2015中考压轴题代数和函数综合问题专题试题(含答案)
- 格式:doc
- 大小:19.21 KB
- 文档页数:4
2015中考数学压轴题精编(含参考答案与试题解析共300页)(共120题,共两部分:前一部分为试题+参考答案与试题解析,后一部分为纯试题汇编)第一部分1.(2015•枣庄)如图,直线y=x+2与抛物线y=ax2+bx+6(a≠0)相交于A(,)和B(4,m),点P是线段AB上异于A、B的动点,过点P作PC⊥x轴于点D,交抛物线于点C.(1)求抛物线的解析式;(2)是否存在这样的P点,使线段PC的长有最大值?若存在,求出这个最大值;若不存在,请说明理由;(3)求△PAC为直角三角形时点P的坐标.,),解得,),时,线段最大且为,)作,AN= MN=AN=OM=ON+MN==3则:,(与点,)关于对称轴,x=时,y=x+2=,(,)或(,2.(2015•酒泉)如图,在直角坐标系中,抛物线经过点A(0,4),B(1,0),C(5,0),其对称轴与x轴相交于点M.(1)求抛物线的解析式和对称轴;(2)在抛物线的对称轴上是否存在一点P,使△PAB的周长最小?若存在,请求出点P的坐标;若不存在,请说明理由;(3)连接AC,在直线AC的下方的抛物线上,是否存在一点N,使△NAC的面积最大?若存在,请求出点N的坐标;若不存在,请说明理由.t﹣,y=x x+4=,,)代入得解得y=﹣y==)t﹣t+4,﹣t+4﹣﹣(t+4tNG+OC=×t﹣,t=面积的最大值为t=,得:y=t t+4=,﹣3.(2015•荆门)如图,在矩形ABCD中,OA=5,AB=4,点D为边AB上一点,将△BCD沿直线CD折叠,使点B恰好落在边OA上的点E处,分别以OC,OA所在的直线为x轴,y轴建立平面直角坐标系.(1)求OE的长及经过O,D,C三点抛物线的解析式;(2)一动点P从点C出发,沿CB以每秒2个单位长度的速度向点B运动,同时动点Q从E点出发,沿EC 以每秒1个单位长度的速度向点C运动,当点P到达点B时,两点同时停止运动,设运动时间为t秒,当t为何值时,DP=DQ;(3)若点N在(1)中抛物线的对称轴上,点M在抛物线上,是否存在这样的点M与点N,使M,N,C,E为顶点的四边形是平行四边形?若存在,请求出M点坐标;若不存在,请说明理由.==3m=(﹣a(﹣,y=x x,t=;的中点横坐标为中点横坐标为=y=的中点横坐标为,线段==y=+,﹣)4.(2015•南昌)如图,已知二次函数L1:y=ax2﹣2ax+a+3(a>0)和二次函数L2:y=﹣a(x+1)2+1(a>0)图象的顶点分别为M,N,与y轴分别交于点E,F.(1)函数y=ax2﹣2ax+a+3(a>0)的最小值为3,当二次函数L1,L2的y值同时随着x的增大而减小时,x的取值范围是﹣1<x<1.(2)当EF=MN时,求a的值,并判断四边形ENFM的形状(直接写出,不必证明).(3)若二次函数L2的图象与x轴的右交点为A(m,0),当△AMN为等腰三角形时,求方程﹣a(x+1)2+1=0的解.,,5.(2015•铜仁市)如图,关于x的二次函数y=x2+bx+c的图象与x轴交于点A(1,0)和点B与y轴交于点C(0,3),抛物线的对称轴与x轴交于点D.(1)求二次函数的表达式;(2)在y轴上是否存在一点P,使△PBC为等腰三角形?若存在.请求出点P的坐标);(3)有一个点M从点A出发,以每秒1个单位的速度在AB上向点B运动,另一个点N从点D与点M同时出发,以每秒2个单位的速度在抛物线的对称轴上运动,当点M到达点B时,点M、N同时停止运动,问点M、N运动到何处时,△MNB面积最大,试求出最大面积.MNB=BC=3PC=3OP=OC+PC=3+3OC=3 3+3)或()或(﹣×6.(2015•资阳)已知直线y=kx+b(k≠0)过点F(0,1),与抛物线y=x2相交于B、C两点.(1)如图1,当点C的横坐标为1时,求直线BC的解析式;(2)在(1)的条件下,点M是直线BC上一动点,过点M作y轴的平行线,与抛物线交于点D,是否存在这样的点M,使得以M、D、O、F为顶点的四边形为平行四边形?若存在,求出点M的坐标;若不存在,请说明理由;(3)如图2,设B(m.n)(m<0),过点E(0.﹣1)的直线l∥x轴,BR⊥l于R,CS⊥l于S,连接FR、FS.试判断△RFS的形状,并说明理由.x+1),则D(x,x2),表示出DM,分类讨论列方程求解;RFS=,故得方程组:解之,得x+1,﹣x﹣﹣x+1x当﹣x+1x,当﹣x+1x)或,)或()或(,∠7.(2015•苏州)如图,已知二次函数y=x2+(1﹣m)x﹣m(其中0<m<1)的图象与x轴交于A、B两点(点A在点B的左侧),与y轴交于点C,对称轴为直线l.设P为对称轴l上的点,连接PA、PC,PA=PC (1)∠ABC的度数为45°;(2)求P点坐标(用含m的代数式表示);(3)在坐标轴上是否存在着点Q(与原点O不重合),使得以Q、B、C为顶点的三角形与△PAC相似,且线段PQ的长度最小?如果存在,求出所有满足条件的点Q的坐标;如果不存在,请说明理由.,∴(),,),)()()=,PQ=((m(),,<,(﹣轴垂直,则=m,PQ=)﹣m(),,,<,,,)时,8.(2015•重庆)如图1,在平面直角坐标系中,抛物线y=﹣x2+x+3交x轴于A,B两点(点A在点B的左侧),交y轴于点W,顶点为C,抛物线的对称轴与x轴的交点为D.(1)求直线BC的解析式;(2)点E(m,0),F(m+2,0)为x轴上两点,其中2<m<4,EE′,FF′分别垂直于x轴,交抛物线于点E′,F′,交BC于点M,N,当ME′+NF′的值最大时,在y轴上找一点R,使|RF′﹣RE′|的值最大,请求出R点的坐标及|RF′﹣RE′|的最大值;(3)如图2,已知x轴上一点P(,0),现以P为顶点,2为边长在x轴上方作等边三角形QPG,使GP⊥x轴,现将△QPG沿PA方向以每秒1个单位长度的速度平移,当点P到达点A时停止,记平移后的△QPG为△Q′P′G′.设△Q′P′G′与△ADC的重叠部分面积为s.当Q′到x轴的距离与点Q′到直线AW的距离相等时,求s的值.,则﹣x+3=0x x+3﹣,)解得:x+6,﹣m+3m+4﹣m+3﹣(﹣m+4)﹣m﹣(﹣)mm+m﹣m ﹣,,﹣,,,,,RN=,AN==S=,RM=﹣AM=,AP×S=9.(2015•益阳)已知抛物线E1:y=x2经过点A(1,m),以原点为顶点的抛物线E2经过点B(2,2),点A、B关于y 轴的对称点分别为点A′,B′.(1)求m的值及抛物线E2所表示的二次函数的表达式;(2)如图1,在第一象限内,抛物线E1上是否存在点Q,使得以点Q、B、B′为顶点的三角形为直角三角形?若存在,求出点Q的坐标;若不存在,请说明理由;(3)如图2,P为第一象限内的抛物线E1上与点A不重合的一点,连接OP并延长与抛物线E2相交于点P′,求△PAA′与△P′BB′的面积之比.,,x=(舍去)的坐标为()与(=,==.10.(2015•桂林)如图,已知抛物线y=﹣x2+bx+c与坐标轴分别交于点A(0,8)、B(8,0)和点E,动点C从原点O开始沿OA方向以每秒1个单位长度移动,动点D从点B开始沿BO方向以每秒1个单位长度移动,动点C、D同时出发,当动点D到达原点O时,点C、D停止运动.(1)直接写出抛物线的解析式:y=﹣x2+3x+8;(2)求△CED的面积S与D点运动时间t的函数解析式;当t为何值时,△CED的面积最大?最大面积是多少?(3)当△CED的面积最大时,在抛物线上是否存在点P(点E除外),使△PCD的面积等于△CED的最大面积?若存在,求出P点的坐标;若不存在,请说明理由.﹣﹣t;CD=﹣的距离为:﹣得:xx,得:﹣xS=•﹣t﹣,=,,﹣x+5﹣﹣﹣﹣x,与,解得:,,﹣)=,EG=,即:DM=OM=,MN==,)x+b,),x+,x+,与﹣,解得:,(,,﹣)或(,11.(2015•遂宁)如图,已知抛物线y=ax2+bx+c经过A(﹣2,0),B(4,0),C(0,3)三点.(1)求该抛物线的解析式;(2)在y轴上是否存在点M,使△ACM为等腰三角形?若存在,请直接写出所有满足要求的点M的坐标;若不存在,请说明理由;(3)若点P(t,0)为线段AB上一动点(不与A,B重合),过P作y轴的平行线,记该直线右侧与△ABC 围成的图形面积为S,试确定S与t的函数关系式.得出(,(,根据(,得出(,再,解得:x x+3AC=,CN==,=,,﹣,)时,则=3+)=时,则﹣)=,=)=)t=,=)=),﹣t12.(2015•呼和浩特)已知:抛物线y=x2+(2m﹣1)x+m2﹣1经过坐标原点,且当x<0时,y随x的增大而减小.(1)求抛物线的解析式,并写出y<0时,对应x的取值范围;(2)设点A是该抛物线上位于x轴下方的一个动点,过点A作x轴的平行线交抛物线于另一点D,再作AB⊥x 轴于点B,DC⊥x轴于点C.①当BC=1时,直接写出矩形ABCD的周长;②设动点A的坐标为(a,b),将矩形ABCD的周长L表示为a的函数并写出自变量的取值范围,判断周长是否存在最大值?如果存在,求出这个最大值,并求出此时点A的坐标;如果不存在,请说明理由.<=点坐标为(,﹣,其中<时,点坐标为(,﹣时,﹣,时,点坐标为(,﹣<﹣时,点坐标为(,﹣13.(2015•重庆)如图,抛物线y=﹣x2+2x+3与x轴交于A、B两点(点A在点B的左边),与y轴交于点C,点D和点C关于抛物线的对称轴对称,直线AD与y轴交于点E.(1)求直线AD的解析式;(2)如图1,直线AD上方的抛物线上有一点F,过点F作FG⊥AD于点G,作FH平行于x轴交直线AD于点H,求△FGH周长的最大值;(3)点M是抛物线的顶点,点P是y轴上一点,点Q是坐标平面内一点,以A,M,P,Q为顶点的四边形是以AM为边的矩形.若点T和点Q关于AM所在直线对称,求点T的坐标.FG=GN=1+有最大值周长的最大值为OP=,则),),,﹣,),解得FG=GN=)),x=时,有最大值,1+×周长的最大值为)分别代入得,解得OP=,﹣,﹣)向上平移,,)),﹣,,﹣)14.(2015•济宁)如图,⊙E的圆心E(3,0),半径为5,⊙E与y轴相交于A、B两点(点A在点B的上方),与x轴的正半轴交于点C,直线l的解析式为y=x+4,与x轴相交于点D,以点C为顶点的抛物线过点B.(1)求抛物线的解析式;(2)判断直线l与⊙E的位置关系,并说明理由;(3)动点P在抛物线上,当点P到直线l的距离最小时.求出点P的坐标及最小距离.的坐标为(﹣,,m+4,﹣m+4m﹣m+8=(,根据AEO=×===4,(xy=,得,的坐标为(﹣,=,=,=,m+4,﹣PM=﹣(﹣m m﹣(取得最小值)AEO=×=,﹣的距离最小,其最小距离为.15.(2015•徐州)如图,在平面直角坐标系中,点A(10,0),以OA为直径在第一象限内作半圆,B为半圆上一点,连接AB并延长至C,使BC=AB,过C作CD⊥x轴于点D,交线段OB于点E,已知CD=8,抛物线经过O、E、A三点.(1)∠OBA=90°.(2)求抛物线的函数表达式.(3)若P为抛物线上位于第一象限内的一个动点,以P、O、A、E为顶点的四边形面积记作S,则S取何值时,相应的点P有且只有3个?的位置就一个,令=16y=.x x,﹣p(﹣p+y=点纵坐标为QE=••×3+×p+)﹣(p p解得y=,y=6+P点纵坐标为QE=••×3+•=15+p,=16±16.(2015•乌鲁木齐)抛物线y=x2﹣x+2与x轴交于A,B两点(OA<OB),与y轴交于点C.(1)求点A,B,C的坐标;(2)点P从点O出发,以每秒2个单位长度的速度向点B运动,同时点E也从点O出发,以每秒1个单位长度的速度向点C运动,设点P的运动时间为t秒(0<t<2).①过点E作x轴的平行线,与BC相交于点D(如图所示),当t为何值时,+的值最小,求出这个最小值并写出此时点E,P的坐标;②在满足①的条件下,抛物线的对称轴上是否存在点F,使△EFP为直角三角形?若存在,请直接写出点F 的坐标;若不存在,请说明理由.得到,即,求得x x+2,即x+2=0,即,时,时,y=﹣17.(2015•吉林)如图①,一次函数y=kx+b的图象与二次函数y=x2的图象相交于A,B两点,点A,B的横坐标分别为m,n(m<0,n>0).(1)当m=﹣1,n=4时,k=3,b=4;当m=﹣2,n=3时,k=1,b=6;(2)根据(1)中的结果,用含m,n的代数式分别表示k与b,并证明你的结论;(3)利用(2)中的结论,解答下列问题:如图②,直线AB与x轴,y轴分别交于点C,D,点A关于y轴的对称点为点E,连接AO,OE,ED.①当m=﹣3,n>3时,求的值(用含n的代数式表示);②当四边形AOED为菱形时,m与n满足的关系式为n=﹣2m;当四边形AOED为正方形时,m=﹣1,n=2.,然后根据三角形面积公式可计算出,解得;,解得;得;,则,==18.(2015•佛山)如图,一小球从斜坡O点处抛出,球的抛出路线可以用二次函数y=﹣x2+4x刻画,斜坡可以用一次函数y=x刻画.(1)请用配方法求二次函数图象的最高点P的坐标;(2)小球的落点是A,求点A的坐标;(3)连接抛物线的最高点P与点O、A得△POA,求△POA的面积;(4)在OA上方的抛物线上存在一点M(M与P不重合),△MOA的面积等于△POA的面积.请直接写出点M的坐标.y=y=x+3程组,解方程组即可求出点)联立两解析式可得:,解得:,或的坐标为(,)×4++4﹣)﹣××=4+﹣;y=x+b4=y=x+3,解得,,)19.(2015•天水)在平面直角坐标系中,已知y=﹣x2+bx+c(b、c为常数)的顶点为P,等腰直角三角形ABC的顶点A的坐标为(0,﹣1),点C的坐标为(4,3),直角顶点B在第四象限.(1)如图,若抛物线经过A、B两点,求抛物线的解析式.(2)平移(1)中的抛物线,使顶点P在直线AC上并沿AC方向滑动距离为时,试证明:平移后的抛物线与直线AC交于x轴上的同一点.(3)在(2)的情况下,若沿AC方向任意滑动时,设抛物线与直线AC的另一交点为Q,取BC的中点N,试探究NP+BQ是否存在最小值?若存在,求出该最小值;若不存在,请说明理由.方向滑动距离﹣方向滑动距离=x((,得或=2.20.(2015•连云港)如图,已知一条直线过点(0,4),且与抛物线y=x2交于A,B两点,其中点A的横坐标是﹣2.(1)求这条直线的函数关系式及点B的坐标.(2)在x轴上是否存在点C,使得△ABC是直角三角形?若存在,求出点C的坐标,若不存在,请说明理由.(3)过线段AB上一点P,作PM∥x轴,交抛物线于点M,点M在第一象限,点N(0,1),当点M的横坐标为何值时,MN+3MP的长度最大?最大值是多少?,MN=a,a y=)代入得,解得x+4x+4=;的坐标为(﹣,,MN=a +4=ax=,MN+3PM=a21.(2015•南充)已知抛物线y=﹣x2+bx+c与x轴交于点A(m﹣2,0)和B(2m+1,0)(点A在点B的左侧),与y轴相交于点C,顶点为P,对称轴为l:x=1.(1)求抛物线解析式.(2)直线y=kx+2(k≠0)与抛物线相交于两点M(x1,y1),N(x2,y2)(x1<x2),当|x1﹣x2|最小时,求抛物线与直线的交点M与N的坐标.(3)首尾顺次连接点O、B、P、C构成多边形的周长为L,若线段OB在x轴上移动,求L最小值时点O,B移动后的坐标及L的最小值.,得﹣=1)由,,解得y=﹣x=(=向左平移,平移到向左平移,平移到(﹣向左平移时,周长=CP=,向左平移,,+22.(2015•福州)如图,抛物线y=x2﹣4x与x轴交于O,A两点,P为抛物线上一点,过点P的直线y=x+m 与对称轴交于点Q.(1)这条抛物线的对称轴是2,直线PQ与x轴所夹锐角的度数是45°;(2)若两个三角形面积满足S△POQ=S△PAQ,求m的值;(3)当点P在x轴下方的抛物线上时,过点C(2,2)的直线AC与直线PQ交于点D,求:①PD+DQ的最大值;②PD•DQ的最大值.PH=PM6DQ6a=3,得出===得,=,OB=OB=SPM.6﹣3a=3。
