1.2 30°,45°,60°角的三角函数值
- 格式:ppt
- 大小:3.16 MB
- 文档页数:27
北师大版数学九年级下册1.2《30、45、60的三角函数值》教案一. 教材分析《30、45、60的三角函数值》是北师大版数学九年级下册第1章第2节的内容。
本节课主要让学生掌握特殊角度30°、45°、60°的三角函数值,并能够运用这些值解决实际问题。
这一内容是学生学习三角函数的基础,对于培养学生的数学思维能力和解决问题的能力具有重要意义。
二. 学情分析九年级的学生已经学习了锐角三角函数的概念,对三角函数有一定的理解。
但是,对于特殊角度的三角函数值,学生可能还不太熟悉。
因此,在教学过程中,需要引导学生通过观察、实践、探究来发现和总结这些特殊角度的三角函数值,并能够熟练运用。
三. 教学目标1.知识与技能:使学生掌握特殊角度30°、45°、60°的三角函数值,能够运用这些值解决实际问题。
2.过程与方法:通过观察、实践、探究等活动,培养学生的数学思维能力和解决问题的能力。
3.情感态度与价值观:激发学生对数学的兴趣,培养学生的团队合作意识。
四. 教学重难点1.重点:特殊角度30°、45°、60°的三角函数值。
2.难点:如何引导学生发现和总结这些特殊角度的三角函数值。
五. 教学方法1.引导发现法:通过引导学生观察、实践、探究,让学生自主发现和总结特殊角度的三角函数值。
2.小组合作学习:学生进行小组讨论和实践,培养学生的团队合作意识和沟通能力。
六. 教学准备1.教具:三角板、直尺、量角器。
2.教学素材:与特殊角度三角函数值相关的例题和练习题。
七. 教学过程1.导入(5分钟)利用复习提问的方式导入新课。
提问学生已知的锐角三角函数的概念和值,引导学生回忆已学知识,为新课的学习做好铺垫。
2.呈现(10分钟)教师通过展示三角板,引导学生观察和发现特殊角度30°、45°、60°的三角函数值。
让学生亲自动手测量和观察,总结这些特殊角度的三角函数值。
九年级第一学期数学导学案执笔人:慕凌霄 学校: 红中 审核人:____ 使用人:____集体备课批注栏一、课题:§1.2 30°、45°、60°角的三角函数值 二、学习目标:1.经历30°、45°、60°角的三角函数值的探索,进一步体会三角函数的意义.2.能够进行30°、45°、60°角的三角函数值的计算.3.能够根据30°、45°、60°的三角函数值说明相应的锐角的大小. 三、学习重点1.探索30°、45°、60°角的三角函数值.2.能够进行含30°、45°、60°角的三角函数值的计算.3.比较锐角三角函数值的大小. 四、学习难点进一步体会三角函数的意义. 课堂导学过程设计预习案一、 温故知新如图所示,在Rt △ABC 中,∠C =90°.①斜边)(sin =A =______, 斜边)(sin =B =______; ②斜边)(cos =A =______,斜边)(cos =B =______;③的邻边A A ∠=)(tan =______,)(tan 的对边B B ∠==______.探究案二、 导学释疑探究一:30°、45°、60°角的三角函数值的探索[问题] 1、观察一副三角尺,其中有几个锐角?它们分别等于多少度? [问题] 2、sin30°等于多少呢?你是怎样得到的?与同伴交流. [问题] 3、cos30°等于多少?tan30°呢?[问题] 4、我们求出了30°角的三个三角函数值,还有两个特殊角——45°、60°,它们的三角函数值分别是多少?你是如何得到的?探究二:完成表格三角函数 角 度sin α co α tan α 30° 45° 60°探究三:规律总结(1)锐角的正弦函数值随角度的增大而______; (2)锐角的余弦函数值随角度的增大而______. (3)锐角的正切函数值随角度的增大而______;训练案三、巩固提升1、计算:(1)sin30°+cos45°; (2)sin 260°+cos 260°-tan45°;(3)o 45cos 230sin 2-︒ ; (4)︒+︒60cos 60sin 22.2、一个小孩荡秋千,秋千链子的长度为2.5 m ,当秋千向两边摆动时,摆角恰好为60°,且两边的摆动角度相同,求它摆至最高位置时与其摆至最低位置时的高度之差.