18.1.2 平行四边形的判定(2)
- 格式:ppt
- 大小:688.50 KB
- 文档页数:28
课题:18.1.2.2平行四边形的判定(2)【学习目标】(一)知识与技能:1.理解三角形中位线的概念,掌握它的性质.2.能较熟练地应用三角形中位线性质进行有关的证明和计算.(二)数学思考:体会将三角形转化为四边形的思想方法。
(三)问题解决:初步学会利用三角形中位线定理证明线段间的数量和位置关系。
获得解决问题的思路方法。
(四)情感态度:培养发现意识和能力,具有强烈的好奇心和求知欲。
【学习重点】掌握和运用三角形中位线的性质.【学习难点】三角形中位线性质的证明(辅助线的添加方法)【课前预习案】1、平行四边形的判定方法:2、三角形中线的定义:【课中探究案】活动1:三角形的中位线定义:1.(1)定义:连接的线段叫做三角形的中位线.(2)符号表示:如图,点D、E分别为△ABC边AB、AC的中点,线段DE是△ABC的中位线.2.思考:(1)想一想:①一个三角形的中位线共有几条?②三角形的中位线与中线有什么区别?(2)三角形的中位线与第三边有怎样的关系?活动2:探索三角形中位线的定理:1.如图,点D、E分别为△ABC边AB、AC的中点,求证:DE∥BC且DE=BC.证明:方法一:如图(1)方法二:如图(2),2.归纳:(1)三角形中位线的定理:三角形的中位线于第三边,且等于第三边的.(2)符号表示:如图,∵线段DE是△ABC的中位线.∴DE∥BC且DE=BC.总结:一个三角形中位线有3条,三角形的3条中位线构成的三角形的周长等于原三角形的周长的 ,面积等于原三角形的面积的.活动3:例题讲解【例1】如图所示,吴伯伯家一块等边三角形的空地ABC,已知点E,F分别是边AB,AC的中点,量得EF=5 m,他想把四边形BCFE用篱笆围成一个圈放养小鸡,则需要篱笆的长是()A.15 mB.20 mC.25 mD.30 m【例2】已知:如图,在四边形ABCD中,E、F、G、H分别是AB、BC、CD、DA的中点.求证:四边形EFGH是平行四边形.证明:总结:顺次连接四边形四条边的中点,所得的四边形是.【课末达标案】1.如图,在△ABC中,点D,E分别是AB,AC的中点,∠A=50°,∠ADE=60°,则∠C的度数为()A.50°B.60°C.70°D.80°2.如图,小明想用皮尺测量池塘A,B间的距离,但现用皮尺无法直接测量,学习数学有关知识后,他想出了一个主意:先在地上取一个可以直接到达A,B两点的点O,连接OA,OB,分别在OA,OB上取中点C,D,连接CD,并测得CD=a,由此他即知道A,B间的距离是()A.aB.2aC.aD.3a3. 图所示,在△ABC中,点D,E分别是AB,AC的中点,连接DE,若DE=5,则BC=________.4.如图,▱ABCD的周长为36,对角线AC,BD相交于点O,点E是CD的中点,BD=12,则△DOE的周长为________.5.已知:三角形的各边分别为8 cm,10 cm和12 cm ,求连接各边中点所成三角形的周长.6.如图,△ABC的中线BF,CE相交于点O,点H,G分别是BO,CO的中点,试判断四边形EFGH的形状,并证明你的结论.7.如图,△ABC中,D,E,F分别是AB,AC,BC的中点,(1)若EF=5 cm,则AB=______ cm;若BC=9 cm,则DE=______ cm.(2)中线AF与中位线DE有什么特殊的关系?证明你的猜想.【课后拓展案】基础达标:1.如图1,在△ABC中,点D,E分别是AB,AC的中点,连接DE.若DE=3,则线段BC的长等于__ __.2.如图2,▱ABCD的周长为36,对角线AC,BD相交于点O,点E是CD的中点,BD=12.则△DOE的周长为__ __.3.如图3,在△ABC中,点D,E分别是边AB,BC的中点.若△DBE的周长是6,则△ABC的周长是( )A.8B.10C.12D.144.已知△ABC的各边长度分别为3 cm,4 cm,5 cm,则连接各边中点的三角形的周长为 ( )A.2 cmB.7 cmC.5 cmD.6 cm5如图,在△ABC中,点D,E,F,G分别是AB,AC,AD,AE的中点,若BC=8,则DE+FG等于( )A.4.5B.6C.7D.86如图,▱ABCD的对角线AC,BD相交于点O,点E是AB的中点,且AE+EO=4,则▱ABCD的周长为( )A.20B.16C.12D.8应用提高:5如图,要测定被池塘隔开的A,B两点之间的距离,可以在AB外选一点C,连接AC,BC,并分别找出它们的中点D,E, 连接DE.