2015年中考数学压轴题分析与解答案1.如图,在平面直角坐标系中,已知点A(8,1),B(0,﹣3),反比例函数y=(x>0)的图象经过点A,动直线x=t(0<t<8)与反比例函数的图象交于点M,与直线AB交于点N.(1)求k的值;(2)求△BMN面积的最大值;(3)若MA⊥AB,求t的值.考点:反比例函数综合题.分析:(1)把点A坐标代入y=(x>0),即可求出k的值;(2)先求出直线AB的解析式,设M(t,),N(t,t﹣3),则MN=﹣t+3,由三角形的面积公式得出△BMN的面积是t的二次函数,即可得出面积的最大值;(3)求出直线AM的解析式,由反比例函数解析式和直线AM的解析式组成方程组,解方程组求出M的坐标,即可得出结果.解答:解:(1)把点A(8,1)代入反比例函数y=(x>0)得:k=1×8=8,y=,∴k=8;(2)设直线AB的解析式为:y=kx+b,根据题意得:,解得:k=,b=﹣3,∴直线AB的解析式为:y=x﹣3;设M(t,),N(t,t﹣3),则MN=﹣t+3,∴△BMN的面积S=(﹣t+3)t=﹣t2+t+4=﹣(t﹣3)2+,∴△BMN的面积S是t的二次函数,∵﹣<0,∴S有最大值,当t=3时,△BMN的面积的最大值为;(3)∵MA⊥AB,∴设直线MA的解析式为:y=﹣2x+c,把点A(8,1)代入得:c=17,∴直线AM的解析式为:y=﹣2x+17,解方程组得:或(舍去),∴M的坐标为(,16),∴t=.点评:本题是反比例函数综合题目,考查了用待定系数法求反比例函数和一次函数的解析式、二次函数的最值问题、垂线的性质等知识;本题难度较大,综合性强,特别是(3)中,需要确定一次函数的解析式,由反比例函数解析式和直线AM的解析式组成方程组,解方程组才能得出结果.2.已知:⊙O上两个定点A,B和两个动点C,D,AC与BD交于点E.(1)如图1,求证:EA•EC=EB•ED;(2)如图2,若=,AD是⊙O的直径,求证:AD•AC=2BD•BC;(3)如图3,若AC⊥BD,点O到AD的距离为2,求BC的长.考点:圆的综合题.分析:(1)根据同弧所对的圆周角相等得到角相等,从而证得三角形相似,于是得到结论;(2)如图2,连接CD,OB交AC于点F由B是弧AC的中点得到∠BAC=∠ADB=∠ACB,且AF=CF=0.5AC.证得△CBF∽△ABD.即可得到结论;(3)如图3,连接AO并延长交⊙O于F,连接DF得到AF为⊙O的直径于是得到∠ADF=90°,过O作OH⊥AD于H,根据三角形的中位线定理得到DF=2OH=4,通过△ABE∽△ADF,得到1=∠2,于是结论可得.解答:(1)证明:∵∠EAD=∠EBC,∠BCE=∠ADE,∴△AED∽△BEC,∴,∴EA•EC=EB•ED;(2)证明:如图2,连接CD,OB交AC于点F∵B是弧AC的中点,∴∠BAC=∠ADB=∠ACB,且AF=CF=0.5AC.又∵AD为⊙O直径,∴∠ABC=90°,又∠CFB=90°.∴△CBF∽△ABD.∴,故CF•AD=BD•BC.∴AC•AD=2BD•CD;(3)解:如图3,连接AO并延长交⊙O于F,连接DF,∴AF为⊙O的直径,∴∠ADF=90°,过O作OH⊥AD于H,∴AH=DH,OH∥DF,∵AO=OF,∴DF=2OH=4,∵AC⊥BD,∴∠AEB=∠ADF=90°,∵∠ABD=∠F,∴△ABE∽△ADF,∴∠1=∠2,∴,∴BC=DF=4.点评:本题考查了圆周角定理,垂径定理,相似三角形的判定和性质,三角形的中位线的性质,正确作出辅助线是解题的关键.3.如图,在平面直角坐标系中,正方形ABCD和正方形DEFG的边长分别为2a,2b,点A,D,G在y轴上,坐标原点O为AD的中点,抛物线y=mx2过C,F两点,连接FD并延长交抛物线于点M.(1)若a=1,求m和b的值;(2)求的值;(3)判断以FM为直径的圆与AB所在直线的位置关系,并说明理由.考点:二次函数综合题.分析:(1)由a=1,根据正方形的性质及已知条件得出C(2,1).将C点坐标代入y=mx2,求出m=,则抛物线解析式为y=x2,再将F(2b,2b+1)代入y=x2,即可求出b的值;(2)由正方形ABCD的边长为2a,坐标原点O为AD的中点,得出C(2a,a).将C点坐标代入y=mx2,求出m=,则抛物线解析式为y=x2,再将F(2b,2b+a)代入y=x2,整理得出方程b2﹣2ab﹣a2=0,把a看作常数,利用求根公式得出b=(1±)a(负值舍去),那么=1+;(3)先利用待定系数法求出直线FD的解析式为y=x+a.再求出M点坐标为(2a﹣2a,3a﹣2a).又F(2a+2a,3a+2a),利用中点坐标公式得到以FM为直径的圆的圆心O′的坐标为(2a,3a),再求出O′到直线AB(y=﹣a)的距离d的值,以FM为直径的圆的半径r的值,由d=r,根据直线与圆的位置关系可得以FM为直径的圆与AB所在直线相切.解答:解:(1)∵a=1,∴正方形ABCD的边长为2,∵坐标原点O为AD的中点,∴C(2,1).∵抛物线y=mx2过C点,∴1=4m,解得m=,∴抛物线解析式为y=x2,将F(2b,2b+1)代入y=x2,得2b+1=×(2b)2,b=1±(负值舍去).故m=,b=1+;(2)∵正方形ABCD的边长为2a,坐标原点O为AD的中点,∴C(2a,a).∵抛物线y=mx2过C点,∴a=m•4a2,解得m=,∴抛物线解析式为y=x2,将F(2b,2b+a)代入y=x2,得2b+a=×(2b)2,整理得b2﹣2ab﹣a2=0,解得b=(1±)a(负值舍去),∴=1+;(3)以FM为直径的圆与AB所在直线相切.理由如下:∵D(0,a),∴可设直线FD的解析式为y=kx+a,∵F(2b,2b+a),∴2b+a=k•2b+a,解得k=1,∴直线FD的解析式为y=x+a.将y=x+a代入y=x2,得x+a=x2,解得x=2a±2a(正值舍去),∴M点坐标为(2a﹣2a,3a﹣2a).∵F(2b,2b+a),b=(1+)a,∴F(2a+2a,3a+2a),∴以FM为直径的圆的圆心O′的坐标为(2a,3a),∴O′到直线AB(y=﹣a)的距离d=3a﹣(﹣a)=4a,∵以FM为直径的圆的半径r=O′F==4a,∴d=r,∴以FM为直径的圆与AB所在直线相切.点评:本题是二次函数的综合题型,其中涉及到正方形的性质,待定系数法求二次函数、一次函数的解析式,一元二次方程的求根公式,直线与抛物线交点坐标的求法,直线与圆的位置关系.综合性较强,难度适中.正确求出抛物线的解析式是解题的关键.。
2015年广东中考数学压轴模拟题及答案1.观察规律并填空(1﹣)=•=;(1﹣)(1﹣)=•••==(1﹣)(1﹣)(1﹣)=•••••=•=;(1﹣)(1﹣)(1﹣)(1﹣)=•••••••=•=;…(1﹣)(1﹣)(1﹣)(1﹣)…(1﹣)= .(用含n的代数式表示,n是正整数,且n≥2)2.(9分)(2014年云南省)为了解本校九年级学生期末数学考试情况,销量在九年级随机抽取了一部分学生的期末数学成绩为样本,分为A、B(89~80分)、C(79~60分)、D (59~0分)四个等级进行统计,并将统计结果绘制成如下统计图,请你根据统计图解答以下问题:(1)这次随机抽取的学生共有多少人?(2)请补全条形统计图;(3)这个学校九年级共有学生1200人,若分数为80分(含80分)以上为优秀,请估计这次九年级学生期末数学考试成绩为优秀的学生人数大约有多少?3. 如图所示,抛物线y=ax 2+bx+c (a≠0)与x 轴、y 轴分别相交于A (•-1,0)、B(3,0)、C (0,3)三点,其顶点为D .〔注:抛物线y=ax 2+bx+c (a≠0)的顶点坐标为(2b a -,244ac b a-)〕.(1)求经过A 、B 、C 三点的抛物线的解析式; (2)求四边形ABDC 的面积.4.在平面直角坐标系Oxy 中,抛物线k x x y +-=42(k 是常数)与x 轴相交于A 、B 两点(B 在A 的右边),与y 轴相交于C 点. ⑴求k 的取值范围;⑵若OBC ∆是等腰直角三角形,求k 的值.图9;O xyAB CP D10图5.如图9,矩形ABCD 中,E 是BC 上一点,将矩形沿AE 翻折后,点B 恰好与CD 边上的点F 重合.已知5=AB ,3=AD . ⑴求BE ; ⑵求EAF ∠tan .6.如图10,抛物线4212--=x x y 与坐标轴相交于A 、B 、C 三点,P 是线段AB 上一动点(端点除外),过P 作AC PD //,交BC 于点D ,连接CP . ⑴直接写出A 、B 、C 的坐标;⑵求PCD ∆面积的最大值,并判断当PCD ∆ 的面积取最大值时,以PA 、PD 为邻边的平行 四边形是否为菱形.答案:1. 分析:由前面算式可以看出:算式的左边利用平方差公式因式分解,中间的数字互为倒数,乘积为1,只剩下两端的(1﹣)和(1+)相乘得出结果.解:(1﹣)(1﹣)(1﹣)(1﹣)…(1﹣)=••••••…=.故答案为:.点评:此题考查算式的运算规律,找出数字之间的联系,得出运算规律,解决问题.2. 分析:(1)抽查人数可由C等所占的比例为50%,根据总数=某等人数÷比例来计算;(2)可由总数减去A、C、D的人数求得B等的人数,再补全条形统计图;(3)用样本估计总体.用总人数1200乘以样本中测试成绩等级在80分(含80分)以上的学生所占百分比即可.解:(1)20÷50%=40(人),答:这次随机抽取的学生共有40人;(2)B等级人数:40﹣5﹣20﹣4=11(人)条形统计图如下:(3)1200××100%=480(人),这次九年级学生期末数学考试成绩为优秀的学生人数大约有480人.点评: 本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.3.解:(1)由题意,得09303a b c a b c c -+=⎧⎪++=⎨⎪=⎩ 解得123a b c =-⎧⎪=⎨⎪=⎩.∴抛物线的解析式为 y =-x 2+2x +3.(2)由(1)可知 y =-(x -1)2+4 ∴顶点D 的坐标为(1,4) 设其对称轴与x 轴的交点为E.∵S △AOC =12AO ·OC =12×1×3=32, S 梯形OEDC =12(OC +DE )×OE =12×(3+4)×1=72,S △DEB =12EB ·DE =12×2×4=4,∴S 四边形ABCD =S △AOC +S 梯形OEDC +S △DEB =32+72+4=9.4.⑴依题意,04)4(2>--k ……1分解不等式得,4<k ……2分⑵依题意,) , 0(k C ……3分,从而)0 , |(|k B ……5分0||4||2=+-k k k ……6分0>k 时,032=-k k ,解得3=k ;0<k 时,052=+k k ,解得5-=k ……9分(注:正确求得3=k 、5-=k 中任何一个给2分,全对给3分).5.⑴(方法一)依题意,5==AB AF ,422=-=AD AF DF ……2分在CEF Rt ∆中,1=-=DF CD CF ,AFD DAF CFE ∠-=∠=∠090 (3)分,DAF CFE ∠=∠cos cos ……4分,所以AFADEF CF =……5分 解得35=⨯=AD AF CF EF ,所以35==EF BE ……7分 (方法二)依题意,5==AB AF ,422=-=AD AF DF ……2分 设x BE =,在CEF Rt ∆中,1=-=DF CD CF ,x BE EF ==,x CE -=3 ……3分,222)3(1x x -+=……5分,解得35==x BE ……7分 ⑵EAB EAF ∠=∠tan tan ……8分,31==AB BE ……9分.6.⑴)0 , 4(A 、)0 , 2(-B 、)4 , 0(-C ……2分(对1-2个给1分,全对2分)⑵设)0 , (x P (42<<-x ), 因为AC PD //,所以AB BP AC PD =……3分,解得)2(322+=x PD ……4分 C 到PD 的距离(即P 到AC 的距离))4(2245sin 0x PA d -=⨯=……5分 PCD ∆的面积383231)4)(2(31212++-=-+=⨯⨯=x x x x d PD S ……6分3)1(312+--=x S ,PCD ∆面积的最大值为3……7分PCD ∆的面积取最大值时,1=x ,34=-=x PA ,22)2(322=+=x PD ……8分因为PD PA ≠,所以以PA 、PD 为邻边的平行四边形不是菱形……9分.。
2015年中考数学压轴题汇编(四)91.(10分)(2015•岳阳)如图,抛物线y=ax2+bx+c经过A(1,0)、B(4,0)、C(0,3)三点.(1)求抛物线的解析式;(2)如图①,在抛物线的对称轴上是否存在点P,使得四边形PAOC的周长最小?若存在,求出四边形PAOC周长的最小值;若不存在,请说明理由.(3)如图②,点Q是线段OB上一动点,连接BC,在线段BC上是否存在这样的点M,使△CQM为等腰三角形且△BQM为直角三角形?若存在,求点M的坐标;若不存在,请说明理由.考点:二次函数综合题.分析:(1)把点A(1,0)、B(4,0)、C(0,3)三点的坐标代入函数解析式,利用待定系数法求解;(2)A、B关于对称轴对称,连接BC,则BC与对称轴的交点即为所求的点P,此时PA+PC=BC,四边形PAOC的周长最小值为:OC+OA+BC;根据勾股定理求得BC,即可求得;(3)分两种情况分别讨论,即可求得.解答:解:(1)由已知得解得.所以,抛物线的解析式为y=x2﹣x+3.(2)∵A、B关于对称轴对称,如图1,连接BC,∴BC与对称轴的交点即为所求的点P,此时PA+PC=BC,∴四边形PAOC的周长最小值为:OC+OA+BC,∵A(1,0)、B(4,0)、C(0,3),∴OA=1,OC=3,BC==5,∴OC+OA+BC=1+3+5=9;∴在抛物线的对称轴上存在点P,使得四边形PAOC的周长最小,四边形PAOC周长的最小值为9.(3)∵B(4,0)、C(0,3),∴直线BC的解析式为y=﹣x+3,①当∠BQM=90°时,如图2,设M(a,b),∵∠CMQ>90°,∴只能CM=MQ=b,∵MQ∥y轴,∴△MQB∽△COB,∴=,即=,解得b=,代入y=﹣x+3得,=﹣a+3,解得a=,∴M(,);②当∠QMB=90°时,如图3,∵∠CMQ=90°,∴只能CM=MQ,设CM=MQ=m,∴BM=5﹣m,∵∠BMQ=∠COB=90°,∠MBQ=∠OBC,∴△BMQ∽△BOC,∴=,解得m=,作MN∥OB,∴==,即==,∴MN=,CN=,∴ON=OC﹣CN=3﹣=,∴M(,),综上,在线段BC上存在这样的点M,使△CQM为等腰三角形且△BQM为直角三角形,点M的坐标为(,)或(,).点评:本题是二次函数的综合题,考查了待定系数法求二次函数的解析式,轴对称﹣最短路线问题,等腰三角形的性质等;分类讨论思想的运用是本题的关键.92.(12分)(2015•重庆)如图1,在平面直角坐标系中,抛物线y=﹣x2+x+3交x轴于A,B两点(点A在点B的左侧),交y轴于点W,顶点为C,抛物线的对称轴与x轴的交点为D.(1)求直线BC的解析式;(2)点E(m,0),F(m+2,0)为x轴上两点,其中2<m<4,EE′,FF′分别垂直于x轴,交抛物线于点E′,F′,交BC于点M,N,当ME′+NF′的值最大时,在y轴上找一点R,使|RF′﹣RE′|的值最大,请求出R点的坐标及|RF′﹣RE′|的最大值;(3)如图2,已知x轴上一点P(,0),现以P为顶点,2为边长在x轴上方作等边三角形QPG,使GP⊥x轴,现将△QPG沿PA方向以每秒1个单位长度的速度平移,当点P到达点A时停止,记平移后的△QPG为△Q′P′G′.设△Q′P′G′与△ADC的重叠部分面积为s.当Q′到x轴的距离与点Q′到直线AW的距离相等时,求s的值.考点:二次函数综合题.分析:(1)求出抛物线与x轴的交点坐标和顶点坐标,用待定系数法求解析式即可;(2)先求出E′、F′的坐标表示,然后求出E′M、F′N,用二次函数的顶点坐标求出当m=3时,ME′+NF′的值最大,得到E′、F′的坐标,再求出E′F′的解析式,当点R在直线E′F′与y轴的交点时,|RF′﹣RE′|的最大值,从而求出R点的坐标及|RF′﹣RE′|的最大值;(3)分类讨论Q点在∠CAB的角平分线或外角平分线上时,运用三角形相似求出相应线段,在求出△Q′P′G′与△ADC的重叠部分面积为S.解答:解:(1)令y=0,则﹣x2+x+3=0,解方程得:x=6或x=﹣2,∴A(﹣2,0),B(6,0),又y=﹣x2+x+3=﹣(x﹣2)2+4,又顶点C(2,4),设直线BC的解析式为:y=kx+b,代入B、C两点坐标得:,解得:,∴y=﹣x+6;(2)如图1,∵点E(m,0),F(m+2,0),∴E′(m,﹣m2+m+3),F′(m+2,﹣m2+4),∴E′M=﹣m2+m+3﹣(﹣m+6)=﹣m2+2m﹣3,F′N=﹣m2+4﹣(﹣m+4)=﹣m2+m,∴E′M+F′N=﹣m2+2m﹣3+(﹣m2+m)=﹣m2+3m﹣3,当m=﹣=3时,E′M+F′N的值最大,∴此时,E′(3,)F′(5,),∴直线E′F′的解析式为:y=﹣x+,∴R(0,),根据勾股定理可得:RF′=10,RE′=6,∴|RF′﹣RE′|的值最大值是4;(3)由题意得,Q点在∠CAB的角平分线或外角平分线上,①如图2,当Q点在∠CAB的角平分线上时,Q′M=Q′N=,AW=,∵△RMQ′∽△WOA,∴∴RQ′=,∴RN=+,∵△ARN∽△AWO,∵∴AN=,∴DN=AD﹣AN=4﹣=,∴S=;②如图3,当Q点在∠CAB的外角平分线上时,∵△Q′RN∽△WAO,∴RQ′=,∴RM=﹣,∵△RAM∽△WOA,∴AM=,在RtQ′MP′中,MP′=Q′M=3,∴AP′=MP′﹣AM=3﹣=,在Rt△AP′S中,P′S=AP′=×,∴S=.点评:本题主要考查了待定系数法求函数解析式,二次函数的性质,三角形的三边关系,三角形相似的判定与性质以及数形结合和分类讨论思想的综合运用,此题牵扯知识面广,综合性强,难度较大.93.(12分)(2015•温州)如图,抛物线y=﹣x2+6x交x轴正半轴于点A,顶点为M,对称轴MB交x轴于点B.过点C(2,0)作射线CD交MB于点D(D在x轴上方),OE∥CD交MB于点E,EF∥x轴交CD于点F,作直线MF.(1)求点A,M的坐标.(2)当BD为何值时,点F恰好落在该抛物线上?(3)当BD=1时①求直线MF的解析式,并判断点A是否落在该直线上.②延长OE交FM于点G,取CF中点P,连结PG,△FPG,四边形DEGP,四边形OCDE的面积分别记为S1,S2,S3,则S1:S2:S3=3:4:8.考点:二次函数综合题.分析:(1)在抛物线解析式中令y=0,容易求得A点坐标,再根据顶点式,可求得M点坐标;(2)由条件可证明四边形OCFE为平行四边形,可求得EF的点,可求得F点坐标,可得出BE的长,再利用平行线的性质可求得BD的长;(3)①由条件可求得F点坐标,可求得直线MF的解析式,把A点坐标代入其解析式可判断出A点在直线MF上;②由点的坐标结合勾股定理求得OE、GE、CD、DM、MF的长,再结合面积公式可分别表示出S1,S2,S3,可求得答案.解答:解:(1)令y=0,则﹣x2+6x=0,解得x=0或x=6,∴A点坐标为(6,0),又∵y=﹣x2+6x=﹣(x﹣3)2+9,∴M点坐标为(3,9);(2)∵OE∥CF,OC∥EF,∴四边形OCFE为平行四边形,且C(2,0),∴EF=OC=2,又B(3,0),∴OB=3,BC=1,∴F点的横坐标为5,∵点F落在抛物线y=﹣x2+6x上,∴F点的坐标为(5,5),∴BE=5,∵OE∥CF,∴=,即=,∴BD=;(3)①当BD=1时,由(2)可知BE=3BD=3,∴F(5,3),设直线MF解析式为y=kx+b,把M、F两点坐标代入可得,解得,∴直线MF解析式为y=﹣3x+18,∵当x=6时,y=﹣3×6+18=0,∴点A落在直线MF上;②如图所示,∵E(3,3),∴直线OE解析式为y=x,联立直线OE和直线MF解析式可得,解得,∴G(,),∴OG==,OE=CF=3,∴EG=OG﹣OE=﹣3=,∵=,∴CD=OE=,∵P为CF中点,∴PF=CF=,∴DP=CF﹣CD﹣PF=3﹣﹣=,∵OG∥CF,∴可设OG和CF之间的距离为h,∴S△FPG=PF•h=×h=h,S四边形DEGP=(EG+DP)h=×(+)h=h,S四边形OCDE=(OE+CD)h=(3+)h=2h,∴S1,S2,S3=h:h:2h=3:4:8,故答案为:3:4:8.点评:本题主要考查二次函数的综合应用,涉及二次函数的性质、一元二次方程、平行四边形的判定和性质、平行线分线段成比例、待定系数法、勾股定理等知识点.在(1)中注意抛物线顶点式的应用,在(2)中求得F点的坐标是解题的关键,在(3)①中,求得直线MF的解析式是解题的关键,在②中利用两平行线间的距离为定值表示出S1,S2,S3是解题的关键.本题考查知识点较多,综合性质较强,难度较大.94.(12分)(2015•金华)如图,抛物线y=ax2+c(a≠0)与y轴交于点A,与x轴交于B,C 两点(点C在x轴正半轴上),△ABC为等腰直角三角形,且面积为4,现将抛物线沿BA方向平移,平移后的抛物线过点C时,与x轴的另一点为E,其顶点为F,对称轴与x轴的交点为H.(1)求a、c的值.(2)连接OF,试判断△OEF是否为等腰三角形,并说明理由.(3)现将一足够大的三角板的直角顶点Q放在射线AF或射线HF上,一直角边始终过点E,另一直角边与y轴相交于点P,是否存在这样的点Q,使以点P、Q、E为顶点的三角形与△POE 全等?若存在,求出点Q的坐标;若不存在,请说明理由.