高三总复习55-二项式定理
- 格式:doc
- 大小:77.00 KB
- 文档页数:6
河北省二十冶综合学校高中分校高考数学总复习 二项式定理教案教学目标:掌握二项式定理和二项展开式的通项公式,能解决二项展开式有关的简单问题教学重点:二项式定理及通项公式的掌握及运用教学难点:二项式定理及通项公式的掌握及运用教学过程:一、复习引入:⑴22202122222()2a b a ab b C a C ab C b +=++=++;⑵33223031222333333()33a b a a b ab b C a C a b C ab C b +=+++=+++ ⑶4()()()()()a b a b a b a b a b +=++++= 。
二、讲解新课:⑴()na b +的展开式的各项都是n 次式,即展开式应有下面形式的各项: n a ,n a b ,…,n r r a b -,…,n b ,⑵展开式各项的系数:每个都不取b 的情况有1种,即0n C 种,n a 的系数是0n C ;恰有1个取b 的情况有1n C 种,n a b 的系数是1n C ,……,恰有r 个取b 的情况有r n C 种,n r r ab -的系数是r n C ,……, 有n 都取b 的情况有n n C 种,nb 的系数是n n C ,∴二项式定理: 。
这个公式所表示的定理叫二项式定理,右边的多项式叫()n a b +的 ,⑶它有 项,各项的系数(0,1,)r n C r n =叫 ,⑷ 叫二项展开式的通项,用 表示,即通项 .⑸二项式定理中,设1,a b x ==,则 。
三、讲解范例:例1.展开41(1)x +. 例2.求12()x a +的展开式中的倒数第4项例3.(1)求9(3x+的展开式常数项;展示一,展开6展示二.课本37页4题(1)(2)展示三,课本37页4题(3)(4)展示四.(1)求7(12)x +的展开式的第4项的系数; (2)求91()x x -的展开式中3x 的系数及二项式系数 展示五,课本37页5题(1)展示六,课本37页5题(2)。
高考数学复习考点知识专题讲解与训练专题52 二项式定理【考纲要求】1.了解“杨辉三角”的特征,掌握二项式系数的性质及其简单应用.2.掌握二项式定理,会用二项式定理解决有关的简单问题.【知识清单】知识点1. 二项式定理1. 二项式定理()()011*nn n r n r rn nn n n n a b C a C a b C a b C b n N --+=+++++∈,这个公式所表示的定理叫做二项式定理,右边的多项式叫做()n a b +的二项展开式,其中的系数r n C (0,1,2,3,,r n =)叫做二项式系数.式中的r n r r n C a b -叫做二项展开式的通项,用1r T +表示,即展开式的第1r +项;1r n r rr n T C a b -+=.2.二项展开式形式上的特点(1)项数为1n +.(2)各项的次数都等于二项式的幂指数n ,即a 与b 的指数的和为n .(3)字母a 按降幂排列,从第一项开始,次数由n 逐项减1直到零;字母b 按升幂排列,从第一项起,次数由零逐项增1直到n .(4)二项式的系数从0n C ,1n C ,一直到1n n C -,n n C .知识点2. 二项式系数的性质1. 二项式系数的性质(1)对称性:与首末两端“等距离”的两个二项式系数相等,即0n n n C C =,11n n n C C -=,,m n m n n C C -=.(2)增减性与最大值:二项式系数r n C ,当12n r +≤时,二项式系数是递增的;由对称性知:当12n r +>时,二项式系数是递减的. 当n 是偶数时,中间的一项2n nC 取得最大值.当n 是奇数时,中间两项12n nC+ 和12n nC-相等,且同时取得最大值.(3)各二项式系数的和()na b +的展开式的各个二项式系数的和等于2n ,即012rnn n n n n C C C C +++++=,二项展开式中,偶数项的二项式系数的和等于奇数项的二项式系数的和,即02413512n n n n n n n C C C C C C -+++=+++=,2.注意:(1).分清r n r r n C a b -是第1r +项,而不是第r 项.(2).在通项公式1r n r r r n T C a b -+=中,含有1r T +、r n C 、a 、b 、n 、r 这六个参数,只有a 、b 、n 、r 是独立的,在未知n 、r 的情况下,用通项公式解题,一般都需要首先将通式转化为方程(组)求出n 、r ,然后代入通项公式求解.(3).求二项展开式中的一些特殊项,如系数最大项,常数项等,通常都是先利用通项公式由题意列方程,求出r ,再求所需的某项;有时则需先求n ,计算时要注意n 和r 的取值范围以及 它们之间的大小关系.(4) 在1r n r r r n T C a b -+=中,r n C 就是该项的二项式系数,它与a ,b 的值无关;而1r T +项的系数是指化简后字母外的数.知识点3. 二项式定理的应用二项式的应用(1)求某些多项式系数的和;(2)证明一些简单的组合恒等式;(3)证明整除性,①求数的末位;②数的整除性及求系数;③简单多项式的整除问题;(4)近似计算.当x 充分小时,我们常用下列公式估计近似值:①()11n x nx +≈+;②()()21112nn n x nx x -+≈++; (5)证明不等式.【考点梳理】考点一 : 二项式定理【典例1】(2020·北京高考真题)在52)-的展开式中,2x 的系数为( ).A .5-B .5C .10-D .10【答案】C【解析】)52展开式的通项公式为:()()55215522r rrrr r r T CC x--+=-=-,令522r -=可得:1r =,则2x 的系数为:()()11522510C -=-⨯=-. 故选:C.