基因毒性杂质培训及讨论20151025
- 格式:ppt
- 大小:2.44 MB
- 文档页数:75
基因毒性杂质研究升龙记缘起前几天,笔者在药闻药事发布文章“从ICH杂质三限浅谈新药与仿制药研发过程中的策略”之后,有小伙伴表示这篇文章有很大的漏洞,怎么没有基因毒性杂质?是的,一般杂质指导原则出了好多年了,一般做药物研发的人都读过,笔者在之前的文章中也仅仅是回顾和总结而已。
关于基因毒性杂质指导原则(ICHM7)去年才正式公布,本人也是刚读过不久,若非有人问及,实不敢班门弄斧。
另外,还有小伙伴吐槽表示:上一篇文章全篇都是论述,要故事没故事,要插图没插图,就那么堆叠罗列,一点都不好看。
因此,此次尝试以章回体叙事形式,来讲解一下基因毒性杂质指导原则(ICHM7)的形成过程,并陈述基因毒性杂质控制思路。
本文结构共分为如下8个部分:【楔子】【第一回:潜龙初现】【第二回:现龙在田】【第三回:惕龙日进】【第四回:跃龙在渊】【第五回:飞龙在天(大结局)】【第六回:ICHM7核心内容总结】【结语】。
文中各方力量角逐的描写,仅为笔者对比历次法规变更后的一些推测,可能与实际情况有出入,如若反感请轻拍。
如有读者仅想了解“基因毒性杂质处理标准和思路”,请直接拉到第六回及以后内容——但笔者仍然建议耐心看完,因为其他章节包含很多ICH M7条款的论证过程。
如有理解不正确或偏颇之处,还请小伙伴及时指出,共同提高。
楔子在开始前,我们先弄清楚两个问题:1.什么是基因毒性杂质?比较权威的解释是:遗传毒性杂质不同于药品中的一般杂质,极微量水平即能诱发DNA 突变的一类杂质。
有着重大的安全风险,像香烟中的苯并芘,常见的黄曲霉,都是高毒性基因杂质。
2.基因毒性杂质难处理在哪?我们知道,对一种杂质进行控制程度的严宽主要取决于杂质对人体的危害程度,而一种杂质是否对人体产生危害主要取决于2个维度的因素:一是量变引起质变,二是杂质自身的毒性。
一般的杂质为无毒或微毒的物质,只有达到足够剂量时也会变得有害或者可能有害,比如乙醇正常量使用是没有什么危害的,而过量服用则可能引发各种病症。
20060628 EMEA/CHMP/QWP/251344/2006 基因毒性杂质限度指南(转载中英文)London, 28 June 2006CPMP/SWP/5199/02EMEA/CHMP/QWP/251344/2006TABLE OF CONTENTS 目录EXECUTIVE SUMMARY 内容摘要 (3)1. INTRODUCTION 介绍 (3)2. SCOPE 范围 (3)3. LEGAL BASIS法律依据 (3)4. TOXICOLOGICAL BACKGROUND 毒理学背景 (4)5. RECOMMENDATIONS 建议 (4)5.1 Genotoxic Compounds With Sufficient Evidence for a Threshold-Related Mechanism具有充分证据证明其阈值相关机理的基因毒性化合物 (4)5.2 Genotoxic Compounds Without Sufficient Evidence for a Threshold-Related Mechanism不具备充分证据支持其阈值相关机理的基因毒性化合物 (5)5.2.1 Pharmaceutical Assessment 药学评价 (5)5.2.2 Toxicological Assessment 毒理学评价 (5)5.2.3 Application of a Threshold of Toxicological Concern 毒理学担忧阈值应用 (5)5.3 Decision Tree for Assessment of Acceptability of Genotoxic Impurities基因毒性杂质可接受性评价决策树 (7)REFERENCES. 参考文献 (8)EXECUTIVE SUMMARY 内容摘要The toxicological assessment of genotoxic impurities and the determination of acceptable limits for such impurities in active substances is a difficult issue and not addressed in sufficient detail in the existing ICH Q3X guidances. The data set usually available for genotoxic impurities is quite variable and is the main factor that dictates the process used for the assessment of acceptable limits. In the absence of data usually needed for the application of one of the established risk assessment methods, i.e. data from carcinogenicity