考点:二次函数综合题. 专题:计算题. 分析:(1)先求出A (0,c ),则OA=c ,再根据等腰直角三角形的性质得OA=OB=OC=c ,理由三角形面积公式得•c•2c=4,解得c=2,接着把C (2,0)代入y=ax 2+2可求出a 的值;(2)如图1,先利用待定系数法求出直线AB 的解析式为y=x+2,设F (t ,t+2),利用抛物线平移的规律可设平移后的抛物线解析式为y=﹣(x ﹣t )2+t+2,再把C (2,0)代入得﹣(2﹣t )2+t+2=0,可解得t=6,则平移后的抛物线解析式为y=﹣(x ﹣6)2+8,所以F (6,8),利用勾股定理计算出OF=10,接着根据抛物线与x 轴的交点问题确定E (10,0),则OE=OF=10,于是可判断△OEF 为等腰三角形; (3)分类讨论:当点Q 在射线HF 上,如图2,利用三角形全等的判定方法,当EQ=EO=10时,△EQP ≌△EOP ,则可根据勾股定理计算出QH=2,于是可得Q 点坐标为(6,2);当点Q 在射线AF 上,如图3,利用三角形全等的判定方法,当EQ=EO=10时,△EQP ≌△EOP ,设Q (m ,m+2),利用两点间的距离公式得到(m ﹣10)2+(m+2)2=102,解方程求出m 的值即可得到Q 点坐标. 解答: 解:(1)∵抛物线y=ax 2+c (a≠0)与y 轴交于点A , ∴A (0,c ),则OA=c ,∵△ABC 为等腰直角三角形, ∴OA=OB=OC=c ,∴•c•2c=4,解得c=2,∴C (2,0),把C (2,0)代入y=ax 2+2得4a+2=0,解得a=﹣; (2)△OEF 是等腰三角形.理由如下:如图1, 设直线AB 的解析式为y=kx+b , 把A (0,2)、B (﹣2,0)代入得,解得,则直线AB 的解析式为y=x+2, 设F (t ,t+2),∵抛物线y=﹣x2+2沿BA方向平移,平移后的抛物线过点C时,顶点为F,∴平移后的抛物线解析式为y=﹣(x﹣t)2+t+2,把C(2,0)代入得﹣(2﹣t)2+t+2=0,解得t=6,∴平移后的抛物线解析式为y=﹣(x﹣6)2+8,∴F(6,8),∴OF==10,令y=0,﹣(x﹣6)2+8=0,解得x1=2,x2=10,∴OE=10,∴OE=OF,∴△OEF为等腰三角形;(3)存在.点Q的位置分两种情形.情形一:点Q在射线HF上,当点P在x轴上方时,如图2,∵∠EQP=90°,EP=EP,∴当EQ=EO=10时,△EQP≌△EOP,而HE=10﹣6=4,∴QH==2,此时Q点坐标为(6,2);当点P在x轴下方时,如图3,有PQ=OE=10,过P点作PK⊥HF于点K,则有PK=6,在Rt△PQK中,QK===8,∵∠PQE=90°,∴∠PQK+HQE=90°,∵∠PKQ=∠QHE=90°,∴△PKQ∽△QHE,∴,∴,解得QH=3,∴Q (6,3).情形二、点Q 在射线AF 上,当PQ=OE=10时,如图4,有QE=PO ,∴四边形POEQ 为矩形,∴Q 的横坐标为10,当x=10时,y=x+2=12,∴Q (10,12).当QE=OE=10时,如图5,过Q 作QM ⊥y 轴于点M ,过E 点作x 轴的垂线交QM 于点N .设Q 的坐标为为(x ,x+2),∴MQ=x ,QN=10﹣x ,EN=x+2,在Rt △QEN 中,有QE 2=QN 2+EN 2,即102=(10﹣x )2+(x+2)2,解得x=4±, 当x=4+时,如图5,y=x+2=6+,∴Q (4+,6+),当x=4﹣时,如图5,y=x+2=6﹣,∴Q (4﹣,6﹣),综上所述,Q 点的坐标为(6,2)或(6,3)或(10,12)或(4+,6+)或(4﹣,6﹣),使P ,Q ,E 三点为顶点的三角形与△POE 全等.点评: 本题考查了二次函数的综合题:熟练掌握二次函数的性质、二次函数平移的规律和三角形全等的判定与性质;会利用待定系数法求函数解析式;记住两点间的距离公式.95.(12分)(2015•湖州)已知在平面直角坐标系xOy 中,O 为坐标原点,线段AB 的两个端点A (0,2),B (1,0)分别在y 轴和x 轴的正半轴上,点C 为线段AB 的中点,现将线段BA 绕点B 按顺时针方向旋转90°得到线段BD ,抛物线y=ax 2+bx+c (a≠0)经过点D .(1)如图1,若该抛物线经过原点O ,且a=﹣.①求点D 的坐标及该抛物线的解析式;②连结CD ,问:在抛物线上是否存在点P ,使得∠POB 与∠BCD 互余?若存在,请求出所有满足条件的点P 的坐标,若不存在,请说明理由;(2)如图2,若该抛物线y=ax 2+bx+c (a≠0)经过点E (1,1),点Q 在抛物线上,且满足∠QOB 与∠BCD 互余.若符合条件的Q 点的个数是4个,请直接写出a 的取值范围.考点:二次函数综合题.分析:(1)①过点D作DF⊥x轴于点F,先通过三角形全等求得D的坐标,把D的坐标和a=﹣,c=0代入y=ax2+bx+c即可求得抛物线的解析式;②先证得CD∥x轴,进而求得要使得∠POB与∠BCD互余,则必须∠POB=∠BAO,设P的坐标为(x,﹣x2+x),分两种情况讨论即可求得;(2)若符合条件的Q点的个数是4个,则当a<0时,抛物线交于y轴的负半轴,当a>0时,最小值得<﹣1,解不等式即可求得.解答:解:(1)①过点D作DF⊥x轴于点F,如图1,∵∠DBF+∠ABO=90°,∠BAO+∠ABO=90°,∴∠DBF=∠BAO,又∵∠AOB=∠BFD=90°,AB=BD,在△AOB和△BFD中,,∴△AOB≌△BFD(AAS)∴DF=BO=1,BF=AO=2,∴D的坐标是(3,1),根据题意,得a=﹣,c=0,且a×32+b×3+c=1,∴b=,∴该抛物线的解析式为y=﹣x2+x;②∵点A(0,2),B(1,0),点C为线段AB的中点,∴C(,1),∵C、D两点的纵坐标都为1,∴CD∥x轴,∴∠BCD=∠ABO,∴∠BAO与∠BCD互余,要使得∠POB与∠BCD互余,则必须∠POB=∠BAO,设P的坐标为(x,﹣x2+x),(Ⅰ)当P在x轴的上方时,过P作PG⊥x轴于点G,如图2,则tan∠POB=tan∠BAO,即=,∴=,解得x1=0(舍去),x2=,∴﹣x2+x=,∴P点的坐标为(,);(Ⅱ)当P在x轴的上方时,过P作PG⊥x轴于点G,如图3则tan∠POB=tan∠BAO,即=,∴=,解得x1=0(舍去),x2=,∴﹣x2+x=﹣,∴P点的坐标为(,﹣);综上,在抛物线上是否存在点P(,)或(,﹣),使得∠POB与∠BCD互余.(2)如图3,∵D(3,1),E(1,1),抛物线y=ax2+bx+c过点E、D,代入可得,解得,所以y=ax2﹣4ax+3a+1.分两种情况:①当抛物线y=ax2+bx+c开口向下时,若满足∠QOB与∠BCD互余且符合条件的Q点的个数是4个,则点Q在x轴的上、下方各有两个.(i)当点Q在x轴的下方时,直线OQ与抛物线有两个交点,满足条件的Q有2个;(ii)当点Q在x轴的上方时,要使直线OQ与抛物线y=ax2+bx+c有两个交点,抛物线y=ax2+bx+c与x轴的交点必须在x轴的正半轴上,与y轴的交点在y轴的负半轴,所以3a+1<0,解得a<﹣;②当抛物线y=ax2+bx+c开口向上时,点Q在x轴的上、下方各有两个,(i)当点Q在x轴的上方时,直线OQ与抛物线y=ax2+bx+c有两个交点,符合条件的点Q有两个;(ii)当点Q在x轴的下方时,要使直线OQ与抛物线y=ax2+bx+c有两个交点,符合条件的点Q才两个.根据(2)可知,要使得∠QOB与∠BCD互余,则必须∠POB=∠BAO,∴tan∠QOB=tan∠BAO==,此时直线OQ的斜率为﹣,则直线OQ的解析式为y=﹣x,要使直线OQ与抛物线y=ax2+bx+c有两个交点,所以方程ax2﹣4ax+3a+1=﹣x有两个不相等的实数根,所以△=(﹣4a+)2﹣4a(3a+1)>0,即4a2﹣8a+>0,解得a>(a<舍去)综上所示,a的取值范围为a<﹣或a>.点评:本题是二次函数的综合题,考查了待定系数法求二次函数的解析式,正切函数,最小值等,分类讨论的思想是本题的关键.96.(15分)(2015•益阳)已知抛物线E1:y=x2经过点A(1,m),以原点为顶点的抛物线E2经过点B(2,2),点A、B关于y 轴的对称点分别为点A′,B′.(1)求m的值及抛物线E2所表示的二次函数的表达式;(2)如图1,在第一象限内,抛物线E1上是否存在点Q,使得以点Q、B、B′为顶点的三角形为直角三角形?若存在,求出点Q的坐标;若不存在,请说明理由;(3)如图2,P为第一象限内的抛物线E1上与点A不重合的一点,连接OP并延长与抛物线E2相交于点P′,求△PAA′与△P′BB′的面积之比.考点:二次函数综合题.分析:(1)直接将(2,2)代入函数解析式进而求出a的值;(2)由题意可得,在第一象限内,抛物线E1上存在点Q,使得△QBB′为直角三角形,由图象可知直角顶点只能为点B或点Q,分别利用当点B为直角顶点时以及当点Q为直角顶点时求出Q点坐标即可;(3)首先设P(c,c2)、P′(d,),进而得出c与d的关系,再表示出△PAA′与△P′BB′的面积进而得出答案.解答:解:(1)∵抛物线E1经过点A(1,m),∴m=12=1.∵抛物线E2的顶点在原点,可设它对应的函数表达式为y=ax2(a≠0),又∵点B(2,2)在抛物线E2上,∴2=a×22,解得:a=,∴抛物线E2所对应的二次函数表达式为y=x2.(2)如图1,假设在第一象限内,抛物线E1上存在点Q,使得△QBB′为直角三角形,由图象可知直角顶点只能为点B或点Q.①当点B为直角顶点时,过B作QB⊥BB′交抛物线E1于Q,则点Q与B的横坐标相等且为2,将x=2代入y=x2得y=4,∴点Q的坐标为(2,4).②当点Q为直角顶点时,则有QB′2+QB2=B′B2,过点Q作GQ⊥BB′于G,设点Q的坐标为(t,t2)(t>0),则有(t+2)2+(t2﹣2)2+(2﹣t)2+(t2﹣2)2=4,整理得:t4﹣3t2=0,∵t>0,∴t2﹣3=0,解得t1=,t2=﹣(舍去),∴点Q的坐标为(,3),综合①②,存在符合条件的点Q坐标为(2,4)与(,3);(3)如图2,过点P作PC⊥x轴,垂足为点C,PC交直线AA′于点E,过点P′作P′D⊥x轴,垂足为点D,P′D交直线BB′于点F,依题意可设P(c,c2)、P′(d,)(c>0,c≠q),∵tan∠POC=tan∠P′OD,∴=,∴d=2c.∵AA′=2,BB′=4,∴====.点评:此题主要考查了二次函数综合以及直角三角形的性质和三角形面积求法,根据题意利用分类讨论得出是解题关键.97.(10分)(2015•湘潭)如图,二次函数y=x2+bx+c的图象交x轴于A(﹣1,0)、B(3,0)两点,交y轴于点C,连接BC,动点P以每秒1个单位长度的速度从A向B运动,动点Q以每秒个单位长度的速度从B向C运动,P、Q同时出发,连接PQ,当点Q到达C点时,P、Q同时停止运动,设运动时间为t秒.(1)求二次函数的解析式;(2)如图1,当△BPQ为直角三角形时,求t的值;(3)如图2,当t<2时,延长QP交y轴于点M,在抛物线上是否存在一点N,使得PQ的中点恰为MN的中点?若存在,求出点N的坐标与t的值;若不存在,请说明理由.考点:二次函数综合题.分析:(1)根据二次函数y=x2+bx+c的图象经过A(﹣1,0)、B(3,0)两点,应用待定系数法,求出二次函数的解析式即可.(2)首先根据待定系数法,求出BC所在的直线的解析式,再分别求出点P、点Q的坐标各是多少;然后分两种情况:①当∠QPB=90°时;②当∠PQB=90°时;根据等腰直角三角形的性质,求出t的值各是多少即可.(3)首先延长MQ交抛物线于点N,H是PQ的中点,再用待定系数法,求出PQ所在的直线的解析式,然后PQ的中点恰为MN的中点,判断出是否存在满足题意的点N即可.解答:解:(1)∵二次函数y=x2+bx+c的图象经过A(﹣1,0)、B(3,0)两点,∴,解得.∴二次函数的解析式是:y=x2﹣2x﹣3.(2)∵y=x2﹣2x﹣3,∴点C的坐标是(0,﹣3),∴BC==3,设BC所在的直线的解析式是:y=mx+n,则,解得.∴BC所在的直线的解析式是:y=x﹣3,∵经过t秒,AP=t,BQ=t,∴点P的坐标是(t﹣1,0),设点Q的坐标是(x,y),∵OB=OC=3,∴∠OBC=∠OCB=45°,则y=×sin45°=×=t,∴BP==×=t,∴x=3﹣t,∴点Q的坐标是(3﹣t,t),①如图1,,当∠QPB=90°时,点P和点Q的横坐标相同,∵点P的坐标是(t﹣1,0),点Q的坐标是(3﹣t,t),∴t﹣1=3﹣t,解得t=2,即当t=2时,△BPQ为直角三角形.②如图2,,当∠PQB=90°时,∵∠PBQ=45°,∴BP=,∵BP=3﹣(t﹣1)=4﹣t,BQ=,∴4﹣t=即4﹣t=2t,解得t=,即当t=时,△BPQ为直角三角形.综上,可得当△BPQ为直角三角形,t=或2.(3)如图3,延长MQ交抛物线于点N,H是PQ的中点,,设PQ所在的直线的解析式是y=cx+d,∵点P的坐标是(t﹣1,0),点Q的坐标是(3﹣t,t),∴,解得.∴PQ所在的直线的解析式是y=x+,∴点M的坐标是(0,)∵,,∴PQ的中点H的坐标是(1,)假设PQ的中点恰为MN的中点,∵1×2﹣0=2,=,∴点N的坐标是(2,),又∵点N在抛物线上,∴=22﹣2×2﹣3=﹣3,解得t=或t=﹣(舍去),∵>,∴当t<2时,延长QP交y轴于点M,在抛物线上不存在一点N,使得PQ的中点恰为MN的中点.点评:(1)此题主要考查了二次函数综合题,考查了分析推理能力,考查了分类讨论思想的应用,考查了数形结合思想的应用,考查了从已知函数图象中获取信息,并能利用获取的信息解答相应的问题的能力.(2)此题还考查了等腰三角形的性质和应用,考查了分类讨论思想的应用,要熟练掌握,解答此题的关键是要明确:①等腰三角形的两腰相等.②等腰三角形的两个底角相等.③等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合.(3)此题还考查了待定系数法求函数解析式的方法,要熟练掌握.98.(10分)(2015•衡阳)如图,顶点M在y轴上的抛物线与直线y=x+1相交于A、B两点,且点A在x轴上,点B的横坐标为2,连结AM、BM.(1)求抛物线的函数关系式;(2)判断△ABM的形状,并说明理由;(3)把抛物线与直线y=x的交点称为抛物线的不动点.若将(1)中抛物线平移,使其顶点为(m,2m),当m满足什么条件时,平移后的抛物线总有不动点.考点:二次函数综合题.分析:(1)由条件可分别求得A、B的坐标,设出抛物线解析式,利用待定系数法可求得抛物线解析式;(2)结合(1)中A、B、C的坐标,根据勾股定理可分别求得AB、AM、BM,可得到AB2+AM2=BM2,可判定△ABM为直角三角形;(3)由条件可写出平移后的抛物线的解析式,联立y=x,可得到关于x的一元二次方程,根据根的判别式可求得m的范围.解答:解:(1)∵A点为直线y=x+1与x轴的交点,∴A(﹣1,0),又B点横坐标为2,代入y=x+1可求得y=3,∴B(2,3),∵抛物线顶点在y轴上,∴可设抛物线解析式为y=ax2+c,把A、B两点坐标代入可得,解得,∴抛物线解析式为y=x2﹣1;(2)△ABM为直角三角形.理由如:由(1)抛物线解析式为y=x2﹣1可知M点坐标为(0,﹣1),∴AM=,AB===3,BM==2,∴AM2+AB2=2+18=20=BM2,∴△ABM为直角三角形;(3)当抛物线y=x2﹣1平移后顶点坐标为(m,2m)时,其解析式为y=(x﹣m)2+2m,即y=x2﹣2mx+m2+2m,联立y=x,可得,消去y整理可得x2﹣(2m+1)x+m2+2m=0,∵平移后的抛物线总有不动点,∴方程x2﹣(2m+1)x+m2+2m=0总有实数根,∴△≥0,即(2m+1)2﹣4(m2+2m)≥0,解得m≤,即当m≤时,平移后的抛物线总有不动点.点评:本题主要考查二次函数的综合应用,涉及待定系数法、二次函数的性质、勾股定理及其逆定理、一元二次方程等知识点.在(1)中确定出A、B两点的坐标是解题的关键,在(2)中分别求得AB、AM、BM的长是解题的关键,在(3)中确定出抛物线有不动点的条件是解题的关键.本题考查知识点较为基础,难度适中.99.(10分)(2015•郴州)如图,已知抛物线经过点A(4,0),B(0,4),C(6,6).(1)求抛物线的表达式;(2)证明:四边形AOBC的两条对角线互相垂直;(3)在四边形AOBC的内部能否截出面积最大的▱DEFG?(顶点D,E,F,G分别在线段AO,OB,BC,CA上,且不与四边形AOBC的顶点重合)若能,求出▱DEFG的最大面积,并求出此时点D的坐标;若不能,请说明理由.考点:二次函数综合题.专题:综合题.分析:(1)根据抛物线经过点A(4,0),B(0,4),C(6,6),利用待定系数法,求出抛物线的表达式即可;(2)利用两点间的距离公式分别计算出OA=4,OB=4,CB=2,CA=2,则OA=OB,CA=CB,根据线段垂直平分线定理的逆定理得到OC垂直平分AB,所以四边形AOBC 的两条对角线互相垂直;(3)如图2,利用两点间的距离公式分别计算出AB=4,OC=6,设D(t,0),根据平行四边形的性质四边形DEFG为平行四边形得到EF∥DG,EF=DG,再由OC垂直平分AB得到△OBC与△OAC关于OC对称,则可判断EF和DG为对应线段,所以四边形DEFG为矩形,DG∥OC,则DE∥AB,于是可判断△ODE∽△OAB,利用相似比得DE=t,接着证明△ADG∽△AOC,利用相似比得DG=(4﹣t),所以矩形DEFG 的面积=DE•DG=t•(4﹣t)=﹣3t2+12t,然后根据二次函数的性质求平行四边形DEFG的面积的最大值,从而得到此时D点坐标.解答:解:(1)设该抛物线的解析式为y=ax2+bx+c,根据题意得,解得,∴抛物线的表达式为y=x2﹣x+4;(2)如图1,连结AB、OC,∵A(4,0),B(0,4),C(6,6),∴OA=4,OB=4,CB==2,CA==2,∴OA=OB,CA=CB,∴OC垂直平分AB,即四边形AOBC的两条对角线互相垂直;(3)能.如图2,AB==4,OC==6,设D(t,0),∵四边形DEFG为平行四边形,∴EF∥DG,EF=DG,∵OC垂直平分AB,∴△OBC与△OAC关于OC对称,∴EF和DG为对应线段,∴四边形DEFG为矩形,DG∥OC,∴DE∥AB,∴△ODE∽△OAB,∴=,即=,解得DE=t,∵DG∥OC,∴△ADG∽△AOC,∴=,即=,解得DG=(4﹣t),∴矩形DEFG的面积=DE•DG=t•(4﹣t)=﹣3t2+12t=﹣3(t﹣2)2+12,当t=2时,平行四边形DEFG的面积最大,最大值为12,此时D点坐标为(2,0).