(结果精确到0.01 m)四、课堂小结通过这节课的学习你有什么收获?五、走进中考1、Rt △ABC 中,8,60=︒=∠c A ,则__________,==b a ;2、在△ABC 中,若2,32==b c ,,则____tan =B ,面积S = ;3、在△ABC 中,AC :BC =1:3,AB =6,∠B = ,AC = BC =4、等腰三角形底边与底边上的高的比是3:2,则顶角为 ( ) (A )600(B )900(C )1200(D )1500六、布置作业1.必做:P13习题4.第1、3题2.选做:P13习题4.第2、4.题(二选一)反思:。
第一章 直角三角形的边角关系九 年 级 数 学(下) 教 学 设 计课 型 新 授 主 备:刘爱萍 修改:课 题 :1.2 30°、45°、60°角的三角函数值教学目标: 1.经历探索30°、45°、60°角的三角函数值的过程,能够进行有关的推理.进一步体会三角函数的意义.2.能够进行30°、45°、60°角的三角函数值的计算.3.能够根据30°、45°、60°的三角函数值说明相应的锐角的大小.教学重点:1.探索30°、45°、60°角的三角函数值.2.能够进行含30°、45°、60°角的三角函数值的计算. 教学难点:进一步体会三角函数的意义. 一、课前预习:自学10--12页,1、看懂例题;2、完成11页表格二、课内检测 1、如图1,在Rt ⊿ABC 中,写出锐角A,的三角函数sinA= cosA= tanA=2、如图2,在Rt ⊿ABC 中,锐角A=30°,∠C =90°,BC=1,则sin30°= cos30°= tan30°=3、如图3,在Rt ⊿ABC 中,锐角A=45°,∠C =90°,BC=1,则 Sin45°= cos45°= tan45°=4、如图4,在Rt ⊿ABC 中,锐角A=60°,∠C =90°,BC=1,则Sin60°= cos60°= tan60°=三、合作探究 探究一:特殊角的三角函数值1、观察一副三角尺,其中有几个锐角?它们分别等于多少度?2、sin30°等于多少呢?你是怎样得到的?与同伴交流.3、cos30°等于多少?tan30°呢?4、我们求出了30°角的三个三角函数值,还有两个特殊角——45°、60°,它们的三角函数值分别是多少?你是如何得到的?56、当∠α逐渐增大时,sin α逐渐________,cos α逐渐_____ , tan α逐渐______ 结论:(1)角度增大时, 正弦、正切值增大;余弦、余切值减小;练习:(1)sin30°+cos45°; (2)sin 260°+cos 260°-tan45°. 注意:sin 2600表示(sin600)2, cos 2600表示(cos600)2, 其余类推.B bBa ┌ c探究二:一个小孩荡秋千,秋千链子的长度为2.5 m ,当秋千向两边摆动时,摆角恰好为60°,且两边的摆动角度相同,求它摆至最高位置时与其摆至最低位置时的高度之差.(结果精确到0.01 m)导学:最高位置在点D 处,最低位置在点A 处,这两个位置的高度之差就是CA 的长度,在Rt ⊿OCD 中,根据cos 30°=ODOC,得OC= cos 30·OD , 求出OC 。
北师大版数学九年级下册1.2《30、45、60的三角函数值》教学设计一. 教材分析北师大版数学九年级下册1.2《30、45、60的三角函数值》是三角函数基础知识的学习,本节课主要让学生了解特殊角的三角函数值,并通过实际问题引出三角函数的概念。
教材通过生活中的实例,引导学生探究并掌握30°、45°、60°角的正弦、余弦、正切函数值,培养学生动手操作、合作交流的能力。
二. 学情分析九年级的学生已经具备了一定的几何知识,对特殊角的三角函数值有一定的了解。
但学生对三角函数的概念和应用可能还比较模糊,因此,在教学过程中,教师需要通过生动形象的实例,引导学生理解和掌握三角函数的概念,以及30°、45°、60°角的三角函数值。
三. 教学目标1.了解三角函数的概念,理解30°、45°、60°角的正弦、余弦、正切函数值。
2.能够运用三角函数解决实际问题。
3.培养学生的动手操作能力、合作交流能力。
四. 教学重难点1.重点:掌握30°、45°、60°角的正弦、余弦、正切函数值。
