双向电泳名词解释
- 格式:doc
- 大小:10.24 KB
- 文档页数:1
双向凝胶电泳(2-DE)双向凝胶电泳的原理是第一向基于蛋白质的等电点不同用等电聚焦分离,第二向则按分子量的不同用SDS-PAGE分离,把复杂蛋白混合物中的蛋白质在二维平面上分开。
近年来经过多方面改进已成为研究蛋白质组的最有使用价值的核心方法。
分离蛋白质组所有蛋白的两个关键参数是其分辨率和可重复性。
在目前情况下,双向凝胶电泳的一块胶板(16cm×20cm)可分出3~4千个,甚至1万个可检测的蛋白斑点,这与10万个基因可表达的蛋白数目相比还是太少了。
80年代开始采用固定化pH梯度胶,克服了载体两性电解质阴极漂移等许多缺点而得以建立非常稳定的可以随意精确设定的pH梯度。
由于可以建立很窄的pH范围(如0.05U/cm),对特别感兴趣的区域可在较窄的pH范围内做第二轮分析,从而大大提高了分辨率。
此种胶条已有商品生产,因此基本上解决了双向凝胶电泳重复性的问题。
这是双向凝胶电泳技术上的一个非常重要的突破。
第二向SDS-PAGE有垂直板电泳和水平超薄胶电泳两种做法,可分离10~100kD分子量的蛋白质。
其中灵敏度较高的银染色法可检测到4ng蛋白,最灵敏的还是用同位素标记,20ppm 的标记蛋白就可通过其荧光或磷光的强度而测定。
用图像扫描仪、莱赛密度仪、电荷组合装置可把用上述方法得到的蛋白图谱数字化,再经过计算机处理,去除纵向和横向的曳尾以及背景底色,就可以给出所有蛋白斑点的准确位置和强度,得到布满蛋白斑点的图像,即所谓“参考胶图谱”。
蛋白质组研究的主要困难是对用双向凝胶电泳分离出来的蛋白,进行定性和定量的分析。
最常用的方法是先把胶上的蛋白印迹到PVDF(polyvinylidene difluoride)膜上后再进行分析,确定它们是已知还是未知蛋白。
现在的分级分析法是先做快速的氨基酸组成分析,也可先做4~5个循环的N末端微量测序,再做氨基酸组成分析;结合在电泳胶板上估计的等点电和分子量,查对数据库中已知蛋白的数据,即可作出判断。
双向电泳技术在生物医学中的应用现状和应用前景1 双向电泳技术1.1双向电泳技术概述双向电泳(two-dimensional gel electrophoresis, 2-DE)是蛋白分离的黄金标准,由此可以分析生物样品的显著差别,产生的结果用于诊断疾病、发现新的药物靶标和分析潜在的环境和药物的毒性。
双向电泳分离技术利用复杂蛋白混合物中单个组分的电泳迁移,第一向通过电荷的不同分离,另一向通过质量的不同分离。
双向电泳协同质谱技术是正在出现的蛋白组学领域的中心技术。
双向电泳是一种分析从细胞、组织或其他生物样本中提取的蛋白质混合物的有力手段,是目前唯一能将数千种蛋白质同时分离与展示的分离技术,其高分辨率、高重复性和兼具微量制备的性能是其他分离方法所无与伦比的。
双向电泳技术、计算机图像分析与大规模数据处理技术以及质谱技术被称为蛋白质组研究的三大基本支撑技术。
可见双向电泳在蛋白质组学研究中的重要性。
就像Fey和Larsen在他们的综述中提到:“尽管人们都想有新技术取代它,可是如果希望对细胞活动有全面的认识,其他技术无法在分辨率和灵敏度上与双向电泳相媲美”。
1.2 双向电泳技术的原理双向电泳技术是蛋白质组学研究的核心技术之一。
它利用了各种蛋白质等电点和分子量的不同来分离复杂蛋白质组分,具有较高的分辨率和灵敏度,目前已成为复杂蛋白质组分检测和分析的最好的生化技术。
IPG - DALT系统双向电泳技术原理简明:首先利用等电聚焦( isoelectric focusing ,IEF) 将蛋白质沿pH 梯度分离至各自等电点(isoelectric point ,pI),通过电荷分离蛋白质;然后沿垂直的方向以十二烷基磺酸钠-聚丙烯酰胺凝胶电泳( sodium dodecyl sulphate polyacryla -mide gel electrophoresis ,SDS-PAGE),通过分子量分离蛋白质。
所得蛋白双维排列图中每个点代表样本中一个或数个蛋白质,而蛋白质的等电点、分子量和在样本中的含量也可显现出来。