点评:考查了二次函数综合题:熟练掌握用待定系数法求二次函数解析式、二次函数的性质和对称的判定与性质;理解坐标与图形性质,会利用两点间的距离公式计算线段的长;掌握线段垂直平分线的判定方法和平行四边形的性质;会利用相似比计算线段的长.100.(10分)(2015•常德)如图,曲线y1抛物线的一部分,且表达式为:y1=(x2﹣2x﹣3)(x≤3)曲线y2与曲线y1关于直线x=3对称.(1)求A、B、C三点的坐标和曲线y2的表达式;(2)过点D作CD∥x轴交曲线y1于点D,连接AD,在曲线y2上有一点M,使得四边形ACDM 为筝形(如果一个四边形的一条对角线被另一条对角线垂直平分,这样的四边形为筝形),请求出点M的横坐标;(3)设直线CM与x轴交于点N,试问在线段MN下方的曲线y2上是否存在一点P,使△PMN 的面积最大?若存在,求出点P的坐标;若不存在,请说明理由.考点:二次函数综合题.分析:(1)对点A、B、C坐标的意义要明白,点A与点B是二次函数与横轴的交点,点C是纵轴的交点,关于x=3意义的理解,就是将y1=进行了平移,从而可求得抛物线y2的解析式;(2)要理解,只有当CM垂直平分AD时,才能在y2找到点M,故点M即为直线(C 与AD的中点P连线)的交点;(3)显然MN的值固定,即在y2上的点,到CM的距离最大的点,即与CM平行的直线与y2只有一个交点时,即为所求.解答:解:(1)在y1=(x2﹣2x﹣3)中,令y1=0,则有0=(x2﹣2x﹣3),解得x=﹣1或x=3,∴A(﹣1,0),B(3,0),又∵C为与y轴的交点,∴C(0,﹣),又曲线y2与曲线y1关于直线x=3对称,∴曲线y2可由曲线y1关向右平移3个单位得到,∴y2=(x≥3);(2)若AD垂直平分CM,则可知CDMA为菱形,此时点M(1,0),显然不在y2上;故直线CM垂直平分AD,取AD中点P,易求其坐标为(1,﹣),故直线CN的解析式为:y CN=,求其与y2的交点坐标:,解得:x1=,x2=(不合舍去),∴x=;(3)因为MN的长度固定,故点P到MN的距离最大时,△PMN的面积最大,∴可设另一直线y=x+b与y2相交于点P,很显然它们只有一个交点时,满足条件.即:只有唯一一个解的时候,这个点就是点P,即方程x+b=(x2﹣10x+21)有唯一一个解,解得:x=,将x=代入y2=,解得y=﹣故点P的坐标为.点评:本题主要考查二次函数的综合应用,涉及二次函数与一元二次方程的关系、图象的平移、菱形的性质等知识点.在(1)中确定出曲线y2可由曲线y1关向右平移3个单位得到是解题的关键,在(2)中确定出直线CM垂直平分AD是解题的关键,在(3)中确定出P点的位置是解题的关键.本题考查知识点较多,综合性质较强,难度较大.101.(10分)(2015•长沙)若关于x的二次函数y=ax2+bx+c(a>0,c>0,a,b,c是常数)与x轴交于两个不同的点A(x1,0),B(x2,0)(0<x1<x2),与y轴交于点P,其图象顶点为点M,点O为坐标原点.(1)当x1=c=2,a=时,求x2与b的值;(2)当x1=2c时,试问△ABM能否为等边三角形?判断并证明你的结论;(3)当x1=mc(m>0)时,记△MAB,△PAB的面积分别为S1,S2,若△BPO∽△PAO,且S1=S2,求m的值.考点:二次函数综合题.分析:(1)设ax2+bx+c=0的两根为x1、x2,把a、c代入得:x2+bx+2=0,根据x1=2是它的一个根,求出b,再根据x2﹣x+2=0,即可求出另一个根,(2)根据x1=2c时,x2=,得出b=﹣(2ac+),4ac=﹣2b﹣1,根据M的坐标为(﹣,),得出当△ABM为等边三角形时=(﹣2c),求出b1=﹣1,b2=2﹣1(舍去),最后根据4ac=﹣2b﹣1=1,得出2c=,A、B重合,△ABM不可能为等边三角形;(3)根据△BPO∽△PAO,得出=,ac=1,由S1=S2得出b2=4a•2c=8ac=8,求出b=﹣2,最后根据x2﹣2x+c=0得出x=(﹣1)c,从而求出m.解答:解:(1)设ax2+bx+c=0的两根为x1、x2,把a=,c=2代入得:x2+bx+2=0,∵x1=2是它的一个根,∴×22+2b+2=0,解得:b=﹣,∴方程为:x2﹣x+2=0,∴另一个根为x2=3;(2)当x1=2c时,x2==,此时b=﹣a(x1+x2)=﹣(2ac+),4ac=﹣2b﹣1,∵M(﹣,),当△ABM为等边三角形时||=AB,即=(﹣2c),∴=•,∴b2+2b+1=(1+2b+1),解得:b1=﹣1,b2=2﹣1(舍去),此时4ac=﹣2b﹣1=1,即2c=,A、B重合,∴△ABM不可能为等边三角形;(3)∵△BPO∽△PAO,∴=,即x1x2=c2=,∴ac=1,由S1=S2得c=||=﹣c,∴b2=4a•2c=8ac=8,∴b1=﹣2,b2=2(舍去),方程可解为x2﹣2x+c=0,∴x1===(﹣1)c,∴m=﹣1.点评:此题考查了二次函数综合,用到的知识点是二次函数的图象与性质、相似三角形的判定与性质、等边三角形的性质、一元二次方程,关键是综合运用有关知识求解,注意把不合题意的解舍去.102.(10分)(2015•吉林)如图①,一次函数y=kx+b的图象与二次函数y=x2的图象相交于A,B两点,点A,B的横坐标分别为m,n(m<0,n>0).(1)当m=﹣1,n=4时,k=3,b=4;当m=﹣2,n=3时,k=1,b=6;(2)根据(1)中的结果,用含m,n的代数式分别表示k与b,并证明你的结论;(3)利用(2)中的结论,解答下列问题:如图②,直线AB与x轴,y轴分别交于点C,D,点A关于y轴的对称点为点E,连接AO,OE,ED.①当m=﹣3,n>3时,求的值(用含n的代数式表示);②当四边形AOED为菱形时,m与n满足的关系式为n=﹣2m;当四边形AOED为正方形时,m=﹣1,n=2.考点:二次函数综合题.专题:综合题.分析:(1)根据二次函数图象上点的坐标特征,由当m=﹣1,n=4得A(﹣1,1),B(4,16),然后利用待定系数法求出直线AB的解析式即可得到k和b的值;当m=﹣2,n=3时,用同样的方法求解;(2)根据二次函数图象上点的坐标特征得到A(m,m2),B(n,n2),把它们分别代入y=kx+b得,然后解关于k、b的方程组即可得到k=m+n,b=﹣mn;(3)①当m=﹣3时,A(﹣3,9),根据y轴对称的点的坐标特征得E(3,9),再由(2)的结论得k=m+n,b=﹣mn,则直线AB的解析式为y=(﹣3+n)x+3n,接着求出D(0,3n),C(,0),然后根据三角形面积公式可计算出的值;②连结AE交OD于P,如图②,点A(m,m2)关于y轴的对称点E的坐标为(﹣m,m2),则OP=m2,由于k=m+n,b=﹣mn,则D(0,﹣mn);若四边形AOED为菱形,根据菱形的性质OP=DP,即﹣mn=2m2,可解得n=﹣2m;若四边形AOED为正方形,根据正方形的性质得OP=AP=OP=PD,易得m=﹣1,n=2.。
2015中考压轴题突破 训练⽬标 熟悉题型结构,辨识题⽬类型,调⽤解题⽅法; 书写框架明晰,踩点得分(完整、快速、简洁)。
题型结构及解题⽅法 压轴题综合性强,知识⾼度融合,侧重考查学⽣对知识的综合运⽤能⼒,对问题背景的研究能⼒以及对数学模型和套路的调⽤整合能⼒。
考查要点常考类型举例题型特征解题⽅法 问题背景研究求坐标或函数解析式,求⾓度或线段长已知点坐标、解析式或⼏何图形的部分信息研究坐标、解析式,研究边、⾓,特殊图形。
模型套路调⽤求⾯积、周长的函数关系式,并求最值速度已知,所求关系式和运动时间相关分段:动点转折分段、图形碰撞分段; 利⽤动点路程表达线段长; 设计⽅案表达关系式。
坐标系下,所求关系式和坐标相关利⽤坐标及横平竖直线段长; 分类:根据线段表达不同分类; 设计⽅案表达⾯积或周长。
求线段和(差)的最值有定点(线)、不变量或不变关系利⽤⼏何模型、⼏何定理求解,如两点之间线段最短、垂线段最短、三⾓形三边关系等。
套路整合及分类讨论点的存在性点的存在满⾜某种关系,如满⾜⾯积⽐为9:10 抓定量,找特征; 确定分类;. 根据⼏何特征或函数特征建等式。
图形的存在性特殊三⾓形、特殊四边形的存在性分析动点、定点或不变关系(如平⾏); 根据特殊图形的判定、性质,确定分类; 根据⼏何特征或函数特征建等式。
三⾓形相似、全等的存在性找定点,分析⽬标三⾓形边⾓关系; 根据判定、对应关系确定分类; 根据⼏何特征建等式求解。
答题规范动作 试卷上探索思路、在演草纸上演草。
合理规划答题卡的答题区域:两栏书写,先左后右。
作答前根据思路,提前规划,确保在答题区域内写完答案;同时⽅便修改。
作答要求:框架明晰,结论突出,过程简洁。
23题作答更加注重结论,不同类型的作答要点: ⼏何推理环节,要突出⼏何特征及数量关系表达,简化证明过程; ⾯积问题,要突出⾯积表达的⽅案和结论; ⼏何最值问题,直接确定最值存在状态,再进⾏求解; 存在性问题,要明确分类,突出总结。
2015中考压轴题代数之方程和不等式综合问题专题试题(附答案)中考压轴题中方程和不等式综合问题,主要是解答题,并且以方案型问题主,它的重点和难点在于找出等量关系和不等关系,列出方程和不等式求解。
原创模拟预测题1. 某学校为了绿化校园,决定从某苗圃购进甲、乙、丙三种树苗共80株,其中甲种树苗株树是乙种树苗株树的2倍,购买三种树苗的总金额不超过1320元,已知乙种树苗的单价是16元/株,乙种树苗的单价是甲种树苗的单价的,购买丙种树苗12株的金额等于购买甲种树苗20株的金额。
(1)甲、丙两种树苗的单价分别是多少元?(2)若要求甲种树苗的株树不超过丙种树苗的株树,请你帮助设计共有哪些购买方案?【答案】(1)设甲种树苗的单价是x元/株,丙种树苗的单价是y元/株,则根据题意,得,解得。
答:甲、丙两种树苗的单价分别是12元/株和20元/株。
(2)设至少购进乙种树苗z株,则根据题意,得,解得14≤x≤16。
∵z为整数,∴z=14,15,16。
当z=14时,2z =28,;当z=15时,2z=30,;当z=16时,2z=32,。
∴共有3种购买方案:购进乙14株,甲28株,丙80-14×3=38株;购进乙15株,甲30株,丙80-45=35株;购进乙16株,甲32株,丙80-48=32株。
【考点】二元一次方程组的应用;一元一次不等式组的整数解。
原创模拟预测题2. 郑州市花卉种植专业户王有才承包了30亩花圃,分别种植康乃馨和玫瑰花,有关成本、销售额见下表:种植种类成本(万元/亩)销售额(万元/亩)康乃馨 2.4 3 玫瑰花 2 2.5 (1)2012年,王有才种植康乃馨20亩、玫瑰花10亩,求王有才这一年共收益多少万元?(收益=销售额-成本)(2)2013年,王有才继续用这30亩花圃全部种植康乃馨和玫瑰花,计划投入成本不超过70万元.若每亩种植的成本、销售额与2012年相同,要获得最大收益,他应种植康乃馨和玫瑰花各多少亩?(3)已知康乃馨每亩需要化肥500kg,玫瑰花每亩需要化肥700kg,根据(2)中的种植亩数,为了节约运输成本,实际使用的运输车辆每次装载化肥的总量是原计划每次装载总量的2倍,结果运输全部化肥比原计划减少2次.求王有才原定的运输车辆每次可装载化肥多少千克?【答案】(1)17万元;(2)康乃馨25亩,玫瑰花5亩;(3)4000千克【解析】答:要获得最大收益,应养殖康乃馨25亩,玫瑰花5亩;(3)设王有才原定的运输车辆每次可装载饲料a�K 由(2)得,共需要饲料为500×25+700×5=16000(�K),根据题意得,解得a=4000,把a=4000代入原方程公分母得,2a=2×4000=8000≠0,故a=4000是原方程的解.答:王有才原定的运输车辆每次可装载饲料4000�K.考点:一次函数的应用,分式方程的应用,一元一次不等式的应用点评:解题的关键是列不等式求x的取值范围,再表示出函数关系求最大值,再列分式方程求解.原创模拟预测题3. 在“老年节” 前夕,某公司工会组织323名退休职工到浙江杭州旅游,旅游前,工会确定每车保证有一名随团医生,并为此次旅游请了8名医生,现打算同时租甲、乙两种客车,其中甲种客车每辆载客50人,乙种客车每辆载客20人。
中考数学:2015(浙江)杭州卷压轴题题目:方成同学看到一则材料:甲开汽车,乙骑自行车,从M地出发沿一条公路匀速的前往N地。
设乙的行使时间为t(h),甲乙两人之间的距离为y(km),y与t的函数关系如图1所示。
方成思考后发现了图1中的部分正确信息:乙先出发1h;甲出发0.5h后与乙相遇。
请你帮助方成同学解决以下问题:1、分别求出线段BC,CD所在直线的函数表达式;2、当20<y<30时,求t的取值范围;3、分别求出甲,乙形式的路程S(甲),S(乙)与时间t的函数表达式,并在图2中画出图象;4、丙骑摩托车与乙同时出发,从N地沿同一条公路,匀速的前往M地。
若丙经过4h/3与乙相遇。
问,丙出发多少时间与甲相遇。
分析:又是一道几何与代数结合的应用题,有很多信息通过图像透露。
兵来将挡,我们仍然坚持跟着问题找条件。
1、题目1要求直线的解析式。
我们只要知道两点的坐标,或者一点的坐标以及直线的斜率,都可以求得直线的解析式。
本题中,我们已知B(1.5,0),C(7/3,100/3),D(4,0),所以直线BC和直线CD的解析式易得。
2、题目问题很简洁,但实际上题目2的求解是整个题目求解的关键:y的解析式是什么?根据题意,y是甲、乙两人间的距离,即,•当甲的运动路程<乙时,y=乙的运动路程-甲的运动路程;•当甲的运动路程≥ 乙时,y=甲的运动路程-乙的运动路程。
这样,若要求解y的解析式,需要知道甲、乙的运动路程的解析式。
根据题意,•甲乙都是匀速运动,且•乙先出发1h,甲出发0.5h后与乙相遇。
所以,不难判断甲的运动速度大于乙:当甲乙相遇后,甲将超过乙,直至到达N地。
那么甲乙之间的位置变化将依次经历以下几个阶段:•甲未出发,乙独自运动:此时S(甲)≡0。
y=S(乙),甲乙距离不断拉大,对应线段OA;•甲已出发,直至甲乙相遇:y=S(乙)-S(甲),甲追赶乙,距离不断缩小,对应线段AB;•甲超过乙,直至甲到达N地:y=S(甲)-S(乙),甲乙距离不断拉大,对应线段BC;•乙独自运动,直至到达N地。
2015年全国各地中考数学试题压轴题解析汇编解答题(2)26.(2015年浙江杭州12分)方成同学看到一则材料,甲开汽车,乙骑自行车从M 地出发沿一条公路匀速前往N 地,设乙行驶的时间为t (h ),甲乙两人之间的距离为y (km ),y 与t 的函数关系如图1所示,方成思考后发现了图1的部分正确信息,乙先出发1h ,甲出发0.5小时与乙相遇,⋯⋯,请你帮助方成同学解决以下问题: (1)分别求出线段BC ,CD 所在直线的函数表达式; (2)当20<y <30时,求t 的取值范围;(3)分别求出甲、乙行驶的路程S 甲、S 乙与时间t 的函数表达式,并在图2所给的直角坐标系中分别画出它们的图象;(4)丙骑摩托车与乙同时出发,从N 地沿同一条公路匀速前往M 地,若丙经过h 与乙相遇,问丙出发后多少时间与甲相遇.图2图1t (h )y (km )10037311.54OA C D B110S (km )t (h )【答案】解:(1)设线段BC 所在直线的函数表达式为11y k t b =+,∵37100,0,,233B C ⎛⎫⎛⎫⎪ ⎪⎝⎭⎝⎭ ,∴1111302710033k b k b ⎧+=⎪⎪⎨⎪+=⎪⎩,解得114060k b =⎧⎨=-⎩. ∴线段BC 所在直线的函数表达式为4060y t =-. 设线段CD 所在直线的函数表达式为22y k t b =+,∵()7100,,4,033C D ⎛⎫⎪⎝⎭ ,∴221171003340k b k b ⎧+=⎪⎨⎪+=⎩,解得222080k b =-⎧⎨=⎩. ∴线段BC 所在直线的函数表达式为2080y t =-+.(2)∵线段OA 所在直线的函数表达式为()2001y t t =≤≤,∴点A 的纵坐标为20.当20<<30y 时,即20<4060<30t -或20<20800<30t -+, 解得92<<4t 或5<<32t . ∴当20<<30y 时, t 的取值范围为92<<4t 或5<<32t . (3)()60601<3S t t =-≤甲,()201<4S t t =≤乙.所画图形如答图:(4)当43t =0时,803S =乙,∴丙距M 地的路程S 丙与时间t 的函数关系式为()408002S t t =-+≤≤丙.联立60604080S t S t =-⎧⎨=-+⎩,解得()60601<3S t t =-≤甲与()408002S t t =-+≤≤丙图象交点的横坐标为75, ∴丙出发后75h 与甲相遇.【考点】一次函数的图象和性质;待定系数法的应用;直线上点的坐标与方程的关系;解方程组和不等式组;分类思想的应用.【分析】(1)应用待定系数法即可求得线段BC ,CD 所在直线的函数表达式.(2)求出点A 的纵坐标,确定适用的函数,解不等式组求解即可. (3)求函数表达式画图即可.(4)求出S 丙与时间t 的函数关系式,与()60601<3S t t =-≤甲联立求解.27. (2015年浙江嘉兴12分)某企业接到一批粽子生产任务,按要求在15天内完成,约定这批粽子的出厂价为每只6元. 为按时完成任务,该企业招收了新工人,设新工人李明第x 天生产的粽子数量为y 只,y 与x满足如下关系式:()()5005301205<15x x y x x ⎧≤≤⎪=⎨+≤⎪⎩.(1)李明第几天生产的粽子数量为420只?(2)如图,设第x 天每只粽子的成本是p 元,p 与x 之间的关系可用图中的函数图象来刻画. 若李明第x 天创造的利润为w 元,求w 与x 之间的函数表达式,并求出第几天的利润最大?最大值是多少元(利润=出厂价-成本)?【答案】解:(1)设李明第n 天生产的粽子数量为420只,根据题意,得30120420n +=, 解得10n =.答:李明第10天生产的粽子数量为420只. (2)由图象可知,当0<9x ≤时, 4.1p =;当915x ≤≤时,设p kx b =+,把点(9,4.1),(15,4.7)代入止式,得9 4.115 4.7k b k b +=⎧⎨+=⎩,解得0.13.2k b =⎧⎨=⎩.∴0.1 3.2p x =+.①05x ≤≤时,()6 4.154102.6w x x =-⋅=,当5x =时,513w =最大(元); ②5<<9x 时,()()6 4.130********w x x =-⋅+=+,∵x 是整数,∴当8x =时,684w =最大(元);③915x ≤≤时,()()()2260.1 3.230120372336312768w x x x x x =--⋅+=-++=--+, ∵3<0-,∴当12x =时,768w =最大(元).综上所述,w 与x 之间的函数表达式为()()()2102.605572285<<9372336915x x w x x x x x ⎧≤≤⎪=+⎨⎪-++≤≤⎩,第12天的利润最大,最大值是768元.