【典例2】(2020·全国高考真题(理))25()()x x y xy ++的展开式中x 3y3的系数为( )A .5B .10C .15D .20【答案】C【解析】5()x y +展开式的通项公式为515r r rr T C x y -+=(r N ∈且5r ≤)所以2y x x ⎛⎫+ ⎪⎝⎭的各项与5()x y +展开式的通项的乘积可表示为:56155rrrr rrr xT xC xy C xy --+==和22542155r r rr r r r T C x y xC y y y x x --++==在615r r r r xT C x y -+=中,令3r =,可得:33345xT C x y =,该项中33x y 的系数为10,在42152r r r r T C x xy y -++=中,令1r =,可得:521332T C y x x y =,该项中33x y 的系数为5所以33x y 的系数为10515+= 故选:C【典例3】(2020·天津高考真题)在522x x ⎛⎫+ ⎪⎝⎭的展开式中,2x 的系数是_________.【答案】10【解析】因为522x x ⎛⎫+ ⎪⎝⎭的展开式的通项公式为()5531552220,1,2,3,4,5rrrr r rr T C xC x r x --+⎛⎫==⋅⋅= ⎪⎝⎭,令532r -=,解得1r =. 所以2x 的系数为15210C ⨯=. 故答案为:10.【典例4】(2020·江苏省太湖高级中学高二期中)25(32)x x ++的展开式中3x 的项的系数是________.【答案】1560【解析】由题意,()()2555(32)12x x x x =++++,因为()51x +的展开式的通项公式为15rrr T C x +=,()52x +的展开式的通项公式为5152k k k k T C x -+=,所以25(32)x x ++的展开式中3x 的项的系数是305214123032555555552222C C C C C C C C +++320800*********=+++=.故答案为:1560.【规律方法】1.二项展开式问题的常见类型及解法(1)求展开式中的特定项或其系数.可依据条件写出第k +1项,再由特定项的特点求出k 值即可.(2)已知展开式的某项或其系数求参数.可由某项得出参数项,再由通项公式写出第k +1项,由特定项得出k 值,最后求出其参数.2.求解形如(a +b )n (c +d )m 的展开式问题的思路(1)若n,m中一个比较小,可考虑把它展开得到多个,如(a+b)2(c+d)m=(a2+2ab+b2)(c+d)m,然后展开分别求解.(2)观察(a+b)(c+d)是否可以合并,如(1+x)5(1-x)7=[(1+x)(1-x)]5(1-x)2=(1-x2)5(1-x)2;(3)分别得到(a+b)n,(c+d)m的通项公式,综合考虑.3.求形如(a+b+c)n展开式中特定项的方法逐层展开法的求解步骤:【变式探究】1.(2018·全国高考真题(理))522x x ⎛⎫+ ⎪⎝⎭的展开式中4x 的系数为( ) A.10 B.20 C.40 D.80【答案】C【解析】由题可得()5210315522rrr r r rr T C xC xx --+⎛⎫== ⎪⎝⎭令103r 4-=,则r 2=所以22552240r r C C =⨯=故选C.2.(2017·全国高考真题(理))(x +y )(2x -y )5的展开式中x 3y 3的系数为( )A.-80B.-40C.40D.80【答案】C【解析】()()()()555222x y x y x x y y x y +-=-+-,由()52x y -展开式的通项公式()()515C 2r rrr T x y -+=-可得: 当3r =时,()52x x y -展开式中33x y 的系数为()3325C 2140⨯⨯-=-;当2r时,()52y x y -展开式中33x y 的系数为()2235C 2180⨯⨯-=, 则33x y 的系数为804040-=.3.(2019·天津高考真题(理))83128x x ⎛⎫- ⎪⎝⎭是展开式中的常数项为________.【答案】28【解析】8848418831(2)()(1)28r r rr r r r r T C x C x x---+=-=-, 由840r -=,得2r ,所以的常数项为228(1)28C -=.4.(2017·山东高考真题(理))已知(13)n x + 的展开式中含有2x 项的系数是54,则n=_____________.【答案】4【解析】(1+3x )n的展开式中通项公式:T r +1rn =(3x )r =3rrn x r .∵含有x 2的系数是54,∴r =2.∴223n =54,可得2n =6,∴()12n n -=6,n ∈N *.解得n =4.故答案为:4.【特别提醒】在应用通项公式时,要注意以下几点:①它表示二项展开式的任意项,只要n 与r 确定,该项就随之确定;②1r T +是展开式中的第1r +项,而不是第r 项;③公式中,a ,b 的指数和为n 且a ,b 不能随便颠倒位置;④对二项式()n a b -展开式的通项公式要特别注意符号问题.⑤在二项式定理的应用中,“赋值思想”是一种重要方法,是处理组合数问题、系数问题的经典方法.考点二 : 二项式系数的性质及各项系数和【典例5】(2020·浙江高三月考)二项式6的展开式中,所有有理项...(系数为有理数,x 的次数为整数的项)的系数之和为________;把展开式中的项重新排列,则有理项...互不相邻的排法共有____种.(用数字作答)【答案】32. 144.【解析】因为二项式6的展开式的通项为6126321666---+==r rr r r r T C C x x x ,因为2122-=-∈r rZ ,所以0,2,4,6r =, 故所有有理项的系数为0246666611515132+++=+++=C C C C ;把展开式中的项重新排列,则有理项...互不相邻的排法共有3434144A A =种. 【典例6】(2019·全国高三月考)5(12)x -的展开式的各个二项式系数的和为________,含x x 的项的系数是________.