二维电泳常见问题及其解答摘要:二维电泳即双向电泳,是蛋白质分析常用的技术手段.本文总结了二维电泳中常见的14个问题并对其解答.二维电泳即双向电泳,是蛋白质分析常用的技术手段.第一向等电聚焦电泳:根据蛋白的等电点分离蛋白质;第二向SDS-PAGE电泳:根据蛋白分子量的大小分离蛋白质.本文总结了二维电泳中常见的14个问题及其解答.1. 重泡胀后的胶可以不用转移到另一个电泳槽,直接跑2D的一向吗?一般情况下是可以的.但当上样量特别大时,可能会有一部分蛋白质没有被胶条吸收,这样跑完1D和2D胶后,会有很多横向条纹.所以在这种情况下,最好在重泡胀后,将胶条转移到另外一个电泳漕中进行电泳.2. 为什么我在等电聚焦前加的矿物油在聚焦后会减少,暴露出了胶条的背面?这是因为BioRad的电泳槽有个盖子.为了固定电泳槽中的胶条,这个盖子上设计了对应的突起,以便压住胶条.由于虹吸作用,这个突起会导引矿物油到相邻的空电泳槽,从而降低有胶条的电泳槽中的矿物油液面.如果由此把胶条暴露在空气中,那对等电聚焦的影响将是毁灭性的.为了防止这个现象的发生,可以在相邻的空电泳槽里,也加入适量(80%满)的矿物油.3. 跑第一向时,为什么要设定一个电流的最大值电压(50μA/胶)?电流的平方和功率成正比.电流增大,功率增大,放出的热量也随之增大,就会导致胶条的温度增加.当温度超过30摄氏度时,缓冲液里的尿素就容易解离,产生一些极性分子,从而对等电聚焦产生影响.4. 跑第一向时,为什么刚开始的电压比较低,而后逐渐增高?刚开始时,体系内的带电小分子比较多(比如无机盐和双极性分子).所以在这个阶段,电流主要是由这些小分子的移动所产生的.由于这些分子质量小,移动他们不需要很高的电压.当这些小分子移动到他们的目的地时(无机盐移动到极性相反的电极;两性分子移动到对应的pH条带),体系内的蛋白质才开始肩负起运载电流的任务,逐渐向所对应的pH区域移动.5. 跑第一向时,为什么会产生一条蓝色的条带,并逐渐向酸性端移动?蓝色条带是缓冲液中痕量的溴酚蓝被聚焦所产生的.溴酚蓝也是pH指示剂,当它移动到酸性区时(pH4 ),颜色会变成黄色.溴酚蓝的这个移动过程大体上发生在极性小分子的聚焦之后,蛋白质大分子聚焦之前.6. 跑第一向时,为什么电压总达不到预定值?当上样量比较大时或体系内盐分比较多时,聚焦的电压有可能达不到所设定的数值.7. 跑第一向时,在电压达到预定值后,电流为什么会降低?当上样量比较少时,所有蛋白在较短的时间内就移动到所对应的pH值区域值,从而变成中性分子.这样,体系的电阻越来越大,在恒定的电压下,电流就会越来越小.8. 跑第一向时,为什么在两个电极丝附近有气泡产生?等电聚焦完成后,所有的蛋白质都移动到了相应的pI值区域,而成为中心分子.这是加在体系上的电压就开始电解水分子,在阳极产生氧气,在阴极产生氢气.9. 重泡胀缓冲液(rehydration buffer)中的硫脲的作用是什么,双极性分子的作用是什么?硫脲的作用是增加蛋白质的溶解性,特别是碱性蛋白的溶解性.双极性分子的作用也是增加蛋白质的溶解性.当蛋白移动到相应的pH值后,就变成了中性分子.而不带电荷的蛋白质分子容易聚集,从而降低其在随后的二向胶时的迁移效率,可能会造成竖的脱尾.而硫脲和双极性小分子则会鉴定中性蛋白质之间的相互作用,防止它们的聚集.10. 怎样估计2D胶上蛋白质点的分子量和pI值?可以用 BioRad生产的2D胶标准蛋白来校准.也可以用体系内已知蛋白来做比对.11. 为什么2D胶上的蛋白点有横的和竖的脱尾?横的脱尾可能是:1)一向等电聚焦不完全; 2)某些蛋白质本身的原因(糖蛋白); 3)蛋白的丰度太高.竖的脱尾是因为跑二向时,蛋白的溶解度不好.12. 什么成分会影响2D胶的效果?核酸,盐,去垢剂等等.13. 2D胶的上样量应该在什么范围?上样量和样品有关.样品内蛋白种类多的上样量要大些,这样每个点才有足够的量被检测到.一般的全细胞裂解体系,上样量大概在100微克(银染)到500微克(考染)之间.14. 我的蛋白质浓度很低,应该用什么方法来浓缩?蛋白质的浓缩有很多方法.大致有超滤法,沉淀法和透析法.超滤比较温和,对蛋白质不会有修饰和改变,蛋白的种类一般不会有丢失.它的缺点是总样品的量可能会减少(被膜所吸附).另外超滤对样品的要求比较高.甘油,去垢剂都会堵塞滤膜,影响超滤的效果.沉淀法比较快速,容易操作,对盐,甘油,去垢剂的耐受性好.缺点是可能会有部分种类的蛋白没有被沉淀下来(丢失).沉淀法中,又以TCA法最为普遍使用.使用TCA法时,一定要用冷的纯丙酮清洗蛋白沉淀两次,去处残留的TCA和其他沉淀下来的杂质.透析法只使用于量比较大的样品,量小时,操作困难. 透析法可以和超滤法联用.先把样品透析到一个比较干净的环境(不含盐,甘油,去垢剂或其它杂质,比如碳酸氢氨溶液),然后再进行超滤.注意事项:要想获得比较好的电泳结果,蛋白样品的制备是很关键的一个步骤,蛋白样品中存在杂质会影响等点聚焦,一定要采取有针对性的办法去除相应的杂质例如:盐和带电小分子、核酸等.。