2.难点:理解三角函数的概念,并能运用三角函数解决实际问题。
五. 教学方法1.情境教学法:通过生活中的实例,引导学生理解和掌握三角函数的概念。
2.合作学习法:引导学生分组讨论,共同探究30°、45°、60°角的三角函数值。
3.实践操作法:让学生动手操作,实际测量特殊角的三角函数值。
六. 教学准备1.准备相关的生活实例,用于引导学生理解三角函数的概念。
2.准备三角板、直尺等测量工具,让学生实际测量特殊角的三角函数值。
3.准备课堂练习题,用于巩固所学知识。
七. 教学过程1.导入(5分钟)教师通过一个生活中的实例,如修建楼房时,工人师傅需要知道楼高是否符合要求,引入三角函数的概念。
引导学生思考:如何计算楼高?引出本节课的主题——特殊角的三角函数值。
§1.2 30°,45°,60°角的三角函数值 教学目标 (一)知识与技能 1.经历探索 30°、45°、60°角的三角函数值的过程,能 够实行相关的推理,进一步体会三角函数的意义. 2.能够实行 30°、45°、60°角的三角函数值的计算. 3.能够根据 30°、45°、60°的三角函数值说明相对应的 锐角的大小. 1.经历探索 30°、45°、60°角的三角函数值的过程,培 养学生观察、分析、发现的水平. 2.培养学生把实际问题转化为数学问题的水平. (三)情感与价值观 1.积极参与数学活动,对数学产生好奇心,培养学生独立 思考问题的习惯. 2.在数学活动中获得成功的体验,锻炼克服困难的意志, 建立自信心. 教学重点 1.探索 30°、45°、60°角的三角函数值. 2.能够实行含 30°、45°、60°角的三角函数值的计算. 3.比较锐角三角函数值的大小. 教学难点进一步体会三角函数的意义. 教学方法 自主探索法 教学过程 一.创设问题情境,引入新课 [问题]为了测量一棵大树的高度,准备了如下测量工具:① 含 30°和 60°两个锐角的三角尺;②皮尺.请你设计一个测量 方案,能测出一棵大树的高度. [生]我们组设计的方案如下:让一位同学拿着三角尺站在一个适当的位置 B 处,使这位同 学拿起三角尺,她的视线恰好和斜边重合且过树梢 C 点,30°的 邻边和水平方向平行,用卷尺测出 AB 的长度,BE 的长度,因为 DE=AB,所以只需在 Rt△CDA 中求出 CD 的长度即可.[生]在 Rt△ACD 中,∠CAD=30°,AD=BE,BE 是已知的, 设 BE=a 米,则 AD=a 米,如何求 CD 呢?[生]含 30°角的直角三角形有一个非常重要的性质:30°的 角所对的边等于斜边的一半,即 AC=2CD,根据勾股定理,(2CD)2 =CD2+a2,CD= 3 a.3则树的高度即可求出. [师]我们前面学习了三角函数的定义,如果一个角的大小确 定,那么它的正切、正弦、余弦值也随之确定,如果能求出 30° 的正切值,在上图中,tan30°= CD CD ,则 CD=atan30°,岂AD a不简单. 你能求出 30°角的三个三角函数值吗? 二.讲授新课 1.探索 30°、45°、60°角的三角函数值. [师]观察一副三角尺,其中有几个锐角?它们分别等于多少度? [生]一副三角尺中有四个锐角,它们分别是 30°、60°、45°、45°. [师]sin30°等于多少呢?你是怎样得到的?与同伴交流. [生]sin30°= 1 .sin30°表示在直角三角形中,30°角的对2边与斜边的比值,与直角三角形的大小无关.我们不妨设 30°角 所对的边为 a(如图所示),根据“直角三角形中 30°角所对的边 等于斜边的一半”的性质,则斜边等于 2a.根据勾股定理,可知 30°角的邻边为 3 a,所以 sin30°= a 1 .2a 2[师]cos30°等于多少?tan30°呢?[生]cos30°= 3a 3 .2a 2tan30°= a 1 3 .3a 3 3[师]我们求出了 30°角的三个三角函数值,还有两个特殊角— —45°、60°,它们的三角函数值分别是多少?你是如何得到的?[生]求 60°的三角函数值能够利用求 30°角三角函数值的三 角形.因为 30°角的对边和邻边分别是 60°角的邻边和对边.