【答案】32 80-【解析】根据题意,(512x -的展开式的各个二项式系数的和为52=32,当=3r 时,3533451(2)T C x -=⋅⋅- ,所以含x x 80-.【典例7】(2020·浙江省高考真题)设()2345125345612 x a a x a x a x a x a x +=+++++,则a 5=________;a 1+a 2 + a 3=________.【答案】80;122 .【解析】5(12)x +的通项为155(2)2r r r r r r T C x C x +==,令4r =,则444455280T C x x ==,故580a =;113355135555222122a a a C C C ++=++=.故答案为:80;122【总结提升】1.赋值法在求各项系数和中的应用(1)形如(ax +b )n ,(ax 2+bx +c )m (a ,b ,c ∈R )的式子求其展开式的各项系数之和,常用赋值法,只需令x =1即可.(2)对形如(ax +by )n (a ,b ∈R )的式子求其展开式各项系数之和,只需令x =y =1即可.(3)若f (x )=a 0+a 1x +a 2x 2+…+a n x n ,则f (x )展开式中各项系数之和为f (1).①奇数项系数之和为a 0+a 2+a 4+…=(1)(1)2f f +-.②偶数项系数之和为a 1+a 3+a 5+…=(1)(1)2f f --.2.二项式系数最大项的确定方法(1)如果n 是偶数,则中间一项⎝ ⎛⎭⎪⎫第n 2+1项的二项式系数最大;(2)如果n 是奇数,则中间两项⎝ ⎛⎭⎪⎫第n +12项与第n +12+1项的二项式系数相等并最大.3.展开式系数最大值的两种求解思路(1)由于展开式系数是离散型变量,因此在系数均为正值的前提下,求最大值只需解不等式组⎩⎪⎨⎪⎧a k ≥a k -1,a k ≥a k +1即可求得答案.(2)由于二项展开式中的系数是关于正整数n 的式子,可以看作关于n 的数列,通过判断数列单调性的方法从而判断系数的增减性,并根据系数的单调性求出系数的最值.【变式探究】1.(2019·内蒙古高二期中(理))已知2012(1)n nn x a a x a x a x +=+++⋅⋅⋅+,01216n a a a a +++⋅⋅⋅+=,则自然数n 等于( )A .6B .5C .4D .3【答案】C由题意,令1x =,则01212(1)nn n a a a a +=++⋅⋅+=+⋅,因为01216n a a a a +++⋅⋅⋅+=,所以216n =,解得4n =. 故选:C.2. (2019·石家庄模拟)在(1-2x )n的展开式中,偶数项的二项式系数之和为128,则展开式二项式系数最大的项为 .【答案】1120x 4【解析】由二项式系数的性质知,2n -1=128,解得n =8,(1-2x )8的展开式共有9项,中间项,即第5项的二项式系数最大,T 4+1=C 4814(-2x )4=1120x 4. 3.(2020·湖南师大附中高三月考)若1721701217(2)(1)(1)(1)x a a x a x a x +=+++++⋯++,则012316a a a a a ++++⋯+=______.【答案】1721-由题意,由1717(2)[1(1)]x x +=++,17171(1)T x +=+,17令0x =,则17012172a a a a ++++=⋯,所以1701231621a a a a a ++++⋯+=-.故答案为:1721-. 【特别提醒】1.对于二项式系数问题,应注意以下几点:①求二项式所有项的系数和,可采用“特殊值取代法”,通常令字母变量的值为1;②关于组合恒等式的证明,常采用“构造法”——构造函数或构造同一问题的两种算法;[来源:学_科_网]③证明不等式时,应注意运用放缩法.2.对于二项式系数问题,首先要熟记二项式系数的性质,其次要掌握赋值法,赋值法是解决二项式系数问题的一个重要手段.3.多项式乘法的进位规则:在求系数过程中,尽量先化简,降底数的运算级别,尽量化成加减运算,在运算过程可以适当注意令值法的运用,例如求常数项,可令0x =.在二项式的展开式中,要注意项的系数和二项式系数的区别.考点三:二项式定理的应用【典例8】(2012·湖北高考真题(理))设,且,若能被13整除,则()A.0 B.1C.11 D.12【答案】D【解析】本题考察二项展开式的系数.由于51=52-1,,又由于13|52,所以只需13|1+a,0≤a<13,所以a=12选D.【典例9】(2019·湖北高二期末(理))71.95的计算结果精确到个位的近似值为()A.106B.107C.108D.109【答案】B【解析】∵()77716252771.9520.05220.0520.05C C =-=-⨯⨯+⨯⨯-⋅⋅⋅107.28≈, ∴71.95107≈. 故选:B【典例10】(多选题)我国南宋数学家杨辉1261年所著的《详解九章算法》就给出了著名的杨辉三角,由此可见我国古代数学的成就是非常值得中华民族自豪的.以下关于杨辉三角的猜想中正确的有( )A .由“与首末两端‘等距离’的两个二项式系数相等”猜想:m n mn n C C -= B .由“在相邻的两行中,除1以外的每一个数都等于它‘肩上’两个数的和”猜想:11r r rn n n C C C -+=+C .由“第n 行所有数之和为2n ”猜想:0122n n n n n n C C C C ++++=D .由“11111=,211121=,3111331=”猜想51115101051= 【答案】ABC【解析】由杨辉三角的性质以及二项式定理可知A 、B 、C 正确;550514*******555555111011010101010161051C C C C C C ,故D 错误.故选:ABC.【典例11】(2019·浙江杭十四中高三月考)7(ax的展开式中,3x 项的系数为14,则a =_____,展开式各项系数之和为______.