明牙距。
螺旋CT的问世产生了一个新的概念,螺距(pitch,P)。
对早期的单层螺旋,各厂家对此定义是统一的,即螺距=球管旋转360°进床距离/准直宽度。
对于多层螺旋CT螺距的概念有点复杂,多层CT的一个准直宽度包含了多个相邻的图像。
这样,厂家的不协商(或者说不妥协)导致了多层螺旋螺距公式中分母:准直宽度定义的混乱。
例如:MARCONI等多层CT将整个准直宽度作为公式的分母(层数x单个准直器宽度),而GE等则将每一层图像的准直宽度作为分母。
由于基础定义的混乱,造成了计算公式结果的混乱。
前者无论是4、8还是16层,进床距离等于整个准直宽度时,计算结果螺距均等于1,而后者则不断变化,计算结果螺距分别等于4、8和16。
这种不同厂家定义的混乱,造成了初接触多层CT者的困惑。
多层螺旋CT的技术原理及影像质量
多层螺旋CT的出现是CT技术革命性进步,各厂家相继开发出了4层、8层及16层螺旋CT。
与传统螺旋CT相比,多层螺旋CT在成像原理、技术特点有明显的不同,图像质量也有明显的改进,本文介绍如下。
1 多层螺旋CT原理
1.1数据采集通道
数据采集通道数是决定X线管球旋转1周所能获得的图像层数,
目前各厂家推出的机型有2通道、4通道、8通道和16通道。
有关专家估计,随着技术水平的发展,制造成本进一步降低,今后传统CT甚至单层螺旋CT将逐步被多层螺旋CT所取
代,尤其是性价比有优势的双层螺旋会更加普及。
1.2 探测器
在探测器结构上,多层与单层螺旋CT最大区别是Z轴方向探测器排数,单层螺旋CT在Z 轴方向为一排探测器,而多层螺旋是由多排探测器组成探测器阵列,因此有的文献将此类型CT亦称之为多排螺旋CT。
探测器组从形式上可以粗略分为等宽型(对称型)及非等宽型(非对称型),目前16层CT的探测器都属于非等宽型。
非等宽型的优点是利用较少的探测器单元,配合设置在探测器一侧的精密准直器,对层厚的选择有更大灵活性,能更好地适应锥形线束采集与重建方法。
如在16层CT探测器的设计上,东芝公司中间为0.5mm×l6列,两侧分别为lmm×l2列,共40列,32mm宽;GE公司为中间0.625mm×l6列,两侧分别为1.25mm×4列,共24列,20mm宽;飞利浦和西门子公司为中间0.75mm×l6列,两侧分别为1.5mm×4列,共24列,24mm宽。
1.3数据插补及图像重建算法
由于探测器列数与宽度增加,锥形线束投影所造成的几何学误差会进一步增大,为此,发展了相应的多层采集锥形束扫描重建算法。
如为了对应采集平面的位相而采用的倾斜成像平面采集算法;螺旋滤过伴交叉校准算法;非线性插入重建算法;一次采集16层的原始数据,然后作逐层二次重建算法等。
这些新的重建算法目的在于减少锥形线束伪影,保证Z轴上的分辨力和保证采集速度。
2 多层螺旋CT的技术特点
2.1 螺距
在单层螺旋CT中,螺距(pitch)被定义为X射线管球旋转1周时扫描床移动的距离(mm)与准直器宽度的比值,这里的准直器宽度实际上就是层厚。
因此,有的文献中直接定义为检查床移动速度与层厚的比值。
螺距是一个无量纲单位,可由式pitch=S/W计算,式中S是检查床移动速度,W是层厚。
在螺旋CT扫描中,螺距与床运行方向(z轴)扫描覆盖率及图像的纵向分辨率有关。
在多层螺旋CT中,层厚并不是准直器宽度,需要特别指出的是目前对于多层螺旋CT,螺距的定义各厂家及一些文献中表述并不一致,主要区别在于用实际层厚还是用准直器宽度来计算螺距,对于准直宽度为4×lmm,床移动速度为每旋转一圈4mm的扫描方式,这里的实际层厚为lmm,如果用传统方法定义,则螺距为4。
如果采用准直器宽度来计算,则螺距为1。
目前,GE公司和Siemens公司仍然沿用床移动速度与实际层厚的比值来定义多层螺旋CT的螺距,Picker公司则采用床移动速度与准直器宽度来定义多层螺旋CT的螺距,读者在阅读有关文献资料时应注意区别。
2.2 层厚
多层螺旋CT的层厚在等宽型是由探测器排的不同组合决定,在非等宽型是由探测器和准直器宽度共同来决定。
通过电子开关控制探测器工作,并通过探测器的组合完成每一层数据采集,根据探测器单元的尺寸及相邻单元组合,可实现0.5mm、1.0mm、1.25mm或5、10mm 层厚选择。
2.3 纵向覆盖范围
多层螺旋CT的最大优点是一次连续扫描Z轴方向覆盖范围大,在相同的扫描时间和层厚的
情况下,Z轴方向的覆盖范围是单层螺旋CT的数倍,因此特别适合大范围扫描,如各种血管成像,胸腹部联合扫描等特殊检查。
覆盖范围与数据通道数、螺距、层厚、一次连续扫描所需总的时间有关。
纵向覆盖范围可由式C=N×P×S×T/R来计算;式中N为数据通道数,P 为螺距,S为层厚,T为总的扫描时间,R为球管旋转一圈所需的时间。
2.4 各向同性体素扫描
它是指数据采集过程中,最小体素为一立方体,目前各厂家的多层螺旋CT均可实现各向同性扫描。
要实现各向同性扫描和重建除了和扫描层面的厚度有关外,还和扫描的FOV有关-如采用512×512矩阵,在FOV为25cm时,东芝公司的16层螺旋CT的扫描体素约为0.5mm×0.5mm×0.5mm;在FOV为32cm时,GE公司的16层螺旋CT的扫描体素约为0.625mm×0.625mm×0.625mm;在FOV为38cm时,飞利浦和西门子公司的16层螺旋CT 的各向同性体素约为0.75mm×0.75mm×0.75mm。
3 影像质量
3.1 时间分辨率及Z轴空间分辨率
螺旋CT具有扫描速度快、时间短等优点,但就单层螺旋CT而言,某些运动的器官,特别是一些随机运动的器官,仍然可能出现运动伪影,影响图像质量。
多层螺旋CT球管旋转1圈时间更短,如果层厚不变,覆盖范围更大,完成同一器官扫描时间更短,病人更容易配合,很少出现主动运动和随机运动伪影,时间分辨率明显提高。
另外,多层螺旋CT在相同的覆盖范围,可采用较薄的层厚,极大地改善了Z轴空间分辨率,减小了部分容积效应,提高了诊断的准确性,三维重建的图像质量也达到了目前最高水平。
3.2 影像噪声
在单层螺旋CT扫描时,往往会出现这样的情况,当扫描范围较长时(如主动脉血管成像),由于连续扫描时间较长,受球管热容量的限制,一个扫描计划未完成时,机器会自动停止扫描,使整个扫描计划前功尽弃。
为了保证数据采集的连续性,必须降低管电流,由于管电流降低,势必导致信号噪声增加,影像质量下降。
而对多层螺旋CT,球管每旋转1圈射线覆盖范围较大,也就是说检查同一部位,扫描时间可明显缩短。
因此,在设定扫描参数时,可适当提高管电流(或保持常规条件),而管电流增加使数据采集系统获得的信号强度增加,从而改善了影像质量,特别是扫描范围大或体型肥胖的患者。