利 用上图,很容易求得sin60°= 3a 3 ,2a 2cos60°= a 1 ,2a 2tan60°= 3a 3 .a[生]也能够利用上节课我们得出的结论:一锐角的正弦等于 它余角的余弦,一锐角的余弦等于它余角的正弦.可知sin60°=cos(90°-60°)=cos30°= 3 ,2cos60°=sin(90°-60°)=sin30°= 1 .2[师生共析]我们一同来求 45°角的三角函数值.含 45°角的直角三角形是等腰直角三角形.(如图)设其中一条直角边为 a,则 另一条直角边也为 a,斜边为 2 a.由此可求得sin45°= a 1 2 ,2a 2 2cos45°= a 1 2 ,2a 2 2tan45°= a =1.a[师]下面请同学们完成下表(用多媒体演示)30°、45°、60°角的三角函数值三角函数角sctinosanααα130°2245°21360°2这个表格中的 30°、45°、60°角的三角函数值需熟记,另 一方面,要能够根据 30°、45°、60°角的三角函数值,说出相 应的锐角的大小.为了帮助大家记忆,我们观察表格中函数值的特点.先看第 一列 30°、45°、60°角的正弦值,你能发现什么规律呢?[生]30°、45°、60°角的正弦值分母都为 2,分子从小到大 分别为 1, 2 , 3 随着角度的增大,正弦值在逐渐增大.[师]再来看第二列函数值,有何特点呢? [生]第二列是 30°、45°、60°角的余弦值,它们的分母也 都是 2,而分子从大到小分别为 3 , 2 ,1,余弦值随角度的增 大而减小. [师]第三列呢? [生]第三列是 30°、45°、60°角的正切值,首先 45°角是 等腰直角三角形中的一个锐角,所以 tan45°=1 比较特殊. [师]很好,掌握了上述规律,记忆就方便多了.下面同桌之 间可互相检查一下对 30°、45°、60°角的三角函数值的记忆情 况.相信同学们一定做得很棒. 2.例题讲解(多媒体演示) [例 1]计算: (1)sin30°+cos45°; (2)sin260°+cos260°-tan45°.分析:本题旨在帮助学生巩固特殊角的三角函数值,今后若无特别说明,用特殊角三角函数值进行计算时,一般不取近似值, 另外 sin260°表示(sin60°)2,cos260°表示(cos60°)2.解:(1)sin30°+cos45°= 1 2 1 2 ;222(2)sin260°+cos260°-tan45°=( 3 )2+( 1 )2-122= 3 1 -144=0.[例 2]一个小孩荡秋千,秋千链子的长度为 2.5m,当秋千向两边摆动时,摆角恰好为 60°,且两边的摆动角度相同,求它摆至最高位置时与其摆至最低位置时的高度之差.(结果精确到0.01m) 分析:引导学生根据题意画出示意图,培养学生把实际问题转化为数学问题的能力. 解:根据题意(如图)可知,∠BOD=60°,OB=OA=OD=2.5m,∠AOD= 1 ×60°=30°,∴OC=OD·cos30°=2.5× 322≈2.165(m).∴AC=2.5-2.165≈0.34(m). 所以,最高位置与最低位置的高度约为 0.34m. 三.随堂练习多媒体演示 1.计算: (1)sin60°-tan45°; (2)cos60°+tan60°;(3) 2 sin45°+sin60°-2cos45°.2解:(1)原式= 3 -1= 3 2 ;22(2)原式= 1 3 1 2 3 ;22(3)原式= 2 2 3 2 2 ;22 22=1 3 2 2 .22.某商场有一自动扶梯,其倾斜角为 30°,高为 7m,扶梯的长度是多少? 解:扶梯的长度为 7 7 =14(m),sin 30 1 2所以扶梯的长度为 14m. 四.课堂小结 本节课总结如下:(1)探索 30°、45°、60°角的三角函数值.sin30°= 1 ,sin45°= 2 ,sin60°= 3 ;222cos30°= 3 ,cos45°= 2 ,cos60°= 1 ;222tan30°= 3 ,tan45°=1,tan60°= 3 .3(2)能进行含 30°、45°、60°角的三角函数值的计算. (3)能根据 30°、45°、60°角的三角函数值,说出相应锐角 的大小.五.课后作业 习题 1.3 第 1、2 题 课后反思。