【答案】2 1【解析】由题,7a x⎛ ⎝的展开式通项为()72577331771rrr r r r rr a T C x a C x x ---+⎛⎫⎛⎫=-=- ⎪ ⎪⎝⎭⎝⎭令57363r r -=∴=,此时67142C a a =∴=所以原式为72x ⎛- ⎝,令1x =,得各项系数之和为()7211-=故答案为2、1【总结提升】二项式定理应用的常见题型及求解策略1.逆用二项式定理的关键是根据所给式的特点结合二项展开式的要求,使之具备二项式定理右边的结构,然后逆用二项式定理求解.2.利用二项式定理解决整除问题的思路:①观察除式与被除式间的关系;②将被除式拆成二项式;③结合二项式定理得出结论.3. 近似计算要首先观察精确度,然后选取展开式中若干项.【特别提醒】用二项式定理证明整除问题,一般将被除式变为有关除式的二项式的形式再展开,常采用“配凑法”“消去法”配合整除的有关知识来解决.【变式探究】1.(多选题)(2020·江苏省太湖高级中学高二期中)设6260126(21)(1)(1)(1)x a a x a x a x +=+++++++,下列结论正确的是( )A .6012563a a a a a -+-+= B .23100a a += C .1236,,,,a a a a 中最大的是2a D .当999x =时,6(21)x +除以2000的余数是1【答案】ABD【解析】将原二项展开式转化为()[]666260126(21)(211)12(1)(1)(1)(1)x x x a a x a x a x +=+-=-+=+++++++,再逐一判断.详解:由()[]666260126(21)(211)12(1)(1)(1)(1)x x x a a x a x a x +=+-=-+=+++++++,得40123562356666666601234564,2,2,2,2,2,2a a a a a a a C C C C C C C =======, 所以6012563a a a a a -+-+=,故A 正确;223323662+2=100a a C C +=,故B 正确;1236,,,,a a a a 中最大的是4a ,故C 错误;当999x =时,11000x +=,1256,,,a a a a 能被2000整除,所以6(21)x +除以2000的余数是1,故D 正确;故选:ABD2.(2019·浙江高考模拟)已知7280128(2)(12)x x a a x a x a x +-=+++,则128...a a a +++=_____,3a =_____.【答案】5- 476-【解析】因为7280128(2)(12)x x a a x a x a x +-=+++,令1x =得0128...(21)(121)3a a a a ++++=+-⨯=-,令0x =得02a =,所以128...5a a a +++=-,由7(12)x -展开式的通项为17(2)r r r r T C x +=-,则33223772(2)(2)476a C C =⨯-+-=-,故答案为:5- ,476-.3.若n 是正整数,则7n +7n -1C 1n +7n -2C 2n +…+7C n-1n 除以9的余数是 .【答案】0或7【解析】根据二项式定理可知,7n +7n -1C 1n +7n -2C 2n +…+7C n -1n =(7+1)n -1=8n -1,又因为8n -1=(9-1)n -1=9n +C 1n 9n -1·(-1)+C 2n 9n -2·(-1)2+…+C n -1n 9·(-1)n -1+(-1)n -1,所以当n 为偶数时,除以9的余数为0,当n 为奇数时,除以9的余数为7. 4.以下排列的数是二项式系数在三角形中的几何排列,在我国南宋数学家杨辉1261年所著的《详解九章算法》一书里就出现了.在欧洲,这个表叫做帕斯卡三角形,它出现要比杨辉迟393年.那么,第9行第8个数是______.【答案】36【解析】由题意,第0行的数为1,第1行的数为0111,C C ,第2行的数为012222,,C C C ,第3行的数为01233333,,,C C C C ,第4行的数为0123444444,,,,C C C C C ,因此,第n 行第m 个数为:1m n C -, 所以第9行第8个数是817299998362C C C -⨯====. 故答案为:36.。
高三一轮复习《二项式定理》考纲考点:1、掌握二项式定理和二项式系数的性质,并能用它们计算和证明2、会用二项式的通项公式求展开式中的指定项3、能用二项式定理证明组合恒等式及解决某些关于数的整除问题。
重、难点:二项式定理和性质的应用,求展开式中的指定项。
考情分析:二项式定理的问题相对较独立,题型繁多,解法灵活但比较基础,高考对二项式定理的考查,多为选择题、填空题,注意二项式定理在近似计算中的应用。
考查的内容以二项式展开式及通项公式运用为主,要注意展开式的通向公式正、反两个方面的应用:(1)直接运用通项公式求特定项或特定项的系数或与系数有关的问题;(2)需用转化思想化归为二项式问题来处理的问题。
⒈二项展开式(a+b) n = 。
⒉二项展开式的通项:T r+1= . T r+1表示第r+1项⒊二项式系数为0n C ,1n C ,2n C ,…,r n C ,…,n n C .其性质有:⑴m n n m n C C -=;⑵r n r n C r r n C 11+-=+; ⑶0n C +1n C +2n C +……+n n C =2 n ;(4) +++=+++531420n n n n n n C C C C C C = 。
(5)当n 是偶数时, 的二项式系数最大;当n 是奇数时, 的二项式系数相等且最大。
⒋在运用二项式定理解题时,要注意下列问题:⑴展开式的通项是第r+1项,不是第r 项;⑵要区分展开式中某一项.与项的系数..,区分某一项的系数......与二项式系数.....; ⑶注意(a −b) n 展开式中各项的符号;⑷二项式定理对任何实数a 、b 都成立,应注意赋值法的应用.题型一、求二项展开式中的指定项和相关系数的问题(1)18)31(x x -的展开式中含15x 的项的系数为 。