long-term studies or data providing evidence for a threshold mechanism of genotoxicity, implementation of a generally applicable approach as defined by the Threshold of Toxicological Concern (TTC) is proposed. A TTC value of 1.5 μg/day intake of a genotoxic impurity is considered to be associated with an acceptable risk (excess cancer risk of <1 in 100,000 over a lifetime) for most pharmaceuticals. From this threshold value, a permitted level in the active substance can be calculated based on the expected daily dose. Higher limits may be justified under certain conditions such as short-term exposure periods.基因毒性杂质的毒理学评估和这些杂质在活性药物中的可接受标准的测定是一件困难的事情,并且在现有的ICH Q3X指南中也没有详细的规定。
EMA关于基因毒性杂质限度指南的问答2010-9-23背景:本问答文件的目的是对2006年出版的基因毒性杂质限度指南(EMEA/CHMP/QWP/251344/2006)进行相关内容统一和说明。
问答Q1:该指引并不要求对已批准销售的产品进行基因毒性杂质再评估,除非有一个特定的“重要原因”(cause-for-concern)。
请问什么是“重要原因”?A1:如果原料药的生产过程基本上没有改变,就不需要对基因毒性杂质进行重新评价。
但是,如果新知识表明有新原因时,例如几年前发现的甲磺酸盐药物可能形成甲磺酸烷基的基因毒性杂质,这需要进行基因毒性杂质的再评估,包括EP药典中收载的所有甲磺酸盐类产品,并出示“生产声明”。
Q2:该指引指出:即使按决策树程序其水平低于毒理学关注阈值(threshold of toxicological concern,TTC),也要尽可能地减少已知或未知的诱变杂质(mutagenic impurity)。
如果已知其诱变杂质的水平低于TTC(TTC是一个非常保守的值),为什么要还进一步减少呢?实际上这还涉及定量限在1ppm左右的分析方法,可以这样做但可能没结果,这是否有必要呢?A2:如果一个诱变杂质的水平低于毒理学关注阈值(相当于临床剂量≤1.5微克/天),就没有必要这样做。
除非它具有一个高度关注的风险结构:如N -亚硝基,黄曲霉毒素类和氧化偶氮物就需要这样做。
Q3:该指引规定:“当一个潜在的杂质包含“警示结构”(structural alerts)时,应考虑用细菌突变试验对其杂质进行的基因毒性分析”。
i)如果一个杂质能诱发“警示结构”,该杂质的致突变试验(Ames)结果为阴性时,是否就足以得出结论:该化合物不属于关注的遗传毒性杂质?是否还需要进一步的确认研究?ii)“警示结构”不存在就足以说明不属于关注杂质呢?iii)假设某杂质属于“警报结构”,但只要加以控制确保其杂质水平低于TTC,不进行常规检测是否可以接受?A3回答:i)是的。
基因毒性杂质介绍及检测⽅法1什么是基因毒性杂质基因毒性杂质(或遗传毒性杂质,Genotoxic Impurity ,GTI)是指化合物本⾝直接或间接损伤细胞DNA,产⽣基因突变或体内诱变,具有致癌可能或者倾向。
潜在基因毒性的杂质(Potential Genotoxic Impurity ,PGI)从结构上看类似基因毒性杂质,有警⽰性,但未经实验证明的黄曲霉素类、亚硝胺化合物、甲基磺酸酯等化合物均为常见的基因毒性杂质,许多化疗药物也具有⼀定的基因毒性,它们的不良反应是由化疗药物对正常细胞的基因毒性所致,如顺铂、卡铂、氟尿嘧啶等。
2为何着重研究基因毒性杂质基因毒性物质特点是在很低浓度时即可造成⼈体遗传物质的损伤,进⽽导致基因突变并可能促使肿瘤发⽣。
因其毒性较强,对⽤药的安全性产⽣了强烈的威胁,近年来也越来越多的出现因为在已上市药品中发现痕量的基因毒性杂质残留⽽发⽣⼤范围的医疗事故,被FDA强⾏召回的案例,给药⼚造成了巨⼤的经济损失。
例如某知名国际制药巨头在欧洲市场推出的HIV蛋⽩酶抑制剂维拉赛特锭(Viracept, mesylate),2007 年7⽉,EMA暂停了它在欧洲的所有市场活动,因为在其产品中发现甲基磺酸⼄酯超标,甲基磺酸⼄酯是⼀种经典的基因毒性杂质,该企业为此付出了巨⼤的代价,先内部调查残留超标的原因,因在仪器设备清洗时⼄醇未被完全清除⽽残留下来,与甲基磺酸反应形成甲基磺酸⼄酯。
在被要求解决污染问题后还被要求做毒性研究,以更好的评估对患者的风险。
同时有多达25000 名患者暴露于这个已知的遗传毒性。
直到解决了这所有问题后 EMA才恢复了它在欧洲的市场授权。