【考点】一元一次方程、一次函数和二次函数的综合应用;分类思想的应用.【分析】(1)方程的应用解题关键是找出等量关系,列出方程求解. 本题设李明第n 天生产的粽子数量为420只,等量关系为:“第n 天生产的粽子数量等于420只”.(2)先求出p 与x 之间的关系式,分05x ≤≤,5<<9x ,915x ≤≤三种情况求解即可.28. (2015年浙江嘉兴14分)类比等腰三角形的定义,我们定义:有一组邻边相等的凸四边形叫做“等邻边四边形”. (1)概念理解:如图1,在四边形ABCD 中,添加一个条件,使得四边形ABCD 是“等邻边四边形”,请写出你添加的一个条件;(2)问题探究:①小红猜想:对角线互相平分的“等邻边四边形”是菱形,她的猜想正确吗?请说明理由;②如图2,小红画了一个Rt △ABC ,其中∠ABC =90°,AB =2,BC =1,并将Rt △ABC 沿∠B 的平分线'BB 方向平移得到'''A B C V ,连结''AA BC ,. 小红要使平移后的四边形''ABC A 是“等邻边四边形”,应平移多少距离(即线段'BB 的长)? (3)应用拓展:如图3,“等邻边四边形”ABCD 中,AB =AD ,∠BAD +∠BCD =90°,AC ,BD 为对角线,2AC AB =.试探究BC ,CD ,BD 的数量关系.【答案】解:(1)DA AB =(答案不唯一).(2)①正确.理由如下:∵四边形的对角线互相平分,∴这个四边形是平行四边形. ∵四边形是“等邻边四边形”,∴这个四边形有一组邻边相等. ∴这个四边形是菱形.②∵∠ABC =90°,AB =2,BC =1,∴5AC =. ∵将Rt △ABC 平移得到'''A B C V ,∴''BB AA =,'AB ∥AB ,''2,''1,''5A B AB B C BC A C AC ====== . i )如答图1,当'2AA AB ==时,''2BB AA AB ===; ii )如答图2,当'''5AA A C ==时,''''5BB AA A C ===;iii )如答图3,当'''5A C BC ==时,延长''C B 交AB 于点D ,则''C B AB ⊥. ∵'BB 平分ABC ∠,∴01'452ABB ABC ∠==R . 设'B D BD x ==,则'1,'2C D x BB x =+= . 在'Rt BC D ∆中,222''BD C D BC +=, ∴()()22215x x ++=,解得121,2x x ==- (不合题意,舍去).∴'22BB x ==.iv )如答图4,当'2BC AB ==时,同ii )方法,设'B D BD x ==, 可得222''BD C D BC +=,即()22212x x ++=,解得121717,22x x -+--==(不合题意,舍去). ∴142'22BB x -==.综上所述,要使平移后的四边形''ABC A 是“等邻边四边形”,应平移2或5或2或1422-的距离.(3)BC ,CD ,BD 的数量关系为2222BC CD BD +=.如答图5,∵AB AD =,∴将ADC V 绕点A 旋转到ABF V . ∴ADC ABF V V ≌.∴,,,ABF ADC BAF DAC AF AC FB CD ∠=∠∠=∠== .∴,1AC ADBAD CAF AF AB ∠=∠==. ∴ACF ABD V V ∽.∴2CF ACBD AB==.∴2CF BD =. ∵0360BAD ADC BCD ABC ∠+∠∠+∠=+,∴()000036036090270ABC ADC BAD BCD ∠+∠=-∠∠=-=+. ∴0270ABC ABF ∠+∠=.∴090CBF ∠=. ∴()2222222BC CD CF BDBD +===.【考点】新定义;面动平移问题;菱形的判定;全等三角形的判定和性质;相似三角形的判定和性质;等腰直角三角形的判定和性质;多边形内角和定理;勾股定理;分类思想和方程思想的应用. 【分析】(1)根据定义,添加AB BC =或BC CD =或CD DA =或DA AB =即可(答案不唯一).(2)根据定义,分'2AA AB ==,'''5AA A C ==,'''5A C BC ==,'2BC AB ==四种情况讨论即可.(3)由A B A D =,可将ADC V 绕点A 旋转到ABF V ,构成全等三角形:ADC ABF V V ≌,从而得到,,,ABF ADC BAF DAC AF AC FB CD ∠=∠∠=∠== ,进而证明ACF ABD V V ∽得到2CF BD =,通过角的转换,证明090CBF ∠=,根据勾股定理即可得出2222BC CD BD +=.29. (2015年浙江湖州10分)问题背景:已知在△ABC 中,AB 边上的动点D 由A 向B 运动(与A ,B 不重合),点E 与点D 同时出发,由点C 沿BC 的延长线方向运动(E 不与C 重合),连结DE 交AC 于点F ,点H 是线段AF 上一点(1)初步尝试:如图1,若△ABC 是等边三角形,DH ⊥AC ,且点D ,E 的运动速度相等,求证:HF =AH +CF小王同学发现可以由以下两种思路解决此问题:思路一:过点D 作DG ∥BC ,交AC 于点G ,先证GH =AH ,再证GF =CF ,从而证得结论成立; 思路二:过点E 作EM ⊥AC ,交AC 的延长线于点M ,先证CM =AH ,再证HF =MF ,从而证得结论成立. 请你任选一种思路,完整地书写本小题的证明过程(如用两种方法作答,则以第一种方法评分)(2)类比探究:如图2,若在△ABC 中,∠ABC =90°,∠ADH =∠BAC =30°,且点D ,E 的运动速度之比是3: 1,求ACHF的值; (3)延伸拓展:如图3,若在△ABC 中,AB =AC ,∠ADH =∠BAC =36°,记BCm AB=,且点D 、E 的运动速度相等,试用含m 的代数式表示ACHF(直接写出结果,不必写解答过程).【答案】解:(1)证明:选择思路一:如题图1,过点D 作DG ∥BC ,交AC 于点G ,∵△ABC 是等边三角形,∴0060,60ADG B A ∠=∠=∠= . ∴△ADG 是等边三角形. ∴GD AD CE ==. ∵DH ⊥AC ,∴GH AH =.∵DG ∥BC ,∴,GDF CEF DGF ECF ∠=∠∠=∠ . ∴()GDF CEF ASA ∆∆≌.∴GF CF =. ∴GH GF AH CF +=+,即HF AH CF =+. 选择思路二:如题图1,过点E 作EM ⊥AC ,交AC 的延长线于点M , ∵△ABC 是等边三角形,∴060A ACB ECM ∠=∠=∠=. ∵DH ⊥AC ,EM ⊥AC ,∴090AHD CME ∠=∠=.∵AD CE =,∴()ADH CEM AAS ∆∆≌.∴,AH CM DH EM == . 又∵090,DHF EMF DHF EFM ∠=∠=∠=∠ ,∴()DFH EFM AAS ∆∆≌∴HF MF CM CF AH CF ==+=+.(2)如答图1,过点D 作DG ∥BC ,交AC 于点G ,则090,ADG B ∠=∠=.∵030BAC ADH ∠=∠=,∴060HGD HDG ∠=∠=. ∴,3AH GH GD AD GD === . 由题意可知,3AD CE =,∴GD CE =.∵DG ∥BC ,∴,GDF CEF DGF ECF ∠=∠∠=∠ . ∴()GDF CEF ASA ∆∆≌.∴GF CF =. ∴GH GF AH CF +=+,即HF AH CF =+.∴2ACHF=. (3)1AC m HF m+=. 【考点】开放型;双动点问题;等边三角形的判定和性质;全等三角形的判定和性质;相似三角形的判定和性质.【分析】(1)根据思路任选择一个进行证明即可.(2)仿思路一,作辅助线:过点D 作DG ∥BC ,交AC 于点G ,进行计算.(3)如答图2,过点D 作DG ∥BC ,交AC 于点G ,由AB =AC ,∠ADH =∠BAC =36°可证:ADG ABC ∆∆∽,FDG FEC ∆∆∽,FDH ABC ∆∆∽,由点D 、E 的运动速度相等,可得AD CE =. 从而可得1AC m HF m+=. 30. (2015年浙江湖州12分)已知在平面直角坐标系xOy 中,O 为坐标原点,线段AB 的两个端点A (0,2),B (1,0)分别在y 轴和x 轴的正半轴上,点C 为线段AB 的中点,现将线段BA 绕点B 按顺时针方向旋转 90°得到线段BD ,抛物线y =ax 2+bx +c (a ≠0)经过点D . (1)如图1,若该抛物线经过原点O ,且13a =-. ①求点D 的坐标及该抛物线的解析式;②连结CD ,问:在抛物线上是否存在点P ,使得∠POB 与∠BCD 互余?若存在,请求出所有满足条件的点P 的坐标,若不存在,请说明理由;(2)如图2,若该抛物线y =ax 2+bx +c (a ≠0)经过点E (1,1),点Q 在抛物线上,且满足∠QOB 与∠BCD 互余,若符合条件的Q 点的个数是4个,请直接写出a 的取值范围.【答案】解:(1)①如答图,过点D 作DF ⊥x 轴于点F ,∵0090,90DBF ABO BAO ABO ∠+∠=∠+∠= ,∴DBF BAO ∠=∠. 又∵090,AOB BFD AB BD ∠=∠== , ∴()AOB BFD AAS ∆∆≌. ∴1,2DF BO BF AO ==== . ∴点D 的坐标为()3,1 . 根据题意得,1,03a c =-= ,∴213313b -⋅+=,解得43b =. ∴抛物线的解析式21433y x x =-+.②∵点C、D的纵坐标都为1, ∴CD ∥x 轴.∴BCD ABO ∠=∠. ∴BAO ∠和BCD ∠互余.若要使得POB ∠和BCD ∠互余,则只要满足POB BAO ∠=∠.设点P的坐标为214,33x x x ⎛⎫-+ ⎪⎝⎭ ,i )当点P在x 轴上方时,如答图,过点P作PG⊥x 轴于点G, 则tan tan POB BAO ∠=∠,即PG BOOG AO=. ∴2141332x xx -+=,解得125,02x x == (舍去). ∴2145334x x -+=.∴点P的坐标为55,24⎛⎫⎪⎝⎭.ii )当点P在x 轴下方时,如答图,过点P作PH⊥x 轴于点H, 则tan tan POB BAO ∠=∠,即PH BOOH AO=. ∴2141332x xx -=,解得1211,02x x == (舍去). ∴21411334x x -+=-. ∴点P的坐标为1111,24⎛⎫ ⎪⎝⎭ -.综上所述,在抛物线上存在点P ,使得∠POB 与∠BCD 互余,点P的坐标为55,24⎛⎫⎪⎝⎭或1111,24⎛⎫ ⎪⎝⎭-. (2)a 的取值范围为1<3a -或415>4a +. 【考点】二次函数综合题;线动旋转问题;全等三角形的判定和性质;曲线上点的坐标与方程的关系;锐角三角函数定义;余角的性质;方程和不等式的应用;分类思想和数形结合思想的应用.【分析】(1)①根据AAS 证明AOB BFD ∆∆≌即可得到1,2DF BO BF AO ==== ,从而得到点D 的坐标;由已知和曲线上点的坐标与方程的关系即可求得抛物线的解析式.得②可以证明,使得POB ∠和BCD ∠互余,只要满足POB BAO ∠=∠即可,从而分点P在x 轴上方和点P在x 轴下方讨论即可.(2)由题意可知,直线BD 的解析式为1122y x =-,由该抛物线y =ax 2+bx +c (a ≠0)经过点E (1,1),可得D(31) ,,所以抛物线的解析式为()221y a x a =-+-.若要使得QOB ∠和BCD ∠互余,则只要满足QOB BAO ∠=∠,据此分<0a 和>0a 两种情况讨论.31. (2015年浙江金华10分)图1,图2为同一长方体房间的示意图,图2为该长方体的表面展开图.(1)蜘蛛在顶点A'处①苍蝇在顶点B 处时,试在图1中画出蜘蛛为捉住苍蝇,沿墙面爬行的最近路线;②苍蝇在顶点C 处时,图2中画出了蜘蛛捉住苍蝇的两条路线,往天花板ABCD 爬行的最近路线A'GC 和往墙面BB'C'C 爬行的最近路线A'HC ,试通过计算判断哪条路线更近?(2)在图3中,半径为10dm 的⊙M 与D'C'相切,圆心M 到边CC'的距离为15dm ,蜘蛛P 在线段AB 上,苍蝇Q 在⊙M 的圆周上,线段PQ 为蜘蛛爬行路线。
2015年全国各地中考数学试题压轴题解析汇编解答题(1)1. (2015年广东9分)⊙O是△ABC的外接圆,AB是直径,过»BC的中点P作⊙O的直径PG交弦BC于点D,连接AG,CP,P B.(1)如题图1;若D是线段OP的中点,求∠BAC的度数;(2)如题图2,在DG上取一点k,使DK=DP,连接CK,求证:四边形AGKC是平行四边形;(3)如题图3,取CP的中点E,连接ED并延长ED交AB于点H,连接PH,求证:PH⊥A B.【答案】解:(1)∵AB为⊙O直径,点P是»BC的中点,∴PG⊥BC,即∠ODB=90°.∵D为OP的中点,∴OD=1122=OP OB.∴cos∠BOD=12=ODOB. ∴∠BOD=60°.∵AB为⊙O直径,∴∠ACB=90°. ∴∠ACB=∠ODB.∴AC∥PG. ∴∠BAC=∠BOD=60°.(2)证明:由(1)知,CD=BD,∵∠BDP=∠CDK,DK=DP,∴△PDB≌△CDK(SAS).∴CK=BP,∠OPB=∠CKD.∵∠AOG=∠BOP,∴AG=BP. ∴AG=CK.∵OP=OB,∴∠OPB=∠OBP.又∵∠G=∠OBP,∴AG∥CK.∴四边形AGCK是平行四边形.(3)证明:∵CE=PE,CD=BD,∴DE∥PB,即DH∥PB.∵∠G=∠OPB,∴PB∥AG. ∴DH∥AG. ∴∠OAG=∠OHD.∵OA=OG,∴∠OAG=∠G. ∴∠ODH=∠OHD. ∴OD=OH.又∵∠ODB=∠HOP,OB=OP,∴△OBD≌△HOP(SAS).∴∠OHP=∠ODB=90°. ∴PH⊥A B.【考点】圆的综合题;圆周角定理;垂径定理;锐角三角函数定义;特殊角的三角函数值;平行的判定和性质;全等三角形的判定和性质;等腰三角形的性质;平行四边形的判定.【分析】(1)一方面,由锐角三角函数定义和特殊角的三角函数值求出∠BOD=60°;另一方面,由证明∠ACB=∠ODB=90°得到AC∥PG,根据平行线的同位角相等的性质得到∠BAC=∠BOD=60°.(2)一方面,证明通过证明全等并等腰三角形的性质得到AG=CK;另一方面,证明AG∥CK,从而根据一组对边平行且相等的四边形是平行四边形的判定而得证.(3)通过应用SAS证明△OBD≌△HOP而得到∠OHP=∠ODB=90°,即PH⊥A B.2.(2015年广东9分)如图,在同一平面上,两块斜边相等的直角三角板Rt△ABC与Rt△ADC拼在一起,使斜边AC完全重合,且顶点B,D分别在AC的两旁,∠ABC=∠ADC=90°,∠CAD=30°,AB=BC=4cm. (1)填空:AD= ▲ (cm),DC= ▲ (cm);(2)点M,N分别从A点,C点同时以每秒1cm的速度等速出发,且分别在AD,CB上沿A→D,C→B的方向运动,当N点运动到B点时,M,N两点同时停止运动,连结MN,求当M,N点运动了x秒时,点N 到AD的距离(用含x的式子表示);(3)在(2)的条件下,取DC中点P,连结MP,NP,设△PMN的面积为y(cm2),在整个运动过程中,△PMN 的面积y存在最大值,请求出这个最大值.(参考数据:sin75°=624+,sin15°=624-)【答案】解:(1)26;22.(2)如答图,过点N 作NE ⊥AD 于E ,作NF ⊥DC 延长线于F ,则NE =DF .∵∠ACD =60°,∠ACB =45°,∴∠NCF =75°,∠FNC =15°.∴sin 15°=FCNC. 又∵NC =x ,sin 15°=624-,∴624-=FC x . ∴NE =DF =62224-+x . ∴点N 到AD 的距离为62224-+x cm .(3)∵NC =x ,sin 75°=FNNC,且sin 75°=624+∴624+=FN x ,∵PD =CP =2,∴PF =6224-+x . ∴16262116262(26)(22)(26)2(2)()2442244+--+=+-+--⨯-+y x x x x x x ·即22673222384---=++y x x .∴当732273224266228----=-=--⨯x 时,y 有最大值为6673102304246+---.【考点】双动点问题;锐角三角函数定义;特殊角的三角函数值;由实际问题列函数关系式;二次函数的最值;转换思想的应用.【分析】(1)∵∠ABC =90°,AB =BC =4,∴42=AC .∵∠ADC =90°,∠CAD =30°, ∴31cos 4226,sin 422222=⋅∠=⋅==⋅∠=⋅= AD AC CAD DC AC CAD . (2)作辅助线“过点N 作NE ⊥AD 于E ,作NF ⊥DC 延长线于F ”构造直角三角形CNF ,求出FC 的长,即可由NE =DF =FC +CD 求解.(3)由∆∆=--梯形PNF NDP MDFN y S S S 列式,根据二次函数的最值原理求解.3. (2015年广东深圳9分)如图1,水平放置一个三角板和一个量角器,三角板的边AB 和量角器的直径DE 在一条直线上,,3,6cm OD cm BC AB ===开始的时候BD =1cm ,现在三角板以2cm/s 的速度向右移动. (1)当B 与O 重合的时候,求三角板运动的时间; (2)如图2,当AC 与半圆相切时,求AD ;(3)如图3,当AB 和DE 重合时,求证:2CF CG CE =⋅.【答案】解:(1)∵开始时,4BO cm =,三角板以2cm/s 的速度向右移动,∴当B 与O 重合的时候,三角板运动的时间为422/cms cm s=.(2)如答图1,设AC 与半圆相切于点H ,连接OH ,则OH AC ⊥.∵0,90AB BC ABC =∠= ,∴045A ∠=.又∵3OH OD cm ==,∴232AO OH ==.∴()323AD AO DO cm =-=-. (3)如答图2,连接EF ,∵OD OF =,∴ODF OFD ∠=∠.∵DF 是直径,∴090DFE ∠=. ∴090ODF DEF ∠+∠=. 又∵090DEC DEF CEF ∠=∠+∠=.∴ODF CEF ∠=∠. ∴CFG OFD ODF CEF ∠=∠=∠=∠. 又∵FCG ECF ∠=∠,∴CFG CEF ∆∆∽. ∴CF CE CG CF=,即2CF CG CE =⋅. 【考点】面动平移问题;等腰(直角)三角形的判定和性质;圆周角定理;相似三角形的判定和性质. 【分析】(1)直接根据“=路程时间速度”计算即可. (2)作辅助线“连接O 与切点H ”,构成等腰直角三角形求出AO 的长,从而由AO DO -求出AD的长.