(2))()24(6R x x x ∈--的展开式中的常数项为 。
(3)设=+++++=-11102121221021,)1(a a x a x a x a a x 则 。
高考数学专题--二项式定理高考考点:1、利用二项式定理求展开式中的特定项或指定项的系数2、二项式系数和与各项的系数和问题从近年高考情况来看,二项式定理是高考的重点内容,主要考查二项展开式的通项,二项式系数,展开式的系数等知识,难度控制在中低档,以选择题、填空题的形式出现,解题时应熟练基本概念、基本运算,充分利用方程思想及等价转化思想考点1 求二项展开式中特定项或指定项的系数调研1 621⎪⎭⎫ ⎝⎛-x x 的展开式中的常数项是________. 【答案】154【解析】二项式621⎪⎭⎫ ⎝⎛-x x 的展开式的通项公式为T r +1=C r 6(x )6-r rx x ⎪⎭⎫ ⎝⎛-21=33261()C 2r r r x --,∴当r =2时,T r +1是常数项,此时T 3=154.调研2 在6(1)x x +的展开式中,含3x 项的系数为( ) A .30 B .20 C .15D .10【答案】C【解析】因为()61x +的展开式的通项为k k k x C T ⋅=+61,所以()61x x +的展开式中含3x 项的系数为1526=C ,故选C. ☆技巧点拨☆1.熟记二项式定理:011()C C C C ()nnn k n k k n n n n n n a b a a b a b b n --*+=+++++∈L L N ,是解决此类问题的关键.2.求二项展开式的特定项问题,实质是考查通项的特点,一般需要建立方程求k ,再将k 的值代回通项求解,注意k 的取值范围(0,1,2,,k n =L ). (1)第m 项::此时k +1=m ,直接代入通项.(2)常数项:即这项中不含“变元”,令通项中“变元”的幂指数为0建立方程. (3)有理项:令通项中“变元”的幂指数为整数建立方程.考点2 已知二项展开式某项的系数求参数调研1 已知(1+ax )·(1+x )5的展开式中x 2的系数为5,则a =( ) A .-4 B .-3 C .-2 D .-1【答案】D【解析】展开式中含x 2的系数为C 25+a C 15=5,解得a =-1,故选D.调研2 ()nb ax x-(0ab ≠,且,a b 为常数)的展开式中,x 的系数为3210a b ,则n =___________.【答案】5【解析】展开式中x 的系数为232C n a b ,则由23232C 10n a b a b =,即2C 10n =,解得5n =.☆技巧点拨☆对于参数问题,通常是运用通项由题意列方程求出参数即可;有时需先求n ,计算时要注意n 和k 的取值范围及它们之间的大小关系.考点3 二项式各项系数的和与二项式系数的区别 调研1 设5250125)21(x a a x a x a x -=++++,则125a a a +++= _________.【答案】2【解析】令x =1可得()11-125543210=⨯=+++++a a a a a a ,令x =0可得()1-1-50==a ,所以543210a a a a a a +++++=2.调研2 已知2)()2(n x n x-∈N *的展开式中第五项的系数与第三项的系数的比是:101,则展开式中二项式系数最大的项为_________. 【答案】61120x -【解析】由题意知,第五项的系数为()442-nC ,第三项的系数为()222-nC ,则有()()1102-2-2244=n nC C ,化简可得,解得(舍去).由知第5项二项式系数最大.此时6-51120x T =.☆技巧点拨☆二项式系数与项的系数的区别二项式系数是指C 0n ,C 1n ,…,C nn ,它是组合数,只与各项的项数有关,而与a ,b 的值无关;而项的系数是指该项中除变量外的常数部分,它不仅与各项的项数有关,而且也与a ,b 的值有关.如(a +bx )n的展开式中,第r +1项的二项式系数是C rn ,而该项的系数是C r n a n -r b r.当然,某些特殊的二项展开式如(1+x )n ,各项的系数与二项式系数是相等的. 考点4 二项式定理的综合应用 调研1 设2d a x x =⎰,则二项式5(1)ax x-展开式中含2x 项的系数是( ) A .80 B .640 C .−160D .−40【答案】A【解析】依题意,24210221022=⨯===⎰x xdx a ,则二项式51⎪⎭⎫ ⎝⎛-x ax ,即512⎪⎭⎫ ⎝⎛-x x ,故展开式的通项公式为()223-5,21-235551==--+rxC T r rrrr 令,得,故展开式中含x 2项的系数为802325=⋅C ,故选A.调研2 已知2()2nx x +的展开式中,只有第六项的二项式系数最大,则该展开式中所有有理项的项数为( ) A .4B .5C .6D .7【答案】C【解析】由题意可知:()N r r xC xxC T n n r rr rr r rr ∈≤≤==∴=∴=+---+且10022,10,6122510102210101。