第三课时 §1.2 30°,45°,60°角的三角函数值教学目标 知识与能力目标能够进行有关的推理.进一步体会三角函数的意义.会进行30°、45°、60°角的三角函数值的计算.能够根据30°、45°、60°的三角函数值说明相应的锐角的大小. 过程与方法目标通过自主探索经历探索30°、45°、60°角的三角函数值的过程,发展学生观察、分析、发现的能力.培养学生把实际问题转化为数学问题的能力. 情感与价值观要求通过数学活动,产生好奇心.培养学生独立思考问题的习惯,锻炼克服困难的意志,建立学好数学自信心. 教学重点探索30°、45°、60°角的三角函数值; 含30°、45°、60°角的三角函数值的计算;锐角三角函数值的大小比较. 教学难点进一步体会三角函数的意义. 教学过程创设问题情境,引入新课[问题]为了测量一棵大树的高度,准备了如下测量工具:①含30°和60°两个锐角的三角尺;②皮尺.请你设计一个测量方案,能测出一棵大树的高度.让一位同学拿着三角尺站在一个适当的位置B 处,使这位同学拿起三角尺,她的视线恰好和斜边重合且过树梢C 点,30°的邻边和水平方向平行,用卷尺测出AB 的长度,BE 的长度,因为DE=AB ,所以只需在Rt △CDA 中求出CD 的长度即可.提示:在Rt △ACD 中,∠CAD =30°,AD =BE ,BE 是已知的,设BE=a 米,则AD =a 米,如何求CD 呢?含30°角的直角三角形有一个非常重要的性质:30°的角所对的边等于斜边的一半,即AC =2CD ,根据勾股定理,(2CD)2=CD 2+a 2.CD =33a.则树的高度即可求出. [师]我们前面学习了三角函数的定义,如果一个角的大小确定,那么它的正切、正弦、余弦值也随之确定,如果能求出30°的正切值,在上图中,tan30°=aCDAD CD ,则CD=atan30°,岂不简单.你能求出30°角的三个三角函数值吗?师生互动、学习新课 1.探索30°、45°、60°角的三角函数值.一副三角尺中有四个锐角,它们分别是30°、60°、45°、45°.sin30°等于多少呢?你是怎样得到的?与同伴交流.sin30°=212=a a . cos30°=2323=a a .tan30°=33313==a a 2、45°、60°,它们的三角函数值分别是多少?你是如何得到的? sin60°=2323=a a , cos60°=212=a a ,tan60°=33=a a. 也可以利用上节课我们得出的结论:一锐角的正弦等于它余角的余弦,一锐角的余弦等于它余角的正弦.可知sin60°=cos(90°-60°)=cos30°=23cos60°=sin(90°-60°)=sin30°=21.[师生共析]我们一同来求45°角的三角函数值.含45°角的直角三角形是等腰直角三角形.(如图)设其中一条直角边为a ,则另一条直角边也为a ,斜边2a.由此可求得 sin45°=22212==a a , cos45°=22212==a a , tan45°=1=a a [师]下面请同学们完成下表(用多媒体演示)够根据30°、45°、60°角的三角函数值,说出相应的锐角的大小.为了帮助大家记忆,我们观察表格中函数值的特点.先看第一列30°、45°、60°角的正弦值,你能发现什么规律呢? 2.例题讲解 [例1]计算:(1)sin30°+cos45°;(2)sin 260°+cos 260°-tan45°.分析:本题旨在帮助学生巩固特殊角的三角函数值,今后若无特别说明,用特殊角三角函数值进行计算时,一般不取近似值,另外sin 260°表示(sin60°)2,cos 260°表示(cos60°)2.解:(1)sin30°+cos45°=2212221+=+,(2)sin 260°+cos 260°-tan45° =(23)2+(21)2-1=43 +41 -1=0.[例2]一个小孩荡秋千,秋千链子的长度为2.5 m ,当秋千向两边摆动时,摆角恰好为60°,且两边的摆动角度相同,求它摆至最高位置时与其摆至最低位置时的高度之差.(结果精确到0.01 m)分析:引导学生自己根据题意画出示意图,培养学生把实际问题转化为数学问题的能力.解:根据题意(如图)可知,∠BOD=60°,OB=OA =OD=2.5 m ,∠AOD =21×60°=30°,∴OC=OD ·cos30°=2.5×23≈2.165(m).