(3)作辅助线“连接EF ”,构成相似三角形CFG CEF ∆∆∽,得比例式即可得解.4.(2015年广东深圳9分)如图1,关于x 的二次函数2y x bx c =-++经过点(3,0)A - ,点(0,3)C ,点D 为二次函数的顶点,DE 为二次函数的对称轴,E 在x 轴上. (1)求抛物线的解析式;(2)DE 上是否存在点P 到AD 的距离与到x 轴的距离相等,若存在求出点P ,若不存在请说明理由; (3)如图2,DE 的左侧抛物线上是否存在点F ,使23FBC EBC S S ∆∆=,若存在求出点F 的坐标,若不存在请说明理由.【答案】解:(1)将点(3,0)A - , (0,3)C 代入2y x bx c =-++,得9303b c c --+=⎧⎨=⎩,解得23b c =-⎧⎨=⎩. ∴抛物线的解析式为223y x x =--+. (2)存在.∵()222314y x x x =--+=-++,∴2,4,25AE DE AD === .∴25sin 525AE ADE AD ∠===. 设()1,P p - ,当点P 在DAB ∠的角平分线时,如答图1,过点P 作PM AC ⊥于点M , 则()5sin 4,5PM PD ADE p PE p =⋅∠=-= , ∵PM PE =,∴()545p p -=,解得51p =-. ∴()1,51P -- . 当点P 在DAB ∠的外角平分线时,如答图2,过点P 作PM AC ⊥于点M , 则()5sin 4,5PM PD ADE p PE p =⋅∠=-=- , ∵PM PE =,∴()545p p -=-,解得51p =--. ∴()1,51P -- -.综上所述,DE 上存在点P 到AD 的距离与到x 轴的距离相等,点P 的坐标为()1,51--或()1,51-- -.(3)存在.假设存在点F ,使23FBC EBC S S ∆∆=, 设()2,23F f f f --+∵2,3BE OC == ,∴3EBC S ∆=. ∵23FBC EBC S S ∆∆=,∴92FBC S ∆=. 设CF 的解析式为y mx n =+,则2233fm n f f n ⎧+=--+⎨=⎩,解得23m f n =--⎧⎨=⎩.∴CF 的解析式为()23y f x =--+. 令0y =,得32x f =+,即CF 与x 轴的交点坐标为3,02Q f ⎛⎫ ⎪+⎝⎭. 若点F 在x 轴上方,如答图2,则BCF BCQ BFQ S S S ∆∆∆=-, ∴()2913131312322222f f f f ⎛⎫⎛⎫=⋅-⋅-⋅-⋅--+ ⎪ ⎪++⎝⎭⎝⎭, 即290f f --=,解得1372f ±=(舍去正值).当1372f -=时,233715232f f ---+=.∴13733715,22F ⎛⎫-- ⎪ ⎪⎝⎭. 若点F 在x 轴下方,如答图3,则BCF BCQ BFQ S S S ∆∆∆=+, ∴()2913131312322222f f f f ⎛⎫⎛⎫=⋅-⋅+⋅-⋅+- ⎪ ⎪++⎝⎭⎝⎭, 即290f f --=,解得1372f ±=(舍去正值). 当1372f -=时,23371523>02f f ---+=,不符合点F 在x 轴下方,舍去. 综上所述,DE 的左侧抛物线上存在点F ,使23FBC EBC S S ∆∆=,点F 的坐标为13733715,22⎛⎫-- ⎪ ⎪⎝⎭.【考点】二次函数综合题;待定系数法的应用;曲线上点的坐标与方程的关系;锐角三角函数定义;角平分线的性质;分类思想、转换思想和方程思想的应用.【分析】(1)将点(3,0)A - , (0,3)C 代入2y x bx c =-++即可求解.(2)根据角平分线上的点到角的两边距离相等的性质,分点P 在DAB ∠的角平分线和点P 在DAB ∠的外角平分线两种情况讨论即可.(3)由已知求出92FBC S ∆=,分点F 在x 轴上方和点F 在x 轴下方两种情况讨论,当点F 在x 轴上方时,BCF BCQ BFQ S S S ∆∆∆=-;当点F 在x 轴下方时,BCF BCQ BFQ S S S ∆∆∆=+,据此列方程求解.5. (2015年广东汕尾11分)在Rt △ABC 中,∠A =90°,AC = AB = 4,D ,E 分别是边AB ,AC 的中点.若等腰Rt △ADE 绕点A 逆时针旋转,得到等腰Rt △AD 1E 1,设旋转角为α(0<α≤180°),记直线BD 1与CE 1的交点为P .(1)如图1,当α=90°时,线段BD 1的长等于 ▲ ,线段CE 1的长等于 ▲ ;(直接填写结果) (2)如图2,当α=135°时,求证:BD 1 = CE 1 ,且BD 1⊥CE 1 ; (3)求点P 到AB 所在直线的距离的最大值.(直接写出结果)【答案】解:(1)25,25.(2)证明:当α=135°时,由旋转可知∠D 1AB = E 1AC = 135°.又∵AB =AC ,AD 1=AE 1,∴△D 1AB ≌△△E 1AC (SAS ). ∴BD 1=CE 1 且 ∠D 1BA = ∠E 1CA .设直线BD 1与AC 交于点F ,有∠BF A =∠CFP . ∴∠CPF =∠F AB =90°,∴BD 1⊥CE 1. (3)13+.【考点】面动旋转问题;等腰直角三角形的性质;勾股定理;全等、相似三角形的判定和性质. 【分析】(1)如题图1,当α=90°时,线段BD 1的长等于22224225AB AE +=+=;线段CE 1的长等于222214225AC AE +=+=.(2)由SAS 证明△D 1AB ≌△△E 1AC 即可证明BD 1 = CE 1 ,且BD 1⊥CE 1 .(3)如答图2,当四边形AD 1PE 1为正方形时,点P 到AB 所在直线的距离距离最大,此时112223AD PD PB ===+,,∵1ABD PBH ∆∆∽,∴1AD ABPH PB=. ∴24223PH =+.∴13PH =+. ∴当四边形AD 1PE 1为正方形时,点P 到AB 所在直线的距离距离的最大值为13+.6.(2015年广东汕尾10分)如图,过原点的直线1y k x =和2y k x =与反比例函数1y x=的图象分别交于两点A ,C 和B ,D ,连结AB ,BC ,CD ,DA .(1)四边形ABCD 一定是 ▲ 四边形;(直接填写结果)(2)四边形ABCD 可能是矩形吗?若可能,试求此时1k 和2k 之间的关系式;若不可能,说明理由; (3)设()()()112221,,,,0P x y Q x y x x >> 是函数1y x=图象上的任意两点,12122,2y y a b x x +==+ ,试判断a ,b 的大小关系,并说明理由.【答案】解:(1)平行.(2)四边形ABCD 可能是矩形,此时121k k =,理由如下:当四边形ABCD 是矩形时,OA =OB .联立11y k x y x =⎧⎪⎨=⎪⎩,得111x k y k ⎧=±⎪⎨⎪=±⎩,∴111,A k k ⎛⎫ ⎪ ⎪⎝⎭ . 同理,221,B k k ⎛⎫⎪ ⎪⎝⎭. ∵22121211OA k OB k k k =+=+,,∴121211k k k k +=+,得()21121 10k k k k ⎛⎫--= ⎪⎝⎭. ∵210k k -≠, ∴12110k k -=. ∴121k k =. ∴四边形ABCD 可以是矩形,此时121k k =. (3)>a b .理由如下:∵()()()()2212121212121212121212124211122222x x x x x x y y a b x x x x x x x x x x x x x x +--⎛⎫+-=-=+-== ⎪++++⎝⎭. ∵x 2 > x 1 > 0,∴()212>0x x -,()12122>0x x x x +.∴()()2121212>02x x x x x x -+.∴>a b .【考点】反比例函数和一次函数综合题;平行四边形的判定;矩形的性质;代数式化简;作差法的应用. 【分析】(1)根据反比例函数的中心对称性,有,OA OC OB OD == ,所以,四边形ABCD 一定是平行四边形.(2)求出点A 、B 的坐标,根据矩形对角线互相平分且相等的性质得到OA =OB ,即22OA OB =,据此列式化简得证.(3)作差,化简,得出结论.7. (2015年广东广州14分)如图,四边形OMTN 中,OM =ON ,TM =TN ,我们把这种两组邻边分别相等的四边形叫做筝形.(1)试探究筝形对角线之间的位置关系,并证明你的结论;(2)在筝形ABCD 中,已知AB =AD =5,BC =CD ,BC >AB ,BD ,AC 为对角线,BD =8;①是否存在一个圆使得A ,B ,C ,D 四个点都在这个圆上?若存在,求出圆的半径;若不存在,请说明理由; ②过点B 作BF ⊥CD ,垂足为F ,BF 交AC 于点E ,连接DE . 当四边形ABED 为菱形时,求点F 到AB 的距离.【答案】解:(1)筝形的对角线互相垂直. 证明如下:如答图1,连接,MN OT ,在OMT ∆和ONT ∆中,∵OM ON TM TN OT OT =⎧⎪=⎨⎪=⎩,∴()OMT ONT SSS ∆∆≌.∴MOT NOT ∠=∠. 又∵OM =ON ,∴OT MN ⊥,即筝形的对角线互相垂直. (2)存在.由(1)知,AC BD ⊥,设,AC BD 相交于点M ,如答图2, ∵AB =AD =5, BD =8,∴4BM =.∴22534AM =-=. ∵A ,B ,C ,D 四点共圆,∴0180ABC ADC ∠+∠=. 又∵ABC ADC ∆∆≌,∴090ABC ADC ∠=∠=. ∴AC 即为所求圆的直径.∵090,ABC AMB BAC MAB ∠=∠=∠=∠ ,∴BAC MAB ∆∆∽.∴AB AM AC AB =,即535AC =,解得253AC =. ∴圆的半径为256.(3)∵四边形ABED 为菱形,∴5AB AD BE DE ====.∴03,4,,90AM ME BM MD BD AE BME ====⊥∠= .又∵0,90BF CD BFD ⊥∠= .∴090BME BFD ∠=∠=又∵MBE FBD ∠=∠,∴BME BFD ∆∆∽. ∴BE EM BD DF =,即538DF =,解得245DF =. 在Rt DEF ∆中,由勾股定理,得22E F D ED F=-, ∴22247555EF ⎛⎫=-= ⎪⎝⎭.∴325BF =. ∵//AB DE ,∴ABF DEF ∠=∠.如答图3,过点F 作FG AB ⊥于点G ,则FG 就是点F 到AB 的距离.∵090BGF EFD ∠=∠=,∴BGF EFD ∆∆∽.∴BF FG DE DF =,即3252455FG =,解得768125FG =. ∴点F 到AB 的距离为768125.【考点】新定义;全等三角形的判定和性质;等腰三角形的性质;勾股定理;圆内接四边形的性质;圆周角定理;相似三角形的判定和性质.【分析】(1)筝形的对角线互相垂直,利用SSS 证明OMT ONT ∆∆≌得到MOT NOT ∠=∠,从而根据等腰三角形三线合一的性质即可得出结论.(2)根据垂径定理和勾股定理求出AM 的长,证明BAC MAB ∆∆∽,由对应边成比例列式求解即可.(3)证明BME BFD ∆∆∽,求出245DF =,应用勾股定理求出75EF =,得到325BF =,作辅助线“过点F 作FG AB ⊥于点G ”构造相似三角形BGF EFD ∆∆∽,由对应边成比例列式求得FG 的长, FG 就是点F 到AB 的距离.8.(2015年广东广州10分)已知O 为坐标原点,抛物线21(0)y ax bx c a =++≠与x 轴相交于点1(,0)A x ,2(,0)B x .与y 轴交于点C ,且O ,C 两点之间的距离为3,12120,4x x x x ⋅<+= ,,点A ,C在直线23y x t =-+上.(1)求点C 的坐标;(2)当1y 随着x 的增大而增大时,求自变量x 的取值范围;(3)将抛物线1y 向左平移(0)n n >个单位,记平移后y 随着x 的增大而增大的部分为P ,直线2y 向下平移n 个单位,当平移后的直线与P 有公共点时,求225n n -的最小值. 【答案】解:(1)令0x =,得1y c =,∴()0,C c .∵O ,C 两点之间的距离为3,∴3c =,解得3c =±. ∴点C 的坐标为()0,3 或()0,3 -. (2)∵120x x ⋅<,∴12,x x 异号.①若()0,3C ,把()0,3C 代入23y x t =-+得30t =+,即3t =. ∴233y x =-+.把()1,0A x 代入233y x =-+得1033x =-+,即11x =.∴()1,0A . ∵12,x x 异号,11>0x =,∴2<0x .∵124x x +=,∴214x +=,214x -=,23x =-.∴()3,0B - .把()1,0A ,()3,0B - 代入213y ax bx =++,得309330a b a b ++=⎧⎨-+=⎩,解得12a b =-⎧⎨=-⎩.∴()2212314y x x x =--+=-++.∴当1x ≤-时,1y 随着x 的增大而增大.②若()0,3C -,把()0,3C -代入23y x t =-+得30t -=+,即3t =-. ∴233y x =--.把()1,0A x 代入233y x =--得1033x =--,即11x =-.∴()1,0A - . ∵12,x x 异号,11<0x =-,∴2>0x .∵124x x +=,∴214x -+=,214x +=,23x =.∴()3,0B .把()1,0A - ,()3,0B 代入213y ax bx =++,得309330a b a b --=⎧⎨+-=⎩,解得12a b =⎧⎨=-⎩.∴()2212314y x x x =--=--.∴当1x ≥时,1y 随着x 的增大而增大.综上所述,若()0,3C ,当1y 随着x 的增大而增大时,1x ≤-;若()0,3C -,当1y 随着x 的增大而增大时,1x ≥.(3)①若()0,3C ,则()2212314y x x x =--+=-++,233y x =-+,1y 向左平移(0)n n >个单位后的解析式为()2314y x n =-+++,则当1x n ≤--时,3y 随着x 的增大而增大.直线2y 向下平移n 个单位后的解析式为433y x n =-+-. 要使平移后直线与P 有公共点,则当1x n =--时,34y y ≥,即()()2114313n n n n ---+++≥---+-,解得1n ≤-,与>0n 不符,舍去.②若()0,3C -,则()2212314y x x x =--=--,233y x =--,1y 向左平移(0)n n >个单位后的解析式为()2314y x n =-+-,则当1x n ≥-时,3y 随着x 的增大而增大.直线2y 向下平移n 个单位后的解析式为433y x n =---. 要使平移后直线与P 有公共点,则当1x n =-时,43y y ≥, 即()()2313114n n n n ----≥---+-,解得1n ≥. 综上所述,1n ≥.∵2252525248n n n ⎛⎫-=-- ⎪⎝⎭,∴当54n =时,225n n -的最小值为258-. 【考点】二次函数综合题;线动平移问题;曲线上点的坐标与方程的关系;不等式和绝对值的性质;二次函数的最值;分类思想的应用.【分析】(1)一方面,由点C 在抛物线21(0)y ax bx c a =++≠得到()0,C c ,另一方面,由O ,C 两点之间的距离为3,得到3c =±,从而得到点C 的坐标.(2)分()0,3C 和()0,3C -两种情况讨论.(3)分()0,3C 和()0,3C -两种情况讨论得到n 的范围内1n ≥,从而根据二次函数最值原理即可求解.9. (2015年广东佛山10分)如图,一小球从斜坡O 点处抛出,球的抛出路线可以用二次函数24y x x =-+刻画,斜坡可以用一次函数12y x =刻画. (1)请用配方法求二次函数图象的最高点P 的坐标; (2)小球的落点是A ,求点A 的坐标;(3)连结抛物线的最高点P 与点O 、A 得△POA . 求△POA 的面积;(4)在OA 上方的抛物线上存在一点M (M 与P 不重合),△MOA 的面积等于△POA 的面积,请直接写出点.....M 的坐标.【答案】解:(1)∵()()222444424y x x x x x =-+=--++=--+,∴点P 的坐标为()2,4 .(2)联立2412y x x y x⎧=-+⎪⎨=⎪⎩,解得00x y =⎧⎨=⎩或7274x y ⎧=⎪⎪⎨⎪=⎪⎩. ∴点A 的坐标为77,24⎛⎫ ⎪⎝⎭.(3)如答图1,作二次函数图象的对称轴交OA 于点B ,则点B 的坐标为()2,1 ,3BP =. ∴1172132322224POA OBP BAP S S S ∆∆⎛⎫=+=⨯⨯+⨯⨯-= ⎪⎝⎭V.(4)315,24⎛⎫⎪⎝⎭ . 【考点】二次函数的应用(实际问题);二次函数的性质;曲线上点的坐标与方程的关系;等高三角形面积的应用;待定系数法、转换思想和数形结合思想的应用. 【分析】(1)化为顶点式即可得二次函数图象的顶点坐标.(2)联立24y x x =-+和12y x =即可求出点A 的坐标. (3)作辅助线“作二次函数图象的对称轴交OA 于点B ”,将POA S V 转化为OBP S ∆和BAP S ∆之和. (4)作辅助线“过点P 作//PM OA 交抛物线于另一点M ”,则△MOA 的面积等于△POA 的面积,设直线PM 的解析式为12y x m =+, 将()2,4P 代入,得14232m m =⋅+⇒=, ∴直线PM 的解析式为132y x =+.联立24132y x x y x ⎧=-+⎪⎨=+⎪⎩,解得,24x y =⎧⎨=⎩或32154x y ⎧=⎪⎪⎨⎪=⎪⎩. ∴点M 的坐标为315,24⎛⎫⎪⎝⎭ . 10.(2015年广东佛山11分)如图,在ABCD Y 中,对角线AC 、BD 相交于点O ,点E 、F 是AD 上的点,且AE EF FD ==. 连结BE 、BF ,使它们分别与AO 相交于点G 、H . (1)求 : EG BG 的值; (2)求证:AG OG =;(3)设 ,AG a GH b HO c ===,,求 : : a b c 的值.【答案】解:(1)∵AE EF FD ==,∴13AE AD =. ∵四边形ABCD 是平行四边形,∴//AD BC .∴AEG CBG ∆∆∽.∴13EG AE BG AD ==,即1: 3EG BG =. (2)证明:由(1)AEG CBG ∆∆∽,∴13AG CG =.∵四边形ABCD 是平行四边形,∴AO OC =.