二项式定理知识点与题型复习一、基础知识1.二项式定理(1)二项式定理:(a+b)n=C0n a n+C1n a n-1b+…+C k n a n-k b k+…+C n n b n(n∈N*)(2)通项公式:T k+1=C k n a n-k b k,它表示第k+1项;(3)二项式系数:二项展开式中各项的系数为C0n,C1n,…,C n n.2.二项式系数的性质注:(1)项数为n+1.(2)各项的次数都等于二项式的幂指数n,即a与b的指数的和为n.(3)字母a按降幂排列,从第一项开始,次数由n逐项减1直到零;字母b按升幂排列,从第一项起,次数由零逐项增1直到n.二项式系数与项的系数的区别二项式系数是指C0n,C1n,…,C n n,它只与各项的项数有关,而与a,b的值无关;而项的系数是指该项中除变量外的常数部分,它不仅与各项的项数有关,而且也与a,b的值有关.如(a+bx)n的二项展开式中,第k+1项的二项式系数是C k n,而该项的系数是C k n a n-k b k.当然,在某些二项展开式中,各项的系数与二项式系数是相等的.二、考点解析考点一二项展开式中特定项或系数问题考法(一)求解形如(a+b)n(n∈N*)的展开式中与特定项相关的量例1、(1)522⎪⎭⎫⎝⎛+xx的展开式中x4的系数为()A.10B.20C.40D.80(2)若(2x-a)5的二项展开式中x3的系数为720,则a=________.(3)已知5⎪⎭⎫⎝⎛+xax的展开式中x5的系数为A,x2的系数为B,若A+B=11,则a=________.[解题技法]求形如(a+b)n(n∈N*)的展开式中与特定项相关的量(常数项、参数值、特定项等)的步骤第一步,利用二项式定理写出二项展开式的通项公式T r+1=C r n a n-r b r,常把字母和系数分离开来(注意符号不要出错);第二步,根据题目中的相关条件(如常数项要求指数为零,有理项要求指数为整数)先列出相应方程(组)或不等式(组),解出r;第三步,把r代入通项公式中,即可求出T r+1,有时还需要先求n,再求r,才能求出T r+1或者其他量.考法(二)求解形如(a+b)m(c+d)n(m,n∈N*)的展开式中与特定项相关的量例2、(1)(1-x)6(1+x)4的展开式中x的系数是()A.-4B.-3C.3D.4(2)已知(x-1)(ax+1)6的展开式中含x2项的系数为0,则正实数a=________.[解题技法]求形如(a+b)m(c+d)n(m,n∈N*)的展开式中与特定项相关的量的步骤第一步,根据二项式定理把(a+b)m与(c+d)n分别展开,并写出其通项公式;第二步,根据特定项的次数,分析特定项可由(a+b)m与(c+d)n的展开式中的哪些项相乘得到;第三步,把相乘后的项合并即可得到所求特定项或相关量.考法(三)求形如(a+b+c)n(n∈N*)的展开式中与特定项相关的量例3、(1)(x2+x+y)5的展开式中x5y2的系数为()A.10B.20C.30D.60(2)将344⎪⎭⎫⎝⎛-+xx展开后,常数项是________.[解题技法]求形如(a+b+c)n(n∈N*)的展开式中与特定项相关的量的步骤第一步,把三项的和a+b+c看成是(a+b)与c两项的和;第二步,根据二项式定理写出[(a +b )+c ]n 的展开式的通项;第三步,对特定项的次数进行分析,弄清特定项是由(a +b )n -r 的展开式中的哪些项和c r 相乘得到的; 第四步,把相乘后的项合并即可得到所求特定项或相关量. 跟踪训练1.在(1-x 3)(2+x )6的展开式中,x 5的系数是________.(用数字作答)3.5212⎪⎭⎫⎝⎛++x x (x >0)的展开式中的常数项为________.考点二 二项式系数的性质及各项系数和[典例精析](1)若531⎪⎪⎭⎫ ⎝⎛+x x 的展开式中各项系数之和大于8,但小于32,则展开式中系数最大的项是( ) A.63x B.4x C.4x 6x D.4x或4x 6x(2)若nx x ⎪⎭⎫ ⎝⎛-12的展开式中含x 的项为第6项,设(1-3x )n =a 0+a 1x +a 2x 2+…+a n x n ,则a 1+a 2+…+a n的值为________.(3)若(a +x )(1+x )4的展开式中x 的奇数次幂项的系数之和为32,则a =________.[解题技法] 1.赋值法的应用二项式定理给出的是一个恒等式,对于x ,y 的一切值都成立.因此,可将x ,y 设定为一些特殊的值.在使用赋值法时,令x ,y 等于多少,应视具体情况而定,一般取“1,-1或0”,有时也取其他值.如: (1)形如(ax +b )n ,(ax 2+bx +c )m (a ,b ,c ∈R )的式子,求其展开式的各项系数之和,只需令x =1即可. (2)形如(ax +by )n (a ,b ∈R )的式子,求其展开式各项系数之和,只需令x =y =1即可. 2.二项展开式各项系数和、奇数项系数和与偶数项系数和的求法 若f (x )=a 0+a 1x +a 2x 2+…+a n x n ,则f (x )的展开式中 (1)各项系数之和为f (1).(2)奇数项系数之和为a 0+a 2+a 4+…=f (1)+f (-1)2.(3)偶数项系数之和为a 1+a 3+a 5+…=f (1)-f (-1)2.跟踪训练1.已知(2x-1)5=a5x5+a4x4+a3x3+a2x2+a1x+a0,则|a0|+|a1|+…+|a5|=()A.1B.243C.121D.1222.若(x+2+m)9=a0+a1(x+1)+a2(x+1)2+…+a9(x+1)9,且(a0+a2+…+a8)2-(a1+a3+…+a9)2=39,则实数m的值为________.3.已知(1+3x)n的展开式中,后三项的二项式系数的和等于121,则展开式中二项式系数最大的项为____.考点三二项展开式的应用例、设a∈Z,且0≤a<13,若512 018+a能被13整除,则a=()A.0B.1C.11D.12[解题技法]利用二项式定理解决整除问题的思路(1)要证明一个式子能被另一个式子整除,只要证明这个式子按二项式定理展开后的各项均能被另一个式子整除即可.因此,一般要将被除式化为含相关除式的二项式,然后再展开.(2)用二项式定理处理整除问题,通常把底数写成除数(或与除数密切关联的数)与某数的和或差的形式,再用二项式定理展开.但要注意两点:①余数的范围,a=cr+b,其中余数b∈[0,r),r是除数,若利用二项式定理展开变形后,切记余数不能为负;②二项式定理的逆用.跟踪训练]1.使得多项式81x4+108x3+54x2+12x+1能被5整除的最小自然数x为()A.1B.2C.3D.4课后作业1.3422⎪⎪⎭⎫ ⎝⎛+x x 的展开式中的常数项为( ) A.