∴AC =2.5-2.165≈0.34(m).所以,最高位置与最低位置的高度约为 0.34 m随堂练习 1.计算:(1)sin60°-tan45°;(2)cos60°+tan60°;(3)22sin45°+sin60°-2cos45°. 解:(1)原式=23-1=223-; (2)原式=21+=23213+=(3)原式=22×22+23×22;=22231-+ 2.某商场有一自动扶梯,其倾斜角为30°.高为7 m ,扶梯的长度是多少?解:扶梯的长度为21730sin 7=︒=14(m),所以扶梯的长度为14 m.归纳提炼本节课总结如下:(1)探索30°、45°、60°角的三角函数值. sin30°=21,sin45°=22,sin60°=23; cos30°=23,cos45°= 22,cos60°=21;tan30°=33,tan45°=1,tan60°=3. (2)能进行含30°、45°、60°角的三角函数值的计算.(3)能根据30°、45°、60°角的三角函数值,说出相应锐角的大小. 课后作业习题1.3第1、2题 活动与探究(2003年甘肃)如图为住宅区内的两幢楼,它们的高AB =CD=30 m ,两楼问的距离AC=24 m ,现需了解甲楼对乙楼的采光影响情况.当太阳光与水平线的夹角为30°时,求甲楼的影子在乙楼上有多高?(精确到0.1 m ,2≈1.41,3≈1.73)[过程]根据题意,将实际问题转化为数学问题,当光线从楼顶E ,直射到乙楼D 点,D 点向下便接受不到光线,过D 作DB ⊥AE(甲楼).在Rt △BDE 中.BD=AC =24 m ,∠EDB =30°.可求出BE ,由于甲、乙楼一样高,所以DF=BE. [结果]在Kt △BDE 中,BE=DB ·tan30°=24×33=83m. ∵DF =BE ,∴DF=83≈8×1.73=13.84(m).甲楼的影子在乙楼上的高CD=30-13.84≈16.2(m). 备课资料 参考练习1.(2003年北京石景山)计算:13230sin 1+-︒. 答案:3-32.(2003年北京崇文)汁算:(2+1)-1+2sin30°-8 答案:-23.(2003年广东梅州)计算:(1+2)0-|1-sin30°|1+(21)-1. 答案:254. (2003 年广西)计算:sin60°+︒-60tan 11答案:-215.(2003年内蒙古赤峰)计算;2-3-(0032+π)0-cos60°-211-. 答案:-283+教学目标 (一)教学知识点1.经历用计算器由三角函数值求相应锐角的过程,进一步体会三角函数的意义.2.能够利用计算器进行有关三角函数值的计算.3.能够运用计算器辅助解决含三角函数值计算的实际问题.(二)能力训练要求1.借助计算器,解决含三角函数的实际问题,提高用现代工具解决实际问题的能力.2.发现实际问题中的边角关系,提高学生有条理地思考和表达能力.(三)情感与价值观要求1.积极参与数学活动,体会解决问题后的快乐.2.形成实事求是的严谨的学习态度.教学重点1.用计算器由已知三角函数值求锐角.2.能够用计算器辅助解决含三角函数值计算的实际问题.教学难点用计算器辅助解决含三角函数值计算的实际问题.教具方法探究——引导——发现.教学准备计算器多媒体演示教学过程Ⅰ.创设问题情境,引入新课[师]随着人民生活水平的提高,农用小轿车越来越多,为了交通安全,某市政府要修建10 m高的天桥,为了方便行人推车过天桥,需在天桥两端修建40m长的斜道.(如图所示,用多媒体演示)这条斜道的倾斜角是多少[生]在Rt△ABC中,BC=10 m,AC=40 m,sinA=.可是我求不出∠A.[师]我们知道,给定一个锐角的度数,这个锐角的三角函数值都唯一确定.给定一个锐角的三角函数值,这个锐角的大小也唯一确定吗 为什么[生]我们曾学习过两个直角三角形的判定定理——HL定理.在上图中,斜边AC和直角边BC是定值,根据HL定理可知这样的直角三角形形状和大小是唯一确定的,当然∠A 的大小也是唯一确定的.[师]这位同学能将前后知识联系起来很有条理地解释此问题,很不简单.我们知道了sinA=时,锐角A是唯一确定的.现在我要告诉大家的是要解决这个问题,我们可以借助于科学计算器来完成.