∴2CG AO AG =-. ∴123AG AO AG =-,即12AG AO =.∴AG OG =.(3)如答图,过点F 作//FM AC 交BD 于点M ,∵AE EF FD ==,∴13DM DF DO DA ==.∴16DM BD =,56BM BD =. ∵12BO BD =.∴35BO BM =.∵//FM AC ,∴BOH BMF ∆∆∽.∴35HO BO FM BM ==,即35HO FM =. ∵//FM AC ,∴DFM DAO ∆∆∽.∴13FM DF AO DA ==,即13FM AO =.∴33115535HO FM AO AO ==⋅=.由(2)得12AG AO =,∴1132510GH AO AG HO AO AO AO AO =--=--=.∵ ,AG a GH b HO c ===,, ∴131532: : : : : : 5 : 3 : 22105101010a b c AO AO AO ===. 【考点】平行四边形的综合题;平行四边形的性质;平行的性质;相似三角形的判定和性质;数形结合思想的应用.【分析】(1)由平行四边形对边平行的性质可得AEG CBG ∆∆∽,从而得出结果.(2)由(1)AEG CBG ∆∆∽得到13AG CG =,从而根据平行四边形对角线互相平分的性质得出结论. (3)作辅助线“过点F 作//FM AC 交BD 于点M ”,构造两组相似三角形BOH BMF ∆∆∽和BOH BMF ∆∆∽,通过相似三角形对应边成比例的性质,求出AG GH HO 、、与AO 的关系即可求得 : : a b c 的值.11. (2015年广东梅州10分)在Rt △ABC 中,∠A =90°,AC = AB = 4,D ,E 分别是边AB ,AC 的中点.若等腰Rt △ADE 绕点A 逆时针旋转,得到等腰Rt △AD 1E 1,设旋转角为α(0<α≤180°),记直线BD 1与CE 1的交点为P .(1)如图1,当α=90°时,线段BD 1的长等于 ▲ ,线段CE 1的长等于 ▲ ;(直接填写结果) (2)如图2,当α=135°时,求证:BD 1 = CE 1 ,且BD 1⊥CE 1 ; (3)求点P 到AB 所在直线的距离的最大值.(直接写出结果)【答案】解:(1)25,25.(2)证明:当α=135°时,由旋转可知∠D 1AB = E 1AC = 135°.又∵AB =AC ,AD 1=AE 1,∴△D 1AB ≌△△E 1AC (SAS ). ∴BD 1=CE 1 且 ∠D 1BA = ∠E 1CA .设直线BD 1与AC 交于点F ,有∠BF A =∠CFP . ∴∠CPF =∠F AB =90°,∴BD 1⊥CE 1. (3)13+.【考点】面动旋转问题;等腰直角三角形的性质;勾股定理;全等、相似三角形的判定和性质. 【分析】(1)如题图1,当α=90°时,线段BD 1的长等于22224225AB AE +=+=;线段CE 1的长等于222214225AC AE +=+=.(2)由SAS 证明△D 1AB ≌△△E 1AC 即可证明BD 1 = CE 1 ,且BD 1⊥CE 1 .(3)如答图2,当四边形AD 1PE 1为正方形时,点P 到AB 所在直线的距离距离最大,此时112223AD PD PB ===+,,∵1ABD PBH ∆∆∽,∴1AD ABPH PB=. ∴24223PH =+.∴13PH =+.∴当四边形AD 1PE 1为正方形时,点P 到AB 所在直线的距离距离的最大值为13+.12.(2015年广东梅州10分)如图,过原点的直线1y k x =和2y k x =与反比例函数1y x=的图象分别交于两点A ,C 和B ,D ,连结AB ,BC ,CD ,DA .(1)四边形ABCD 一定是 ▲ 四边形;(直接填写结果)(2)四边形ABCD 可能是矩形吗?若可能,试求此时1k 和2k 之间的关系式;若不可能,说明理由; (3)设()()()112221,,,,0P x y Q x y x x >> 是函数1y x=图象上的任意两点,12122,2y y a b x x +==+ ,试判断a ,b 的大小关系,并说明理由.【答案】解:(1)平行.(2)四边形ABCD 可能是矩形,此时121k k =,理由如下:当四边形ABCD 是矩形时,OA =OB .联立11y k x y x =⎧⎪⎨=⎪⎩,得111x k y k ⎧=±⎪⎨⎪=±⎩,∴111,A k k ⎛⎫ ⎪ ⎪⎝⎭ . 同理,221,B k k ⎛⎫⎪ ⎪⎝⎭. ∵22121211OA k OB k k k =+=+,, ∴121211k k k k +=+,得()21121 10k k k k ⎛⎫--= ⎪⎝⎭. ∵210k k -≠, ∴12110k k -=. ∴121k k =.∴四边形ABCD 可以是矩形,此时121k k =. (3)>a b .理由如下:∵()()()()2212121212121212121212124211122222x x x x x x y y a b x x x x x x x x x x x x x x +--⎛⎫+-=-=+-== ⎪++++⎝⎭. ∵x 2 > x 1 > 0,∴()212>0x x -,()12122>0x x x x +.∴()()2121212>02x x x x x x -+.∴>a b .【考点】反比例函数和一次函数综合题;平行四边形的判定;矩形的性质;代数式化简;作差法的应用. 【分析】(1)根据反比例函数的中心对称性,有,OA OC OB OD == ,所以,四边形ABCD 一定是平行四边形.(2)求出点A 、B 的坐标,根据矩形对角线互相平分且相等的性质得到OA =OB ,即22OA OB =,据此列式化简得证.(3)作差,化简,得出结论.13. (2015年浙江衢州10分)高铁的开通,给衢州市民出行带来了极大的方便. 五一期间,乐乐和颖颖相约到杭州市的某游乐园游玩,乐乐乘私家车从衢州出发1小时后,颖颖乘高铁从衢州出发,先到杭州火车东站,然后乘出租车去游乐园(换车时间忽略不计),两人恰好同时到达游乐园.他们离开衢州的距离y (千米)与乘车时间t (小时)的关系如下图所示.请结合图象解决下面问题: (1)高铁的平均速度是每小时多少千米?(2)当颖颖到达杭州火车东站时,乐乐距离游乐园还有多少千米?(3)若乐乐要提前18分钟到达游乐园,问私家车的速度必须达到多少千米/小时?【答案】解:(1)∵24024021=-, ∴高铁的平均速度是每小时240千米. (2)设乐乐乘私家车路线的解析式为y kt b =+,∵当1t =时,0y =;当2t =时,240y =,∴02240k b k b +=⎧⎨+=⎩,解得240240k b =⎧⎨=-⎩.∴乐乐乘私家车路线的解析式为240240y t =-.∴当 1.5t =时,120y =.设颖颖乘高铁路线的解析式为1y k t =,∴1120 1.5k =,解得180k =.∴颖颖乘高铁路线的解析式为80y t =. ∴当2t =时,160y =.∵21616056-=,∴当颖颖到达杭州火车东站时,乐乐距离游乐园还有56千米. (3)把216y =代入80y t =得 2.7t =.∵182.7 2.460-=(小时),216902.4=(千米), ∴乐乐要提前18分钟到达游乐园,私家车的速度必须达到90千米/小时.【考点】一次函数的图象和应用;待定系数法的应用;直线上点的坐标与方程的关系.. 【分析】(1)由图象提供的信息,根据“路程÷时间=速度”计算即可.(2)先求乐乐乘私家车路线的解析式,得到 1.5t =时的函数值,即可求得颖颖乘高铁路线的解析式,得到2t =时,颖颖乘高铁街的路程,从而得到当颖颖到达杭州火车东站时,乐乐距离游乐园的距离.(3)求得私家车按原速度到达游乐园的时间,得到提前18分钟的实际用时,即可得到乐乐要提前18分钟到达游乐园,私家车必须达到的速度.14. (2015年浙江衢州12分)如图,在ABC ∆中,275,9,2ABC AB AC S ∆===,动点P 从A 点出发,沿射线AB 方向以每秒5个单位的速度运动,动点Q 从C 点出发,以相同的速度在线段AC 上由C 向A 运动,当Q 点运动到A 点时, P 、Q 两点同时停止运动. 以PQ 为边作正方形PQEF (P Q E F 、、、按逆时针排序),以CQ 为边在AC 上方作正方形QCGH . (1)求tan A 的值;(2)设点P 运动时间为t ,正方形PQEF 的面积为S ,请探究S 是否存在最小值?若存在,求出这个最小值,若不存在,请说明理由;(3)当t 为何值时,正方形PQEF 的某个顶点(Q 点除外)落在正方形QCGH 的边上,请直接写出t 的值.【答案】解:(1)如答图1,过点B 作BM AC ⊥于点M ,∵279,2ABC AC S ∆== ,12ABC S AC BM ∆=⋅⋅,∴271922BM =⋅⋅,解得,3BM =. 又∵5,AB = ∴根据勾股定理,得2222534AM AB BM =-=-=.∴3tan 4BM A AM ==.(2)存在.如答图2,过点P 作PN AC ⊥于点N , 经过时间t ,5AP CQ t == ∵3tan 4A =, ∴4,3AN t PN t == .∴99QN AC AN CQ t =--=-.根据勾股定理,得,()()2222223999016281PQ PN NQ t t t t =+=+-=-+,∴22990162810<<5S PQ t t t ⎛⎫==-+ ⎪⎝⎭. ∵90>0a =,且1629229010b a --=-=⨯在t 的取值范围内, ∴2244908116281449010ac b S a -⨯⨯-===⨯最小值.∴S 存在最小值?若存在,这个最小值是8110. (3)当914t =或911或1或97秒时,正方形PQEF 的某个顶点(Q 点除外)落在正方形QCGH 的边上.【考点】双动点问题;勾股定理;锐角三角函数定义;二次函数最值的应用;分类思想的应用.【分析】(1)作辅助线“过点B 作BM AC ⊥于点M ”构造直角三角形ABM ,根据已知求出BM 和应用AM 的长,即可根据正切函数定义求出3tan 4BM A AM ==. (2)根据2S PQ =求得S 关于t 的二次函数,应用研究二次函数的最值原理求解即可.(3)分四种情况讨论:①当点E 在HG 上时,如答图3,1914t =;②当点F 在GH 上时,如答图4,2911t =;③当点P 在QH 上(或点E 在QC 上)时,如答图5,31t =;④当点F 在CG 上时,如答图6,197t =.15. (2015年浙江绍兴12分)正方形ABCD和正方形AEFG有公共顶点A,将正方形AEFG绕点A按顺时针方向旋转,记旋转角∠DAG=α,其中0°≤α≤180°,连结DF,BF,如图.(1)若α=0°,则DF=BF,请加以证明;(2)试画一个图形(即反例),说明(1)中命题的逆命题是假命题;(3)对于(1)中命题的逆命题,如果能补充一个条件后能使该逆命题为真命题,请直接写出你认为需要补充的一个条件,不必说明理由.【答案】解:(1)证明:如答图1,正方形ABCD和正方形AEFG中,∵GF=EF,AG=AE,AD=AB,∴DG=BE.又∵∠DGF=∠BEF=90°,∴△DGF≌△BEF(SAS).∴DF=BF.(2)反例图形如答图2:(3)不唯一,如点F在正方形ABCD内,或α<180°.【考点】开放型;正方形的性质;原命题和逆命题;真命题和假命题【分析】(1)由正方形的性质,通过SAS证明△DGF≌△BEF,从而得到结论.(2)(1)中命题的逆命题是:若DF=BF,则α=0°,它是假命题的反例是α=180°的情况.(3)限制点F范围或α的范围即可.16. (2015年浙江绍兴14分)在平面直角坐标系中,O为原点,四边形OABC的顶点A在x轴的正半轴上,OA=4,OC=2,点P,点Q分别是边BC,边AB上的点,连结AC,PQ,点B1是点B关于PQ的对称点. (1)若四边形OABC为矩形,如图1,①求点B的坐标;②若BQ:BP=1:2,且点B1落在OA上,求点B1的坐标;(2)若四边形OABC为平行四边形,如图2,且OC⊥AC,过点B1作B1F∥x轴,与对角线AC、边OC分别交于点E、点F. 若B1E:B1F=1:3,点B1的横坐标为m,求点B1的纵坐标,并直接写出m的取值范围.【答案】解:(1)①∵四边形OABC为矩形,OA=4,OC=2,∴点B(4,2).②如答图1,过点P作PD⊥OA于点D,∵BQ:BP=1:2,点B1是点B关于PQ的对称点,∴∠PDB1=∠PB1Q=∠B1AQ=90°.∴∠PB 1D=∠B 1QA. ∴△PB 1D ∽△B 1QA. ∴111PB PD 2AB B Q==. ∴B 1A=1.∴OB 1=3,即B 1(3,0).(2)∵四边形OABC 为平行四边形,OA=4,OC=2,且OC ⊥AC ,∴∠OAC=30°.∴点C ()13 ,. ∵B 1E :B 1F=1:3,∴点B 1不与点E 、F 重合,也不在线段EF 的延长线上.①当点B 1在线段FE 的延长线上时,如答图2,延长B 1F 与y 轴交于点G ,点B 1的横坐标为m ,B 1F ∥x 轴,∵B 1E :B 1F=1:3,∴B 1G=m . 设OG=a ,则GF=33a ,OF=233a . ∴CF=2323-a . ∴FE=4343-a ,B 1E=2323-a . ∴B 1G= B 1E+EF+FG=2343324333⎛⎫⎛⎫-+-+= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭a a a m . ∴36355=-+a m , 即点B 1的纵坐标为36355-+m ,m 的取值范围为17101777≤≤+m . ②当点B 1在线段EF (点E 、F 除外)上时,如答图3,延长B 1F 与y 轴交于点G ,点B 1的横坐标为m ,B 1F ∥x 轴,∵B1E :B 1F=1:3,∴B 1G=m . 设OG=a ,则GF=33a ,OF=233a ∴CF=2323-a . ∴FE=4343-a ,B 1F=34FE=33-a . ∴B 1G= B 1F +FG=()3333-+=a a m . ∴33322=-+a m , 即点B 1的纵坐标为33322-+m ,m 的取值范围为1537≤≤m . 【考点】轴对称问题;矩形和平行四边形的性质;轴对称的性质;相似三角形的判定和性质;含30度直角三角形的性质;点的坐标;分类思想的应用.【分析】(1)①直接根据矩形的性质得到点B 的坐标.②过点P 作PD ⊥OA 于点D ,证明△PB 1D ∽△B 1QA ,得到B 1A 的长,从而得到OB 1的长,进而得到点B 1的坐标.(2)分点B 1在线段FE 的延长线上和点B 1在线段EF (点E 、F 除外)上两种情况讨论即可.17. (2015年浙江台州12分)如图,在多边形ABCDE 中,∠A=∠AED=∠D=90°,AB=5,AE=2,ED=3,过点E 作EF ∥CB 交AB 于点F ,FB=1,过AE 上的点P 作PQ ∥AB 交线段EF 于点O ,交折线BCD 于点Q ,设AP=x ,⋅PO OQ =y .(1)①延长BC 交ED 于点M ,则MD = ▲ ,DC = ▲②求y 关于x 的函数解析式; (2)当1(0)2a x a ≤≤>时,96a y b ≤≤,求a ,b 的值; (3)当13y ≤≤时,请直接写出x 的取值范围.【答案】解:(1)①2;1.②∵=AP x ,∴2=-EP x . 在V Rt AEF 中,4tan 22∠===AF AEF AE , ∴tan 2(2)24=⋅∠=⨯-=-+PO PE AEF x x ∵90∠=∠=︒A AED ,∴AB DE P . ∵PQ AB P ,∴PQ ED P . 当01<≤x 时,如答图1所示, ∵EF CB P ,PQ AB P ,∴四边形OFBQ 是平行四边形.∴1==OQ FB . ∴(24)124=⋅=-+⨯=-+y PO OQ x x . 当12<≤x 时,如答图2所示, ∵90∠=∠=︒AED D ,∴AE CD P . ∵PQ ED P ,∴四边形DEPQ 是矩形. ∴3(24)21=--+=-OQ x x .∴2(24)(21)4104=⋅=-+⋅-=-+-y PO OQ x x x x .∴()()22401410412-+<≤⎧⎪=⎨-+-<≤⎪⎩x x y x x x (2)∵当()102≤≤>a x a 时,24y x =-+,∴42yx -=.由12a x ≤≤得,4122y a -≤≤,解得342y a ≤≤-.∵当1(0)2a x a ≤≤>时,96a y b ≤≤,∴93642a b a =⎧⎨=-⎩,解得1359a b ⎧=⎪⎪⎨⎪=⎪⎩.∴15,39a b ==. (3)15524+≤≤x . 【考点】由实际问题列函数关系式(几何问题);平行四边形、矩形的判定和性质;相似三角形的判定和性质;方程组和不等式组的应用;分类思想和数形结合思想的应用. 【分析】(1)①如答图1,延长BC 交ED 于点M ,则∵∠A =∠AED =90°,∴ED ∥AB .∵EF ∥CB ,∴四边形FBM E 是平行四边形. ∴EM =FB =1. ∵ED =3,∴MD =2. ∵△AFE ∽△DEC ,且21512==-AE AF ,∴DC =1. ②分01<≤x 和12<≤x 两种情况求y 关于x 的函数解析式. (2)由(1)得到的24y x =-+,化为42yx -=代入12a x ≤≤,解出342y a ≤≤-,结合已知条件得到关于a ,b 的方程组求解即可.(3)y 关于x 的函数图象如答图3,当13y ≤≤时,15524+≤≤x.18. (2015年浙江台州14分)定义:如图1,点M ,N 把线段AB 分割成AM ,MN 和BN ,若以AM ,MN ,BN 为边的三角形是一个直角三角形,则称点M ,N 是线段AB 的勾股分割点.(1)已知点M ,N 是线段AB 的勾股分割点,若AM =2,MN =3,求BN 的长;(2)如图2,在△ABC 中,FG 是中位线,点D ,E 是线段BC 的勾股分割点,且EC >DE ≥BD ,连接AD ,AE 分别交FG 于点M ,N ,求证:点M ,N 是线段FG 的勾股分割点;(3)已知点C 是线段AB 上的一定点,其位置如图3所示,请在BC 上画一点D ,使C ,D 是线段AB 的勾股分割点(要求尺规作图,保留作图痕迹,画出一种情形即可);(4)如图4,已知点M ,N 是线段AB 的勾股分割点,MN >AM ≥BN ,△AMC ,△MND 和△NBM 均是等边三角形,AE 分别交CM ,DM ,DN 于点F ,G ,H ,若H 是DN 的中点,试探究∆AMF S ,∆BEN S 和四边形MNHG S 的数量关系,并说明理由.