-32 B.32 C.6 D.-6 2.设(2-x )5=a 0+a 1x +a 2x 2+…+a 5x 5,则a 2+a 4a 1+a 3的值为( )A.-6160B.-122121C.-34D.-901213.若二项式72⎪⎭⎫ ⎝⎛+x a x 的展开式的各项系数之和为-1,则含x 2项的系数为( )A.560B.-560C.280D.-2804.已知(1+x )n 的展开式中第5项与第7项的二项式系数相等,则奇数项的二项式系数和为( ) A.29 B.210 C.211 D.2125.二项式9221⎪⎭⎫⎝⎛-x x 的展开式中,除常数项外,各项系数的和为( )A.-671B.671C.672D.673 6.在(1-x )5(2x +1)的展开式中,含x 4项的系数为( )A.-5B.-15C.-25D.257.若(x 2-a )101⎪⎭⎫ ⎝⎛+x x 的展开式中x 6的系数为30,则a 等于( )A.13B.12C.1D.2 8.若(1+mx )6=a 0+a 1x +a 2x 2+…+a 6x 6,且a 1+a 2+…+a 6=63,则实数m 的值为( ) A.1或3 B.-3 C.1 D.1或-3 9.(2x -1)6的展开式中,二项式系数最大的项的系数是________.(用数字作答)10.9⎪⎭⎫ ⎝⎛+x a x 的展开式中x 3的系数为-84,则展开式的各项系数之和为________.11.511⎪⎭⎫ ⎝⎛++x x 展开式中的常数项为________.12.已知nx x ⎪⎪⎭⎫ ⎝⎛+41的展开式中,前三项的系数成等差数列. (1)求n ;(2)求展开式中的有理项;(3)求展开式中系数最大的项.。
高三数学二项式定理通用版知识精讲【本讲主要内容】二项式定理二项式定理和二项展开式性质及其应用【知识掌握】 【知识点精析】1. 二项式定理:对任意的正整数n ,有)N n (b C ......b a C ......b a C a C )b a (*n n n r r -n r n 1-n 1n n 0n n ∈+++++=+这个公式所表示的定理叫做二项式定理,右边的多项式叫做n )b a (+的二项展开式,各项系数rn C ……(r =0,1,2,……,n )叫做二项式系数。
特例:在二项展开式中令a =1,b =x ,则有公式:()= (111)22+++++x C x C x C x nn n n n n2. 通项公式:二项展开式中的第r+1项r r-n rn b aC 叫做通项,记做)n r 0,N n (b a C T *r r -n r n 1r ≤≤∈=+。
注意:(1)它表示二项展开式中的任意项,只要n 和r 确定,该项也随之确定。
(2)通项公式表示的是第r+1项,而不是第r 项。
(3)公式中a ,b 的位置不能颠倒,它们的指数和一定为n 。
3. 二项式系数的性质:(1)二项式系数的对称性在二项展开式中,与首末两端“等距离”的两项的二项式系数相等; (2)二项式系数的大小规律如果二项式幂指数是偶数,中间一项12n T +的二项式系数最大;如果二项式幂指数是奇数,中间两项121n T ++和121n T +-的二项式系数相等并且最大。
(3)二项式系数的和:nn n 2n 1n 0n 2C ......C C C =++++ 当n 为偶数时C C C C C C C C n n n n n n n n n n n 024135112++++=++++=--…………当n 为奇数时C C C C C C C C n n n n n n n n n n n 024113512++++=++++=--…………(4)二项式系数与项的系数的区别:如n)bx a (+的展开式中,第r+1项的二项式系数为r n C ,第r+1项的系数为r r-n r n b aC 。
课时作业(五十七)一、选择题1.(2012年温州一模)若二项式⎝ ⎛⎭⎪⎫x -1x n 的展开式中存在常数项,则正整数n的最小值等于( )A .8B .6C .3D .2解析:二项展开式的通项公式是T r +1=·(-1)r x -r =(-1)r C r n,令n -3r =0得r =n3,由于n 为正整数,r 为自然数,故n 的最小值为3. 答案:C2.在⎝ ⎛⎭⎪⎪⎫x 2-13x n 的展开式中,只有第5项的二项式系数最大,则展开式中常数项是( )A .-7B .-28C .7D .28解析:依题意,n2+1=5,∴n =8.二项式为⎝ ⎛⎭⎪⎪⎫x 2-13x 8, 易得常数项为C 68⎝ ⎛⎭⎪⎫x 22⎝⎛⎭⎪⎪⎫-13x 6=7. 答案:C3.(2011年陕西)(4x -2-x )6(x ∈R )展开式中的常数项是( )A .-20B .-15C .15D .20解析:T r +1=C r 6(4x )r·(-2-x )6-r =C r 6·(-1)6-r ·2(3r -6)x . 由3r -6=0,得r =2,常数项为T 3=C 26·(-1)4=15. 答案:C4.如果⎝ ⎛⎭⎪⎪⎫3x -13x 2n 的展开式中二项式系数之和为128,则展开式中1x 3的系数是( )A .7B .-7C .21D .-21解析:由题意可知,2n =128,解得n =7.⎝⎛⎭⎪⎪⎫3x -13x 27的通项公式为T r +1=C r7(3x )7-r ⎝⎛⎭⎪⎪⎫-13x 2r =(-1)r 37-r C r 7,令7-5r3=-3,得r =6.其系数为(-1)637-6C 67=21. 答案:C5.⎝ ⎛⎭⎪⎪⎫x +24x 16的二项展开式中,有理项共有( )A .2项B .3项C .4项D .5项解析:T r +1=C r 16()x 16-r ⎝ ⎛⎭⎪⎪⎫24x r =C r 162r,有理项即x 的指数为整数的项,也就是r 能被4整除,故r =0,4,8,12,16,即有理项共有5项.答案:D 6.若(1-2x )2 011=a 0+a 1x +…+a 2 011x2 011(x ∈R ),则a 12+a 222+…+a 2 01122 011的值为( )A .2B .0C .