双向电泳操作步骤双向电泳是一种常用的蛋白质分离和纯化方法。
下面是一篇超过1200字的双向电泳操作步骤:双向电泳是一种通过两个不同方向的电场来进行蛋白质分离的方法。
它可以更好地区分具有不同等电点和分子质量的蛋白质,并用于研究蛋白质组学以及生物化学等领域。
以下是一般的双向电泳操作步骤:1.确保准备充足的电泳装置,包括双向电泳槽、平衡缓冲液、电泳缓冲液、电泳细胞等。
2.准备样品:将待分离的蛋白质样品进行适当的前处理,包括样品提取、蛋白质浓缩、去除干扰物等。
将样品溶解在适当的电泳缓冲液中。
3.将样品加载到电泳槽中:在准备好的电泳缓冲液中加入样品,然后将样品加载到电泳槽中的样品孔中。
注意,为了保持电泳稳定性,在样品孔加载样品后,要尽快将缓冲液加入到其他储备槽以保持全面和均匀的电解质浓度。
4.进行等电点电泳:将电泳槽中的样品浸没在平衡缓冲液中,并在两侧分别连接正负极。
设置合适的电流和电压,开始进行等电点电泳。
在等电点电泳过程中,蛋白质根据它们的等电点被定向地分离。
5.停止等电点电泳:根据需要进行电泳时间的设定,一般情况下为2-3小时。
等电点电泳时间结束后,关闭电源,并小心地取出电泳舱。
6.水平电泳:停止等电点电泳后,将样品塘从上清洗掉,并用水平电泳缓冲液进行冲洗。
然后,在两侧连接正负极,设置合适的电流和电压,开始水平电泳。
在水平电泳过程中,蛋白质根据它们的分子质量被定向地分离。
7.停止水平电泳:根据需要进行电泳时间的设定,一般情况下为4-5小时。
水平电泳时间结束后,关闭电源,并小心地取出电泳舱。
8.染色和图像采集:将分离完毕的样品进行染色,常用的染色方法包括银染和荧光染色。
然后,使用图像采集系统获取电泳图像,可根据需要调整采集参数。
9.数据分析和解释:通过对电泳图像的分析,包括珠状图、分子质量标准物的修正和待测蛋白质的标定等,将分离出来的蛋白质鉴定和定位。
10. 验证和验证:对其中感兴趣的蛋白质进行验证和验证。
双向凝胶电泳(2-DE)双向凝胶电泳的原理是第一向基于蛋白质的等电点不同用等电聚焦分离,第二向则按分子量的不同用SDS-PAGE分离,把复杂蛋白混合物中的蛋白质在二维平面上分开。
近年来经过多方面改进已成为研究蛋白质组的最有使用价值的核心方法。
分离蛋白质组所有蛋白的两个关键参数是其分辨率和可重复性。
在目前情况下,双向凝胶电泳的一块胶板(16cm×20cm)可分出3~4千个,甚至1万个可检测的蛋白斑点,这与10万个基因可表达的蛋白数目相比还是太少了。
80年代开始采用固定化pH梯度胶,克服了载体两性电解质阴极漂移等许多缺点而得以建立非常稳定的可以随意精确设定的pH梯度。
由于可以建立很窄的pH范围(如0.05U/cm),对特别感兴趣的区域可在较窄的pH范围内做第二轮分析,从而大大提高了分辨率。
此种胶条已有商品生产,因此基本上解决了双向凝胶电泳重复性的问题。
这是双向凝胶电泳技术上的一个非常重要的突破。
第二向SDS-PAGE有垂直板电泳和水平超薄胶电泳两种做法,可分离10~100kD分子量的蛋白质。
其中灵敏度较高的银染色法可检测到4ng蛋白,最灵敏的还是用同位素标记,20ppm 的标记蛋白就可通过其荧光或磷光的强度而测定。
用图像扫描仪、莱赛密度仪、电荷组合装置可把用上述方法得到的蛋白图谱数字化,再经过计算机处理,去除纵向和横向的曳尾以及背景底色,就可以给出所有蛋白斑点的准确位置和强度,得到布满蛋白斑点的图像,即所谓“参考胶图谱”。
蛋白质组研究的主要困难是对用双向凝胶电泳分离出来的蛋白,进行定性和定量的分析。
最常用的方法是先把胶上的蛋白印迹到PVDF(polyvinylidene difluoride)膜上后再进行分析,确定它们是已知还是未知蛋白。
现在的分级分析法是先做快速的氨基酸组成分析,也可先做4~5个循环的N末端微量测序,再做氨基酸组成分析;结合在电泳胶板上估计的等点电和分子量,查对数据库中已知蛋白的数据,即可作出判断。