近年来各国的法规机构如ICH、FDA、EMA等都对基因毒性杂质有了更明确的要求,越来越多的药企在新药研发过程中就着重关注基因毒性杂质的控制和检测。
3哪些化合物是基因毒性杂质杂质的结构多种多样,对于绝⼤多数的杂质⽽⾔,往往没有充分的毒性或致癌研究数据,因⽽难以对其进⾏归类。
关于药物中的基因毒性杂质众所周知,药物并⾮纯净物质,其在⽣产贮运过程中常常会引⼊或产⽣“杂质”,⽽由于杂质的存在,⼜往往会带来潜在的安全性问题,所以科研⼈员通常需要在充分研究的基础上对杂质加以有效控制。
⽽基因毒性杂质危害性⼤,需要严格控制其在药物中的限度,保障⽤药安全。
基因毒性杂质的检测⾯临杂质种类多和化学性质活泼等问题,分析⽅法复杂多样,从⽽对药物中基因毒性杂质的检测⽅法提出了很⾼的要求。
⼀、基因毒性杂质基因毒性杂质( genotoxic impurity,GTI) 定义为“经过适当遗传毒性实验模型,如细菌基因突变( Ames) 实验,证实具有遗传毒性的杂质”。
其主要包括PGLS( potentially genotoxic impurities有潜在基因毒性的杂质)和GTLs( genotoxic impurities基因毒性杂质)两种。
基因毒性杂质可能从基因突变、染⾊体畸变、DNA 损伤与修复等⼏个⽅⾯同DNA 发⽣直接或间接的相互作⽤,从⽽改变DNA 结构与构象或引起DNA 的损伤,进⽽影响DNA的功能或改变其遗传特性,最终引起突变、癌变、畸变等遗传毒性。
新药合成、原料纯化、储存运输〔与包装物接触)等过程都可能产⽣基因毒性杂质,故⽽,近年来药审机构及研发⼈员对其愈发关注!各国药品监督管理部门对药物中基因毒性杂质的控制出台了⼀系列的指导⽂件,旨在严格控制该类杂质在药物中的限度。
⼆、有关基因性杂质的参考指南1.EMEA(欧洲药品管理局)2000年,欧洲监管机构率先开始关注基因毒性杂质,Pharm Europa发表了⼀篇⽂章,提到注意在成盐⼯艺中,磺酸在⼄醇溶液中形成磺酸酯的潜在风险。
2002年,专利药物委员会(CPMP,现为⼈⽤药物委员会CHMP)发布了⼀份关于基因毒性杂质的意见书,指南中将基因毒性杂质的限度根据有⽆阈值分为两类。
2006年⾸先颁布了《基因毒性杂质限度指南》,并⾃2007年1⽉1⽇起正式实施。
基因毒性杂质研究方案基因毒性杂质研究是一种评估化学物质的潜在基因毒性的方法。
基因毒性杂质可以通过直接损害DNA或干扰DNA复制和修复过程来引发基因突变。
这些基因突变可能导致细胞死亡、肿瘤形成和遗传疾病。
为了研究基因毒性杂质,我们可以采用以下研究方案:1. 确定研究对象:选择一种潜在的基因毒性杂质,如化学物质或药物。
根据已有的文献和实验证据,确定该物质可能对基因产生毒性影响。
2. 毒性评估:使用细胞培养模型对潜在的基因毒性杂质进行毒性评估。
选择常用的细胞系,如人类肝细胞或小鼠胚胎细胞。
暴露这些细胞系于不同浓度的基因毒性杂质,并评估其对细胞的毒性效应,如细胞死亡率、增殖能力和DNA损伤。
通过比较不同浓度下的效应,可以确定该基因毒性杂质的剂量依赖性。
3. 潜在的基因突变:通过分析细胞培养后的DNA样本,使用一系列分子生物学技术来检测潜在的基因突变。
例如,可以使用聚合酶链式反应(PCR)来扩增特定基因区域,并使用DNA测序来鉴定突变位点。
还可以利用单细胞凝胶电泳(COMET)分析来检测DNA损伤和碱基修复的能力。
这些技术可以帮助确定基因毒性杂质对DNA的直接损害以及细胞的修复能力。
4. 基因表达分析:使用转录组测序技术来评估基因毒性杂质对基因表达的影响。
通过比较暴露于基因毒性杂质的细胞和未暴露的对照细胞,可以鉴定潜在的差异表达基因。
这些差异表达基因可能与基因毒性杂质相关的毒性途径和生物学效应有关。
5. 分析结果的解释:根据实验数据,进行数据统计和生物信息学分析,以解释实验结果。
这可能涉及到寻找共同受影响的信号通路、寻找注释基因和分析基因表达调控网络。
通过以上研究方案,我们可以全面地评估基因毒性杂质的作用机制和潜在的风险。
这些研究结果可以为药物开发和环境毒理学领域提供重要的参考,帮助保护人类和环境健康。
基因毒性杂质限度指南(中英文对照)London, 28 June 2006CPMP/SWP/5199/02EMEA/CHMP/QWP/251344/2006TABLE OF CONTENTS 目录EXECUTIVE SUMMARY 内容摘要............................................................................. .. (3)1. INTRODUCTION 介绍............................................................................. . (3)2. SCOPE 范围 ............................................................................ (3)3. LEGAL BASIS法律依据............................................................................. . (3)4. TOXICOLOGICAL BACKGROUND 毒理学背景 (4)5. RECOMMENDATIONS 建议............................................................................. (4)5.1 Genotoxic Compounds With Sufficient Evidence for a Threshold-Related Mechanism具有充分证据证明其阈值相关机理的基因毒性化合物 (4)5.2 Genotoxic Compounds Without Sufficient Evidence for a Threshold-Related Mechanism不具备充分证据支持其阈值相关机理的基因毒性化合物 (5)5.2.1 Pharmaceutical Assessment药学评价............................................................................. .. (5)5.2.2 Toxicological Assessment毒理学评价............................................................................. (5)5.2.3 Application of a Threshold of Toxicological Concern 毒理学担忧阈值应用 (5)5.3 Decision Tree for Assessment of Acceptability of Genotoxic Impurities基因毒性杂质可接受性评价决策树............................................................................. . (7)REFERENCES. 参考文献............................................................................. .. (8)EXECUTIVE SUMMARY 内容摘要The toxicological assessment of genotoxic impurities and the determination of acceptable limits for such impurities in active substances is a difficult issue and not addressed in sufficient detail in the existing ICH Q3X guidances. The data set usually available for genotoxic impurities is quite variable and is the main factor that dictates the process used for the assessment of acceptable limits. In the absence of data usually needed for the application of one of the established risk assessment methods, i.e. data from carcinogenicity long-term studies or data providing evidence for a threshold mechanism of genotoxicity, implementation of a generally applicable approach as defined by the Threshold of Toxicological Concern (TTC) is proposed.A TTC value of 1.5 μg/day intake of a genotoxic impurity is considered to be associated with an acceptable risk (excess cancer risk of <1 in 100,000 over a lifetime) for most pharmaceuticals. From this threshold value, a permitted level in the active substance can be calculated based on the expected daily dose. Higher limits may be justified under certain conditions such as short-term exposure periods.基因毒性杂质的毒理学评估和这些杂质在活性药物中的可接受标准的测定是一件困难的事情,并且在现有的ICH Q3X指南中也没有详细的规定。