这节课,我们就来学习如何用科学计算器由锐角三角函数值求相应锐角的大小.Ⅱ.讲授新课1.用计算器由锐角三角函数值求相应锐角的大小.[师]已知三角函数求角度,要用到、键的第二功能、、”和键.键的第二功能“sin-1,cos-1,tan-1”和 键例如:已知sinA=0.9816,求锐角A,已知cosA=0.8607,求锐角A;已知tanA:0.1890,求锐角A;已知tanA=56.78,求锐角A.按键顺序如下表.(多媒体演示)sinA=0.9816tanA=0.1890tinA=0.56.78上表的显示结果是以“度”为单位的.再按键即可显示以“度、分、秒”为单位的结果.(教学时,给学生以充分交流的时间和空间,教师要引导学生根据自己使用的计算器,探索具体操作步骤)[师]你能求出上图中∠A的大小吗[生]sinA==0.25.按键顺序为,显示结果为14.47751219°,再按键可显示14°28′39′.所以∠A=14°28′39′.[师]很好.我们以后在用计算器求角度时如果无特别说明,结果精确到1′即可.你还能完成下列已知三角函数值求角度的题吗 (多媒体演示)1.根据下列条件求锐角θ的大小:(1)tanθ=2.9888;(2)sinθ=0.3957;(3)cosθ=0.7850;(4)tanθ=0.8972;(5)sinθ=;(6)cosθ=;(7)tanθ=22.3;(H)tanθ=;(9)sinθ=0.6;(10)cosθ=0.2.2.某段公路每前进100米,路面就升高4米,求这段公路的坡角.(请同学们完成后,在小组内讨论、交流.教师巡视,对有困难的学生予以及时指导) [生)1.解:(1)θ=71°30′2′;(2)θ=23°18′35′;(3)θ=38°16′46′;(4)θ=41°53′54′;(5)θ=60°;(6)θ=30°;(7)θ=87°25′56′;(8)θ=60°;(9)θ=36°52′12′;(10)θ=78°27′47′.2.解:设坡角为α,根据题意,sinα==0.04,α=2°17′33′.所以这段公路的坡角为2°17′33′.2.运用计算器辅助解决含三角函数值计算的实际问题.多媒体演示[例1]如图,工件上有-V形槽.测得它的上口宽加20 mm深19.2mm。
BB1.2、30°、45°、60°角的三角函数值学习目标1.经历探索30°、45°、60°角的三角函数值的过程,能够进行有关的推理,进一步体会三角函数的意义。
2.能够进行30°、45°、60°角的三角函数值的计算3.能够根据30°、45°、60°的三角函数值说明相应的锐角的大小知识储备1、如图所示在 Rt△ABC中,∠C=90°。
(1)a、b、c三者之间的关系是,∠A+∠B= 。
(2)sinA= ,cosA= ,tanA= 。
sinB= ,cosB= ,tanB= 。
(3)若A=30°,则 = 。
新知导学利用右图结合三角函数的定义推导:30°、45°、60°角的三角函数值:sin30°= cos30°= tan30°=sin45°= cos45°= tan45°=sin60°= cos60°= tan60°=2、总结归纳:(1)看第一列30°、45°、60°角的正弦值,你能发现什么规律呢?(2)再次观察表格,你还能发现什么?从下列两个方面考虑a 、随着角度的增加,正弦、余弦、正切值的变化情况。
b 、若对于锐角α有sin α=12或2 或2,则 α= . sin αcos αtan α思考: 分析P1表格数据 (说明:22sin (sin )A A =)1、2sin 30︒= 2sin 45︒= 2sin 60︒= 2cos 30︒= 2cos 45︒= 2cos 60︒=由以上值有何特点?2、在ABC Rt ∆中,∠C 为直角,对任意锐角A ,sin ,sin ,cos ,cos ,tan ,tan A B A B A B 有何关系?【典例解析】例1、填空:(1)已知∠A 是锐角,且cosA = A = °,sinA = ;(2)已知∠B 是锐角,且2cosB= 1,则∠B = °;(3)已知∠A 是锐角,且3tan 0A =,则∠A = °例2、在Rt △ABC 中,∠C = 90°,c a 32=,求c a,∠B 、∠A 。