-1D .-2解析:观察所求数列和的特点,令x =12可得a 0+a 12+a 222+…+a 2 01122 011=0,所以a 12+a 222+…+a 2 01122 011=-a 0, 再令x =0可得a 0=1,因此a 12+a 222+…+a 2 00922 009=-1.答案:C 二、填空题7.(2012年福建)(a +x )4的展开式中x 3的系数等于8,则实数a =________.解析:∵T r +1=C r 4a r x 4-r,∴当4-r =3,即r =1时,T 2=C 14·a ·x 3=4ax 3=8x 3.故a =2.答案:28.(2012年湖南)⎝⎛⎭⎪⎫2x -1x 6的二项展开式中的常数项为________.(用数字作答)解析:⎝ ⎛⎭⎪⎫2x -1x 6的通项为T r +1=C r 6(2x )6-r ⎝ ⎛⎭⎪⎫-1x r =(-1)r C r 626-r x 3-r .当3-r =0时,r =3.故(-1)3C 3626-3=-C 3623=-160. 答案:-1609.(2012年浙江)若将函数f (x )=x 5表示为f (x )=a 0+a 1(1+x )+a 2(1+x )2+…+a 5(1+x )5,其中a 0,a 1,a 2,…,a 5为实数,则a 3=________.解析:由x 5=a 0+a 1(1+x )+a 2(1+x )2+…+a 5(1+x )5可得,⎩⎨⎧x 5=a 5·C 55x 5,0·x 4=a 4C 44x 4+a 5C 45x 4,0·x 3=a 3C 33x 3+a 4C 34x 3+a 5C 35x 3,可解得⎩⎨⎧a 5=1,a 4=-5,a 3=10.答案:10 三、解答题10.若⎝ ⎛⎭⎪⎫x 2-1ax 9(a ∈R )的展开式中x 9的系数是-212,求∫a 0sin x d x 的值. 解:由题意得T r +1=C r 9(x 2)9-r (-1)r ⎝ ⎛⎭⎪⎫1ax r=(-1)r C r 9x 18-3r 1a r ,令18-3r =9得r =3,所以-C 391a3 =-212,解得a =2,所以∫20sin x d x =(-cos x )|20=-cos2+cos0=1-cos2.11.二项式(2x -3y )9的展开式中,求:(1)二项式系数之和; (2)各项系数之和; (3)所有奇数项系数之和.解:设(2x -3y )9=a 0x 9+a 1x 8y +a 2x 7y 2+…+a 9y 9.(1)二项式系数之和为C 09+C 19+C 29+…+C 99=29.(2)各项系数之和为a 0+a 1+a 2+…+a 9=(2-3)9=-1 (3)由(2)知a 0+a 1+a 2+…+a 9=-1,令x =1,y =-1,得a 0-a 1+a 2-…-a 9=59,将两式相加,得a 0+a 2+a 4+a 6+a 8=59-12,即为所有奇数项系数之和. 12.已知⎝ ⎛⎭⎪⎫x -2x 2n (n ∈N *)的展开式中第五项的系数与第三项的系数的比是10∶1.(1)求展开式中各项系数的和;(2)求展开式中含的项;(3)求展开式中系数最大的项和二项式系数最大的项. 解:由题意知,第五项系数为C 4n ·(-2)4, 第三项的系数为C 2n ·(-2)2, 则有C 4n ·(-2)4C 2n ·(-2)2=101,化简得n 2-5n -24=0, 解得n =8或n =-3(舍去).(1)令x =1得各项系数的和为(1-2)8=1. (2)通项公式T r +1=C r 8·(x )8-r ·⎝ ⎛⎭⎪⎫-2x 2r =C r 8·(-2)r ·,令8-r 2-2r =32,则r =1, 故展开式中含的项为T 2=-16.(3)设展开式中的第r 项,第r +1项,第r +2项的系数绝对值分别为C r -18·2r-1,C r 8·2r ,C r +18·2r +1,若第r +1项的系数绝对值最大,则⎩⎨⎧C r -18·2r -1≤C r 8·2r ,C r +18·2r +1≤C r 8·2r ,解得5≤r ≤6. 又T 6的系数为负,∴系数最大的项为T 7=1 792x -11.由n =8知第五项二项式系数最大,此时T 5=1 120x -6. [热点预测]13.若⎝ ⎛⎭⎪⎫x 2-1x n展开式中的所有二项式系数和为512,则该展开式中的常数项为( )A .-84B .84C .-36D .36解析:二项展开式的系数和为2n =512,所以n =9,二项展开式通项为T k +1=C k 9(x 2)9-k (-x -1)k =C k 9x 18-2k ·(-1)k x -k =C k 9x 18-3k(-1)k ,令18-3k =0,得k =6,所以常数项为T 7=C 69(-1)6=84,选B.答案:B14.二项式⎝ ⎛⎭⎪⎫2x -a x 26的展开式中的常数项为15,则实数a 的值为________. 解析:T r +1=C r 6(2x )6-r ⎝ ⎛⎭⎪⎫-a x 2r =(-1)r C r 626-r a r x 6-3r,令6-3r =0得r =2,∴(-1)2C 2624a 2=15,∴16a 2=1,a =±14.答案:±1415.在二项式⎝ ⎛⎭⎪⎪⎫x +124x n 的展开式中,前三项的系数成等差数列,求展开式中的有理项和二项式系数最大的项.解:∵二项展开式的前三项的系数分别是1,n 2,18n (n -1),∴2·n 2=1+18n (n -1),解得n =8或n =1(不合题意,舍去),∴T k +1=⎝ ⎛⎭⎪⎪⎫124x k =C k 82-k x 4-34k ,当4-34k ∈Z 时,T k +1为有理项,∵0≤k ≤8且k ∈Z ,∴k =0,4,8符合要求.故有理项有3项,分别是T 1=x 4,T 5=358x ,T 9=1256x -2. ∵n =8,∴展开式中共9项,中间一项即第5项的二项式系数最大且为T 5=358x .。