现测得AC=30 m,BC=40 m,DE=24 m,则AB= ( )A.50 mB.48 mC.45 mD.35 m6所示,在△ABC中,点D是AB边的中点,点E是AC边上一点,若DE=5 cm,则BC的长( )A.等于5 cmB.等于10 cmC.等于15 cmD.无法确定思维拓展:7.在△ABC中,点D,E,F分别是AB,BC,CA的中点,AH是边BC上的高.(1)求证:四边形ADEF是平行四边形.(2)求证:∠DHF=∠DEF.。
人教版初中数学八年级下册18.1.2平行四边形的性质(2)同步练习夯实基础篇一、单选题:1.下列说法不正确的是()A .平行四边形两组对边分别平行B .平行四边形的对角线互相平分C .平行四边形的对角互补,邻角相等D .平行四边形的两组对边分别相等【答案】C【分析】根据平行四边形的性质依次分析判断即可.【详解】解:A .平行四边形两组对边分别平行,原说法正确,故该项不符合题意;B .平行四边形的对角线互相平分,原说法正确,故该项不符合题意;C .平行四边形的对角相等,邻角互补,原说法不正确,故该项符合题意;D .平行四边形的两组对边分别相等,原说法正确,故该项不符合题意;故选:C .【点睛】此题考查了平行四边形的性质:平行四边形两组对边分别平行且相等,平行四边形的对角相等,邻角互补,平行四边形的对角线互相平分,熟记性质是解题的关键.2.如图,ABCD Y 的周长为30cm ,ABC 的周长为27cm ,则对角线AC 的长为()A .27cmB .17cmC .12cmD .10cm【答案】C 【分析】因为平行四边形对边相等,所以平行四边形的周长为相邻两边之和的2倍,即 230AB BC ,则15AB BC ,而ABC 的周长27AB BC AC ,即可求出AC 的长.【详解】∵ABCD Y 的周长是30cm ,∴ 230AB BC ∴15AB BC ,∵ABC 的周长是27cm ,∴27AB BC AC ,∴ 27271512cm AC AB BC .故选:C .【点睛】本题考查了平行四边形的性质,掌握平行四边形的性质,根据题意列出三角形周长的关系式,结合平行四边形周长的性质求解是本题的关键.3.如图,ABCD Y 的对角线AC 与BD 相交于点O ,AB AC .若4AB ,6AC ,则BD 的长是()A .10B .8C .12D .14【点睛】本题主要考查了平行四边形的性质和勾股定理,属于基本题型,熟练掌握上述知识是关键.Y中,对角线AC和BD交于O,若AC=8,BD=6,则边AB长的取值范围是4.ABCD()A.3≤AB≤4B.2<AB<14C.1<AB<7D.1≤AB≤7△的周长比ABEBCD的周长大8,则BE的长有可能为()A.2B.3C.4D.5【分析】依据平行四边形的性质以及线段垂直平分线的性质,即可得到BO 的长,再根据BE BO ,即可得出结论.【详解】解:∵四边形ABCD 是平行四边形,∴AD BC AB CD ,,O 是BD 的中点,又∵OE BD ,∴OE 垂直平分BD ,∴BE DE ,∴AE BE AE DE AD ,∵BCD △的周长比ABE 的周长大8,∴ 8BC CD BD AB AE BE ,即 8BC CD BD AB AD ,∴8BD ,则4BO ,又∵Rt BOE 中,BE BO ,∴4BE ,观察四个选项,BE 的长可能为5,故选:D .【点睛】此题考查了平行四边形的性质、线段垂直平分线的性质以及三角形周长等知识,解答本题的关键是判断出OE 是线段BD 的垂直平分线.6.如图,已知平行四边形ABCD 的面积为48,E 为AB 的中点,连接DE ,则ODE 的面积为()A .8B .6C .4D .3已知点A(4,0),E(3,1),则点C的坐标为()A. 2,3B. 1,2C. 2,2D. 3,2【答案】C【分析】由平行四边形的性质得AE=CE,即点E是AC的中点,设C(a,b),利用中点坐标公式,进而求解C点坐标.【详解】解:设C(a,b),∵四边形ABCO为平行四边形,8.在平行四边形中一边长为8cm,它的一条对角线的长12cm,那么它的另一条对角线m的长度的取值范围______.