掺混合材的水泥
- 格式:pptx
- 大小:1.27 MB
- 文档页数:48
第二节掺混合材的硅酸盐水泥一.水泥用混合材料定义:在生产硅酸盐水泥的过程中,为了改善水泥的性质,调节水泥强度而加入水泥中的人工或天然矿物材料,称为水泥混合材料。
火山灰活性:混合材料磨成细粉并与石灰或石膏混合均匀,用水拌和后,在常温下可生成具有水硬性的水化物,这称为混合材料的火山灰活性。
1.分类(1)非活性混合材料也称为惰性混合材,主要起填充作用,可调节水泥强度,降低水化热及增加水泥产量等。
主要有磨细石英砂、石灰石、粘土、缓冷矿渣等。
(2)活性混合材料主要化学成分为活性二氧化硅、活性氧化铝。
本身与水不起化学反应,但在有激发剂(硫酸盐或碱性)的情况下,能发生水化反应,生成具有水硬性的水化硅酸钙和水化铝酸钙。
主要品种有:粒化高炉矿渣、火山灰质、粉煤灰等。
A粒化高炉矿渣炼铁时为使铁矿石易熔加入石灰石作溶剂,高温下氧化钙与铁矿石中的黏土矿物生成硅酸盐与铝酸盐矿物,浮于铁水表面,排出用水急冷成为颗粒状、质地疏松、多孔的粒化高炉矿渣,又称水淬高炉矿渣。
其玻璃体含量达80%以上,其矿物成分为硅酸钙,与水泥熟料矿物成分相似,差别是钙含量低、硅含量高。
B火山喷发时形成的一系列矿物材料统称为火山灰质混合材料,包括浮石、火山渣(灰)、凝灰岩1等。
还有一些天然材料或工业废渣,由于其成分与火山灰材料相似,也称为火山灰质混合材料,如烧粘土2、粉煤灰、自燃煤矸石、硅藻土3(石)等。
按化学成分和活性来源将火山灰质混合材料分为三类:(1) 含水硅酸质材料:以SiO2为主要活性成分,含有结合水,如硅藻土、蛋白石4和硅质渣5等。
与石灰反应能力强,活性好,但需水量大、干缩大。
(2) 铝硅玻璃质材料:以SiO2和Al2O3为主要活性成分,如火山灰、凝灰岩、浮石和粉煤灰等。
活性大小与化学成分、冷却速度有关。
(3) 烧粘土质混合材料:以Al2O3为主要活性成分,如烧粘土、煤渣、自燃煤矸石等.1凝灰岩:火山喷出的渣、砾夹杂火山灰沉积后再经石化而成;2烧粘土:含Al2O3较高的黏土经600~800℃煅烧而成;3硅藻土:由硅藻类微生物在水中死后残骸沉积而成;4蛋白石:由硅藻石微粒经硅质胶结材料胶结而成;5硅质渣:粘土经提取氧化铝后的残渣;C粉煤灰是火力发电厂以煤粉作燃料,燃烧后收集起来的粒径为1~50μm的极细灰渣颗粒,呈玻璃态实心或空心球状,由于其主要活性成分为SiO2和Al2O3,所以也把粉煤灰划归为火山灰质混合材料。
1、水泥中掺加混合材料的好处:节省熟料;改善水泥性能,增加水泥品种;调节水泥标号;利于环保。
2、火山灰反应;材料本身不具备水硬性但在碱性条件下水硬性能被激发,产生水化反应,产生强度。
3、混合材包括粒状高炉矿渣;火山灰质材料;粉煤灰等4、率值:KH0.88,n2.00 p1.205、碳酸钙滴定至的测定意义:控制生料质量稳定性;稳定水泥生料的成分;控制水泥的连续生产6、生料中碳酸钙滴定值的测定原理:水泥生料中所有的碳酸盐(包括碳酸钙、碳酸镁)均能与标准盐酸溶液作用,生成相应的盐与碳酸(又分解为CO2与H2O),然后用标准的NAOH溶液滴定过剩的盐酸,根据消耗标准NAOH永夜的体积毫升数与浓度,计算生料中碳酸钙的滴定值。
7、游离氧化钙:有少量的CAO没能与酸性氧化物SIO2、AL2O3和Fe2O3等结合形成矿物,而以游离状态存在,称为游离氧化钙(f-CAO)8、为什么过量的游离氧化钙会引起水泥安定性不良:由于CAO水化很慢,在水泥浆体硬化后体积还会继续膨胀,造成硬化后的水泥局部产生多张应力,因而CAO过量会使水泥强度下降,造成安定性不良9、石膏作用:水泥熟料在粉末过程中要加入适量石膏起缓凝作用。
石膏与C3A反应生成钙矾石,包在C3A表面生组织了快速水化与缓凝。
10、过量的游离SO3为什么会引起安定性不良:钙矾石的形成,需吸收不足结晶水。
若过量SO3水化后发生该反应,在硬化的水泥中生成针棒状的钙矾石晶体,造成水泥体积膨胀。
11、水泥细度测定的意义:水泥过细会引起水泥比表面积增加,增大水泥需水量,降低水泥性能,增大电耗和水泥生产成本。
水泥过粗也会影响水泥的性能,如凝结时间、水化速度和力学性能。
因此水泥的细度必须合理的控制。
12、水泥细度的检测方法有筛析法,比表面积测定法,颗粒平均直径与颗粒组成的测定等方法。