【答案】解:(1)∵点M ,N 是线段AB 的勾股分割点, AM =2,MN =3,∴若MN 为斜边,则222=+MN AM BN ,即22232=+BN ,解得5=BN . 若BN 为斜边,则222=+BN AM MN ,即22223=+BN ,解得13=BN . ∴BN 的长为5或13.(2)证明:∵点D ,E 是线段BC 的勾股分割点,且EC >DE ≥BD ,∴222=+EC DE BD .∵在△ABC 中,FG 是中位线,AD ,AE 分别交FG 于点M ,N , ∴F M 、MN 、NG 分别是△ABD 、△ADE 、△AEC 的中位线. ∴BD =2FM ,DE =2MN ,EC =2NG .∴()()()222222=+NG MN FM ,即222444=+NG MN FM . ∴222=+NG MN FM .∴点M ,N 是线段FG 的勾股分割点. (3)如答图1,C ,D 是线段AB 的勾股分割点.QPNM E(4)+=△△四边形AMF BEN MNHG S S S .理由如下:设=AM a ,=BN b ,=MN c , ∵H 是DN 的中点,∴12==DH HN c . ∵△MND ,△BNE 均为等边三角形,∴60∠=∠=︒D DNE .∵∠=∠DHG NHE ,∴△DGH ≌△NEH .∴==DG EN b .∴=-MG c b . ∵∥GM EN ,∴△AGM ∽△AEN . ∴-=+c b ab a c.∴22=-+c ab ac bc . ∵点M ,N 是线段AB 的勾股分割点,∴222=+c a b .∴2()()-=-a b b a c ,又∵-≠b a c .∴=a b .在△DGH 和△CAF 中,∠=∠D C ,=DG CA ,∠=∠DGH CAF , ∴△DGH ≌△CAF . ∴=△△DGH CAF S S .∵222=+c a b ,∴222333444=+c a b . ∴=+△△△DMN ACM ENB S S S .∵=+△△四边形DMN DGH MNHG S S S ,=+△△△ACM CAF AMF S S S , ∴+=△△四边形AMF BEN MNHG S S S .【考点】新定义和阅读理解型问题;开放型和探究型问题;勾股定理;三角形中位线定理;尺规作图(复杂作图);等边三角形的性质;全等、相似三角形的判定和性质;分类思想和数形结合思想的应用. 【分析】(1)根据定义,分MN 为斜边和BN 为斜边两种情况求解即可.(2)判断FM 、MN 、NG 分别是△ABD 、△ADE 、△AEC 的中位线后代入222=+EC DE BD 即可证明结论.(3)①过点C 作AB 的垂线MN ,②在MN 截取CE =CA ;③连接BE ,作BE 的垂直平分线PQ 交AB 于点D . 则点C ,D 是线段AB 的勾股分割点.(作法不唯一)(4)首先根据全等、相似三角形的判定和性质证明△AMC 和△NBM 是全等的等边三角形,再证明+=△△四边形AMF BEN MNHG S S S .19. (2015年浙江温州12分)如图,抛物线x x y 62+-=交x 轴正半轴于点A ,顶点为M ,对称轴NB 交x 轴于点B ,过点C (2,0)作射线CD 交MB 于点D (D 在x 轴上方),OE ∥CD 交MB 于点E ,EF ∥x 轴交CD 于点F ,作直线MF. (1)求点A ,M 的坐标;(2)当BD 为何值时,点F 恰好落在该抛物线上? (3)当BD=1时,①求直线MF 的解析式,并判断点A 是否落在该直线上;②延长OE 交FM 于点G ,取CF 中点P ,连结PG ,△FPG ,四边形DEGP ,四边形OCDE 的面积分别记为S 1,S 2,S 3,则S 1:S 2:S 3= ▲。
2015年中考数学压轴题答案及解析(全国通用)1、某汽车销售公司经销某品牌A款汽车,随着汽车的普及,其价格也在不断下降.今年5月份A款汽车的售价比去年同期每辆降价1万元,如果卖出相同数量的A款汽车,去年销售额为100万元,今年销售额只有90万元.(1)今年5月份A款汽车每辆售价多少万元?(2)为了增加收入,汽车销售公司决定再经销同品牌的B款汽车,已知A款汽车每辆进价为7.5万元,B款汽车每辆进价为6万元,公司预计用不多于105万元且不少于99万元的资金购进这两款汽车共15辆,有几种进货方案?(3)如果B款汽车每辆售价为8万元,为打开B款汽车的销路,公司决定每售出一辆B款汽车,返还顾客现金a万元,要使(2)中所有的方案获利相同,a值应是多少?此时,哪种方案对公司更有利?2、如图,已知直线与x轴交于点A,与y轴交于点C,抛物线经过点A和点C,对称轴为直线l:,该抛物线与x轴的另一个交点为B.(1)求此抛物线的解析式;(2)点P在直线l上,求出使△PAC的周长最小的点P的坐标;(3)点M在此抛物线上,点N在y轴上,以A、B、M、N为顶点的四边形能否为平行四边形?若能,直接写出所有满足要求的点M的坐标;若不能,请说明理由.3、如图①,直线l:与x,y轴分别相交于A,B两点,将△AOB绕点O逆时针旋转90°,得到△COD,过点A,B,D的抛物线P叫做l的关联抛物线,而l叫做P的关联直线.(1)若l:,则P表示的函数解析式为,若P:,则l表示的函数解析式为 .(2)求P的对称轴(用含m,n的代数式表示);(3)如图②,若l:,P的对称轴与CD相交于点E,点F在l上,点Q在P的对称轴上.当以点C,E,Q,F为顶点的四边形是以CE为一边的平行四边形时,求点Q的坐标;(4)如图③,若l:,G为AB中点,H为CD中点,连接GH,M为GH中点,连接OM.若OM=,直接写出l,P表示的函数解析式.(图①)(图②)(图③)4、如图,抛物线y=ax2+bx+c经过A(﹣3.0)、C(0,4),点B在抛物线上,CB∥x轴,且AB平分∠CAO.(1)求抛物线的解析式;(2)线段AB上有一动点P,过点P作y轴的平行线,交抛物线于点Q,求线段PQ的最大值;(3)抛物线的对称轴上是否存在点M,使△ABM是以AB为直角边的直角三角形?如果存在,求出点M的坐标;如果不存在,说明理由.5、如图,一次函数y=kx+b的图象与反比例函数y=(x>0)的图象交于点P(n,2),与x轴交于点A(﹣4,0),与y轴交于点C,PB⊥x轴于点B,且AC=BC.(1)求一次函数、反比例函数的解析式;(2)反比例函数图象上是否存在点D,使四边形BCPD为菱形?如果存在,求出点D的坐标;如果不存在,说明理由.6、已知过原点O的两直线与圆心为M(0,4),半径为2的圆相切,切点分别为P、Q,PQ交y轴于点K,抛物线经过P、Q两点,顶点为N(0,6),且与x轴交于A、B两点.(1)求点P的坐标;(2)求抛物线解析式;(3)在直线y=nx+m中,当n=0,m≠0时,y=m是平行于x轴的直线,设直线y=m与抛物线相交于点C、D,当该直线与⊙M相切时,求点A、B、C、D围成的多边形的面积(结果保留根号).7、如图,在正方形ABCD中,点E、F分别是BC、CD的中点,DE交AF于点M,点N为DE的中点.(1)若AB=4,求△DNF的周长及sin∠DAF的值;(2)求证:2AD•NF=DE•DM.8、如图,抛物线与x轴相交于A、B两点,与y轴交于C,顶点为D,抛物线的对称轴DF与BC相交于点E,与x轴相交于点F.(1)求线段DE的长;(2)设过E的直线与抛物线相交于M(x1,y1),N(x2,y2),试判断当|x1﹣x2|的值最小时,直线MN与x轴的位置关系,并说明理由;(3)设P为x轴上的一点,∠DAO+∠DPO=∠α,当tan∠α=4时,求点P的坐标.9、如图,矩形ABCD中,AB=3,AD=4,E为AB上一点,AE=1,M为射线AD上一动点,AM=a(a为大于0的常数),直线EM与直线CD交于点F,过点M作MG⊥EM,交直线BC于G.(1)若M为边AD中点,求证:△EFG是等腰三角形;(2)若点G与点C重合,求线段MG的长;(3)请用含a的代数式表示△EFG的面积S,并指出S的最小整数值.10、如图所示,在平面直角坐标系中,抛物线y=ax2+bx+c经过A(﹣3,0)、B(1,0)、C(0,3)三点,其顶点为D,连接AD,点P是线段AD上一个动点(不与A、D重合),过点P作y轴的垂线,垂足点为E,连接AE.(1)求抛物线的函数解析式,并写出顶点D的坐标;(2)如果P点的坐标为(x,y),△PAE的面积为S,求S与x之间的函数关系式,直接写出自变量x的取值范围,并求出S的最大值;(3)在(2)的条件下,当S取到最大值时,过点P作x轴的垂线,垂足为F,连接EF,把△PEF沿直线EF折叠,点P的对应点为点P′,求出P′的坐标,并判断P′是否在该抛物线上.11、如图,在平面直角坐标系中,直线l平行x轴,交y轴于点A,第一象限内的点B在l上,连结OB,动点P满足∠APQ=90°,PQ交x轴于点C.(1)当动点P与点B重合时,若点B的坐标是(2,1),求PA的长.(2)当动点P在线段OB的延长线上时,若点A的纵坐标与点B的横坐标相等,求PA:PC的值.(3)当动点P在直线OB上时,点D是直线OB与直线CA的交点,点E是直线CP与y轴的交点,若∠ACE=∠AEC,PD=2OD,求PA:PC的值.12、如图,抛物线y=ax2+bx+c经过原点,与轴相交于点E(8, 0 ), 抛物线的顶点A在第四象限,点A到x轴的距离AB=4,点P(m, 0)是线段OE上一动点,连结PA,将线段PA绕点P逆时针旋转90°得到线段PC,过点C作y轴的平行线交x轴于点G,交抛物线于点D,连结BC和AD.(1)求抛物线的解析式;(2)求点C的坐标(用含m的代数式表示);(3)当以点A、B、C、D为顶点的四边形是平行四边形时,求点P的坐标.13、如图,直线y=﹣x+8与x轴交于A点,与y轴交于B点,动点P从A点出发,以每秒2个单位的速度沿AO方向向点O匀速运动,同时动点Q从B点出发,以每秒1个单位的速度沿BA方向向点A匀速运动,当一个点停止运动,另一个点也随之停止运动,连接PQ,设运动时间为t(s)(0<t≤3).(1)写出A,B两点的坐标;(2)设△AQP的面积为S,试求出S与t之间的函数关系式;并求出当t为何值时,△AQP的面积最大?(3)当t为何值时,以点A,P,Q为顶点的三角形与△ABO相似,并直接写出此时点Q的坐标.14、如图,已知AB,AC分别是⊙O的直径和弦,点G为上一点,GE⊥AB,垂足为点E,交AC于点D,过点C的切线与AB的延长线交于点F,与EG的延长线交于点P,连接AG.(1)求证:△PCD是等腰三角形;(2)若点D为AC的中点,且∠F=30°,BF=2,求△PCD的周长和AG的长.15、如图,在平面直角坐标系中,四边形ABCD是等腰梯形,AD∥BC,AB=DC,BC在x轴上,点A在y轴的正半轴上,点A,D的坐标分别为A(0,2),D(2,2),AB=2,连接AC.(1)求出直线AC的函数解析式;(2)求过点A,C,D的抛物线的函数解析式;(3)在抛物线上有一点P(m,n)(n<0),过点P作PM垂直于x轴,垂足为M,连接PC,使以点C,P,M为顶点的三角形与Rt△AOC相似,求出点P的坐标.16、如图,在平面直角坐标系中,O为坐标原点,抛物线y=x2+2x与x轴相交于O、B,顶点为A,连接OA.(1)A的坐标,∠AOB= 。
2015中考压轴题代数和函数综合问题专题试题(含答案)
中考压轴题中代数和函数综合问题,主要有方程和不等式的图象解问题,一元二次方程根的判别式和根与系数的关系在二次函数问题中的应用问题,方程(组)、不等式(组)和函数的综合应用问题。
一. 方程和不等式的图象解问题原创模拟预测题1.函数的图象如图,那么关于x的分式方程的解是【】 A.x= 1 B.x= 2 C.x= 3 D.x= 4 【答案】A。
【考点】反比例函数的图象,曲线上点的坐标与方程的关系,数形结合思想的应用。
原创模拟预测题2. 如图,已知,是一次函数的图象和反比例函数的图象的两个交点. (1)求反比例函数和一次函数的函数关系式; (2)求△ 的面积;
(3)则方程的解是;(请直接写出答案) (4)则不等式的解集是 .(请直接写出答案)【答案】(1) -----------1分, y= -----------1分(2) ------2分(3)-4或2------2分(缺一全扣) (4) ------2分(缺一全扣) 二. 一元二次方程根的判别式和根与系数的关系在二次函数问题中的应用问题原创模拟预测题3. 若关于x的一元二次方程有实数根x1,x2,且x1≠x2,有下列结论:①x1=1,x2=2;② ;
③二次函数y= 的图象与x轴交点的坐标为(1,0)和(2,0)。
其中,正确结论的个数是【】 A.0 B.1 C.2 D.3 【答案】C。
【考点】抛物线与x轴的交点,一元二次方程的解,一元二次方程根的判别式。
③∵ ,故选C。
原创模拟预测题4. 已知,则反比例函数且反比例函数的图象在每个象限内y随x的增大而增大,那么反比例函数的关系式为【】 A. B. C. D. 【答案】A。
【考点】偶次幂的非负数性质,解一元二次方程,反比例函数的性质。
原创模拟预测题5. 已知二次函数图象的顶点横坐标是4,与x轴交于A(x1,0)、B(x2,0),x1�0�x2,与y轴交于点C,O为坐标原点,。
(1)求证:;(2)求a、b的值;(3)若二次函数图象与直线仅有一个交点时,求二次函数的最值。
【答案】(1)∵ 图象的顶点横坐标是4,∴抛物线的对称轴为x=4,即,化简得:。
(2)∵二次函数与x轴交于A(x1,0)、B(x2,0),x1<0<x2,∴OA=-x1,OB=x2;。
令x=0,得y=c,∴C(0,c),∴OC=|c|。
由三角函数定义得:。
∵tan∠CAO-tan∠CBO=2,即,化简得:。
将代
入得:,化简得:。
由(1)知,∴当时,;当时,。
∴a、b的值为:,或,。
(3)①由(2)知,当,时,抛物线解析式为:。
联立抛物线与直线解析式得到:,化简得:。
∵二次函数图象与直线仅有一个交点,∴一元二次方程根的判别式等于0,即,解得 =19。
∴抛物线解析式为:。
当x=4时,二次函数有最小值,最小值为15。
②由(2)知,当,时,抛物线解析式为:。
联立抛物线与直线解析式得到:,化简得:。
∵二次函数图象与直线仅有一个交点,∴一元二次方程根的判别式等于0,即,解得 =3。
∴抛物线解析式为:。
当x=4时,二次函数有最大值,最大值为7。
综上所述,若,, =19,二次函数图象与直线仅有一个交点时,二次函数的最小值为15;若,, =3,二次函数图象与直线仅有一个交点时,二次函数的最大值为7。
【考点】二次函数综合题,曲线上点的坐标与方程的关系,一元二次方程根的判别式和根与系数的关系,锐角三角函数定义,二次函数的性质,分类思想的应用。
原创模拟预测题6.已知:y关于x的函数的图象与x轴有交点。
(1)求k的取值范围;(2)若x1,x2是函数图象与x轴两个交点的横坐标,且满足.①求k的值;②当时,请结合函数图象确定y的最大值和最小值。
【答案】(1)当k=0时,函数为一次函数y=�2x+3,其图象与x轴有一个交点。
当k≠0时,函数为二次函数,其图象与x轴有一个或两个交点,令y=0得.,解得。
综上所述,k的取值范围是k≤1。
(2)①∵x1≠x2,由(1)知k<1且k≠0。
由题意得,即(*),将(*)代入中得:。
又∵x1+x2= ,x1x2= ,∴ ,解得:k1=�2,k2=1(不合题意,舍去)。
∴所求k值为�2。
②如图,∵k=�2,,且�1≤x≤1,由图象知:当x=�1时,y最小=�3;当x= 时,y最大= 。
∴y的最大值为,最小值为�3。
【考点】抛物线与x轴的交点,一次函数的定义,一元二次方程根的判别式和根与系数物关系,二次函数的最值,分类思想和数形结合思想的应用。
三. 方程(组)、不等式(组)和函数的综合应用问题原创模拟预测题7. 某商家经销一种商品,用于装修门面已投资3000元。
已知该商品每千克成本50元,在第一个月的试销时间内发现项,当销售单价为70元/ kg时,销售量为100 kg,销
量w(kg)随销售单价x(元/ kg)的变化而变化,销售单价每提高
5元/ kg,销售量减少10 kg。
设该商品的月销售利润为y(元)(销售利润=单价×销售量-成本-投资)。
(1)请根据上表,写出w与x之间的函数关系式(不必写出自变量x的取值范围);(2)求y
与x之间的函数关系式(不必写出自变量x的取值范围),并求出x
为何值时,y的值最大?(3)若在第一个月里,按使y获得最大值的销售单价进行销售后,在第二个月里受物价部门干预,销售单价不得高于90元,要想在全部收回投资的基础上使第二个月的利润达到1700,那么第二个月时里应该确定销售单价为多少元?【答案】(1)w=-2x+240。
(2)y与x的关系式为:∵ ,∴当x=85时,y的值最大为2450元。
(3)∵在第一个月里,按使y获得最大值的销
售单价进行销售所获利润为2450元,∴第1个月还有3000-
2450=550元的投资成本没有收回。
则要想在全部收回投资的基础上使第二个月的利润达到1700元,即y=2250才可以,可得方程,解得x1=75,x2=95。
根据题意,x2=95不合题意应舍去。
答:当销售单价为75元时,可获得销售利润2250元,即在全部收回投资的基础上使第二个月的利润达到1700元。
【考点】一、二次函数和一元
二次方程的应用,待定系数法,直线上点的坐标与方程的关系。
原
创模拟预测题8. 如图表示一骑自行车者和一骑摩托车者沿相同路线由甲地到乙地行驶过程的函数图象(分别为正比例函数和一次函数).两地间的距离是80千米.请你根据图象回答或解决下面的问题:(1)谁出发的较早?早多长时间?谁到达乙地较早?早到多长时间?(2)两人在途中行驶的速度分别是多少?(3)请你分别求出表示自行车和摩托车行驶过程的函数解析式(不要求写出自变量的取值范围);(4)指出在什么时间段内两车均行驶在途中(不包括端点);在这一时间段内,请你分别按下列条件列出关于时间x的方程或不等式(不要化简,也不要求解):①自行车行驶在摩托车前面;②自行车与摩
托车相遇;③自行车行驶在摩托车后面. 【答案】(1)自行车出发早3个小时,摩托车到达乙地早3个小时(2)10千米/时,40千米/
时(3)自行车:y=10x,摩托车:y=40x-120 (4)在3<x<5时
间段内两车均都行驶在途中,自行车在摩托车前面:10x>40x-120,
相遇:10x=40x-120,自行车在摩托车后:10x<40x-120 【解析】(3)设表示自行车行驶过程的函数解析式为y=kx. x=8时,y=80 因此k=10 ∴表示自行车行驶过程的函数式是y=10x.设表示摩托车行驶过程的函数解析式是y=ax+b 由题意可知:,解得∴表示摩托车行驶过程的函数解析式为y=40x-120.考点:本题考查的是一次函数的应用点评:本题是利用一次函数的有关知识解答实际应用题,借助函数图象表达题目中的信息,读懂图象是关键.。