1.2 30°,45°,60°角的三角函数值
- 格式:ppt
- 大小:3.16 MB
- 文档页数:27
北师大版数学九年级下册1.2《30、45、60的三角函数值》教案一. 教材分析《30、45、60的三角函数值》是北师大版数学九年级下册第1章第2节的内容。
本节课主要让学生掌握特殊角度30°、45°、60°的三角函数值,并能够运用这些值解决实际问题。
这一内容是学生学习三角函数的基础,对于培养学生的数学思维能力和解决问题的能力具有重要意义。
二. 学情分析九年级的学生已经学习了锐角三角函数的概念,对三角函数有一定的理解。
但是,对于特殊角度的三角函数值,学生可能还不太熟悉。
因此,在教学过程中,需要引导学生通过观察、实践、探究来发现和总结这些特殊角度的三角函数值,并能够熟练运用。
三. 教学目标1.知识与技能:使学生掌握特殊角度30°、45°、60°的三角函数值,能够运用这些值解决实际问题。
2.过程与方法:通过观察、实践、探究等活动,培养学生的数学思维能力和解决问题的能力。
3.情感态度与价值观:激发学生对数学的兴趣,培养学生的团队合作意识。
四. 教学重难点1.重点:特殊角度30°、45°、60°的三角函数值。
2.难点:如何引导学生发现和总结这些特殊角度的三角函数值。
五. 教学方法1.引导发现法:通过引导学生观察、实践、探究,让学生自主发现和总结特殊角度的三角函数值。
2.小组合作学习:学生进行小组讨论和实践,培养学生的团队合作意识和沟通能力。
六. 教学准备1.教具:三角板、直尺、量角器。
2.教学素材:与特殊角度三角函数值相关的例题和练习题。
七. 教学过程1.导入(5分钟)利用复习提问的方式导入新课。
提问学生已知的锐角三角函数的概念和值,引导学生回忆已学知识,为新课的学习做好铺垫。
2.呈现(10分钟)教师通过展示三角板,引导学生观察和发现特殊角度30°、45°、60°的三角函数值。
让学生亲自动手测量和观察,总结这些特殊角度的三角函数值。
九年级第一学期数学导学案执笔人:慕凌霄 学校: 红中 审核人:____ 使用人:____集体备课批注栏一、课题:§1.2 30°、45°、60°角的三角函数值 二、学习目标:1.经历30°、45°、60°角的三角函数值的探索,进一步体会三角函数的意义.2.能够进行30°、45°、60°角的三角函数值的计算.3.能够根据30°、45°、60°的三角函数值说明相应的锐角的大小. 三、学习重点1.探索30°、45°、60°角的三角函数值.2.能够进行含30°、45°、60°角的三角函数值的计算.3.比较锐角三角函数值的大小. 四、学习难点进一步体会三角函数的意义. 课堂导学过程设计预习案一、 温故知新如图所示,在Rt △ABC 中,∠C =90°.①斜边)(sin =A =______, 斜边)(sin =B =______; ②斜边)(cos =A =______,斜边)(cos =B =______;③的邻边A A ∠=)(tan =______,)(tan 的对边B B ∠==______.探究案二、 导学释疑探究一:30°、45°、60°角的三角函数值的探索[问题] 1、观察一副三角尺,其中有几个锐角?它们分别等于多少度? [问题] 2、sin30°等于多少呢?你是怎样得到的?与同伴交流. [问题] 3、cos30°等于多少?tan30°呢?[问题] 4、我们求出了30°角的三个三角函数值,还有两个特殊角——45°、60°,它们的三角函数值分别是多少?你是如何得到的?探究二:完成表格三角函数 角 度sin α co α tan α 30° 45° 60°探究三:规律总结(1)锐角的正弦函数值随角度的增大而______; (2)锐角的余弦函数值随角度的增大而______. (3)锐角的正切函数值随角度的增大而______;训练案三、巩固提升1、计算:(1)sin30°+cos45°; (2)sin 260°+cos 260°-tan45°;(3)o 45cos 230sin 2-︒ ; (4)︒+︒60cos 60sin 22.2、一个小孩荡秋千,秋千链子的长度为2.5 m ,当秋千向两边摆动时,摆角恰好为60°,且两边的摆动角度相同,求它摆至最高位置时与其摆至最低位置时的高度之差.(结果精确到0.01 m)四、课堂小结通过这节课的学习你有什么收获?五、走进中考1、Rt △ABC 中,8,60=︒=∠c A ,则__________,==b a ;2、在△ABC 中,若2,32==b c ,,则____tan =B ,面积S = ;3、在△ABC 中,AC :BC =1:3,AB =6,∠B = ,AC = BC =4、等腰三角形底边与底边上的高的比是3:2,则顶角为 ( ) (A )600(B )900(C )1200(D )1500六、布置作业1.必做:P13习题4.第1、3题2.选做:P13习题4.第2、4.题(二选一)反思:。
第一章 直角三角形的边角关系九 年 级 数 学(下) 教 学 设 计课 型 新 授 主 备:刘爱萍 修改:课 题 :1.2 30°、45°、60°角的三角函数值教学目标: 1.经历探索30°、45°、60°角的三角函数值的过程,能够进行有关的推理.进一步体会三角函数的意义.2.能够进行30°、45°、60°角的三角函数值的计算.3.能够根据30°、45°、60°的三角函数值说明相应的锐角的大小.教学重点:1.探索30°、45°、60°角的三角函数值.2.能够进行含30°、45°、60°角的三角函数值的计算. 教学难点:进一步体会三角函数的意义. 一、课前预习:自学10--12页,1、看懂例题;2、完成11页表格二、课内检测 1、如图1,在Rt ⊿ABC 中,写出锐角A,的三角函数sinA= cosA= tanA=2、如图2,在Rt ⊿ABC 中,锐角A=30°,∠C =90°,BC=1,则sin30°= cos30°= tan30°=3、如图3,在Rt ⊿ABC 中,锐角A=45°,∠C =90°,BC=1,则 Sin45°= cos45°= tan45°=4、如图4,在Rt ⊿ABC 中,锐角A=60°,∠C =90°,BC=1,则Sin60°= cos60°= tan60°=三、合作探究 探究一:特殊角的三角函数值1、观察一副三角尺,其中有几个锐角?它们分别等于多少度?2、sin30°等于多少呢?你是怎样得到的?与同伴交流.3、cos30°等于多少?tan30°呢?4、我们求出了30°角的三个三角函数值,还有两个特殊角——45°、60°,它们的三角函数值分别是多少?你是如何得到的?56、当∠α逐渐增大时,sin α逐渐________,cos α逐渐_____ , tan α逐渐______ 结论:(1)角度增大时, 正弦、正切值增大;余弦、余切值减小;练习:(1)sin30°+cos45°; (2)sin 260°+cos 260°-tan45°. 注意:sin 2600表示(sin600)2, cos 2600表示(cos600)2, 其余类推.B bBa ┌ c探究二:一个小孩荡秋千,秋千链子的长度为2.5 m ,当秋千向两边摆动时,摆角恰好为60°,且两边的摆动角度相同,求它摆至最高位置时与其摆至最低位置时的高度之差.(结果精确到0.01 m)导学:最高位置在点D 处,最低位置在点A 处,这两个位置的高度之差就是CA 的长度,在Rt ⊿OCD 中,根据cos 30°=ODOC,得OC= cos 30·OD , 求出OC 。