13、比表面积测定法:用比表面积表示粗细14、筛析法检验有负压筛法,水筛法和手工干筛法三种。
用筛余的百分数表示细度高低15、颗粒平均直径:用平均颗粒径尺寸以及不同颗粒尺寸范围的颗粒的含量来表示细度16、水泥密度测定的注意事项:(1)李氏比重瓶两次恒温的温度必须一致;(2)水泥必须仔细的装入李氏比重瓶中,防止水泥粘附在上部的细径壁上或溅出瓶外。
复合硅酸盐水泥的混合材掺量-概述说明以及解释1.引言1.1 概述复合硅酸盐水泥是一种现代建筑材料,它具有较高的强度和耐久性,被广泛应用于建筑行业。
复合硅酸盐水泥的主要成分是硅酸盐胶凝材料和适量的掺合材料。
在建筑材料中,掺合材料是指在水泥基体中加入一定比例的其他材料,如粉煤灰、矿渣粉等。
这些掺合材料不仅可以改善水泥的力学性能,还可以改善其耐久性能和工艺性能。
在复合硅酸盐水泥中使用掺合材料可以有效地提高材料的性能。
混合材的掺量是指掺和在复合硅酸盐水泥中的掺合材料的比例。
混合材的掺量对复合硅酸盐水泥的性能有着重要影响。
适当的掺合材掺量可以改善硬化水泥砂浆的强度、抗渗性和耐久性。
然而,过高或过低的混合材掺量都会对水泥的性能产生负面影响。
本篇文章旨在研究复合硅酸盐水泥中混合材掺量对其性能的影响,并对未来的研究方向进行展望。
通过对复合硅酸盐水泥的混合材掺量进行研究,可以为工程实践提供指导,并促进建筑材料领域的发展和创新。
1.2 文章结构本篇长文分为引言、正文和结论三个部分,具体结构如下:1. 引言部分概述了本文的研究背景和意义,介绍了复合硅酸盐水泥及混合材的基本概念,并明确了本文的目的。
2. 正文部分主要包括三个方面的内容。
首先,2.1部分定义了复合硅酸盐水泥,并介绍了其特点和优势。
接下来,2.2部分详细介绍了常见的混合材种类及其在复合硅酸盐水泥中的作用机理。
最后,2.3部分探讨了复合硅酸盐水泥中混合材掺量的变化对其性能的影响,包括强度、耐久性、收缩性等方面。
3. 结论部分总结了本文对于混合材掺量对复合硅酸盐水泥性能的影响进行的研究,并得出了一些结论。
在3.1部分对影响总结进行了详细阐述,指出了混合材掺量的优化对于提升复合硅酸盐水泥性能的重要性。
同时,在3.2部分对未来研究的展望进行了展望性的讨论,指出了继续深入研究的方向和可能的发展趋势。
最后,在3.3部分通过结束语点明了本文的结论和对于复合硅酸盐水泥混合材掺量的重要性的强调。
普通硅酸盐水泥:1凝结硬化快、强度高,尤其早期强度高,适宜配制高强混凝土、预应力混凝土、要求早期强度高的混凝土、冬季施工。
2水泥石较致密,抗冻性好,干缩也较小,适用于严寒地区遭受反复冻融的混凝土工程。
3含有较多的Ca(OH)2,碱度高,抗碳化能力强,适用于CCh浓度高的区域。
4耐磨性好,适用于、地面工程。
5水化热大,不宜用于大体积混凝土。
6耐热性差,不宜用于长期受高温作用的环境。
7耐腐蚀性差,不宜用于有腐蚀性介质的环境。
(P.O)矿渣硅酸盐水泥:1保水性差,因此干缩性较大,养护不当易开裂,抗渗性差,不宜用于抗渗工程。
2耐热性较好,可用于耐热工程。
(RS)火山灰硅酸盐水泥:1颗粒细,泌水性小,故抗渗性较高,宜用于抗渗工程。
2需水量大,干缩较大,宜干缩开裂,不宜用于干燥地区。
3抗冻性较差,不宜用于受冻部位。
(RP)粉煤灰硅酸盐水泥:1与火山灰硅酸盐水泥相似,但粉煤灰为球形致密颗粒,所以需水量小,配制的混凝土流动性好,干缩性较小,抗裂性好。
(RF)铝酸盐水泥:1早期强度高,适用于紧急抢修工程。
2水化热大,且放热速率特别快,不宜用于大体积混凝土工程。
3抗硫酸盐性能很强,适合抗硫酸盐工程,抗碱性极差,不得用于碱性环境。
4耐热性好,适用于配制耐热混凝土。
530度以上的潮湿环境导致水化产物晶型转变,强度显著降低,不宜蒸汽养护、高温季节施工、温湿环境,适宜的硬化温度15度。
6长期强度有降低趋势,不宜用于长期承载结构。
7与硅酸盐水泥或石灰相混,会产生闪凝现象,且产生膨胀开裂。
硫铝酸盐水泥:1凝结速度很快,早期强度高,后期强度发展缓慢。
2空气中收缩小,抗冻性和抗渗性良好,抗硫酸盐性能很强。
3可用于抢修工程,冬季施工工程,地下工程,配制膨胀水泥和自应力水泥4因水泥液碱度小,可用于配制玻璃纤维砂浆5适用于堵漏工程和预制件拼装接头。
氟铝酸盐水泥:1水化、凝结硬化极快,结构致密,不仅早期强度高,而且后期强度稳定。
可制成锚喷用的喷射水泥,用于抢修工程。