【点睛】本题考查了平行四边形的性质和三角形三边关系定理,关键是把已知数和未知数设法放在一个三角形中,题目比较好,难度适中.9.如图,在ABCD Y 中,点O 是对角线AC BD 、的交点,AC 垂直于BC ,且6cm,8cm AC AD ,则OB ______cm .的周长大1,则ABCD Y 的周长等于__________.【答案】10【分析】根据平行四边形的性质可知,平行四边形的对角线互相平分,由于△ADO 的周长比△ABO 的周长大1,则AD 比AB 大1,所以可以求出AD ,进而求出周长.【详解】解:∵四边形ABCD 为平行四边形,∴BO =DO ,AB =CD ,AD =BC ,∵△ADO 的周长比△ABO 的周长大1,∴AD ﹣AB =1,∵AB =2,∴AD =3,∴AB +AD =5,∴平行四边形的周长为 22510AD AB .故答案为:10.【点睛】本题考查了平行四边的性质:平行四边形的两组对边分别相等且平行四边形的对角线互相平分.11.如图,平行四边形ABCD 的对角线AC 与BD 相交于点O ,AE BC ,垂足为E ,4AB ,6AC ,10BD ,则AE 的长为______.于点M,N,若∠MDO=∠MOD,BN=2.则MN的长为________.又∵MDO MOD ,∴2O M D M ,∴2ON ,∴224MN OM ON ,故答案为:4.【点睛】本题主要考查了平行四边形的性质,全等三角形的判定和性质,证明MDO NBO ≌是解答本题的关键.13.如图,ABCD Y 中,4AB ,5BC ,60ABC ,对角线AC ,BD 交于点O ,过点O 作OE AD ,则OE 等于______.连接CE ,若CED △的周长为6,则四边形ABCD 的周长为___________.【答案】12【分析】由平行四边形的性质得出DC AB ,AD BC ,由线段垂直平分线的性质得出AE CE ,得出CDE 的周长AD DC ,即可得出结果.【详解】解:∵四边形ABCD 是平行四边形,∴DC AB ,AD BC ,∵AC 的垂直平分线交AD 于点E ,∴AE CE ,∴CDE 的周长6DE CE DC DE AE DC AD DC ,∴四边形ABCD 的周长2612 ;故答案为:12.【点睛】本题考查了平行四边形的性质、线段垂直平分线的性质、三角形周长的计算;熟练掌握平行四边形的性质,并能进行推理计算是解决问题的关键.三、解答题:15.在▱ABCD 中,AC 、BD 交于点O .过点O 作OE ⊥BD 交BC 于点E ,连接DE .若∠CDE =∠CBD =15°.求∠ABC 的度数.【答案】45【分析】由线段垂直平分线的性质得出BE =ED ,得出15CBD BDE ,求出30ABD ,则可得出答案.【详解】解:∵四边形ABCD 是平行四边形,∴OB =OD ,∵OE ⊥BD ,∴BE =ED ,∴15CBD BDE ,∵15CDE ,∴30BDC ,∵四边形ABCD 是平行四边形,∴AB CD ,∴30ABD BDC ,∴301545ABC ABD CBD .【点睛】本题主要考查了线段垂直平分线的性质及平行四边形的性质,熟练掌握线段垂直平分线上的点到线段两端点的距离相等是解题的关键.16.如图,在ABCD Y 中,对角线AC ,BD 相交于点O ,分别过点A ,C 作AE ⊥BD ,CF ⊥BD ,垂足分别为点E ,F ,求证:AC ,EF 互相平分.【答案】证明见解析【分析】证出AEO CFO ≌,得出OE =OF 即可得证.【详解】证明:∵四边形ABCD 是平行四边形,∴AO =CO .∵AE ⊥BD ,CF ⊥BD ,∴∠AEO =∠CFO =90°.在△AEO 和△CFO 中,AEO CFO EOA FOC OA OC,∴△AEO ≌△CFO (AAS ),∴OE =OF ,AC ,EF 互相平分.【点睛】本题考查了平行四边形的性质,全等三角形的性质与判定,证明△AEO ≌△CFO 是解题的关键.17.已知:如图,在ABCD Y 中,过AC 的中点O 的直线分别交CB ,AD 的延长线于点E ,F .求证:BE DF .【答案】证明见解析.【分析】证明 AOF COE ASA ≌,可得:AF CE ,再利用AD BC ,即可证明BE DF .【详解】证明:∵四边形ABCD 是平行四边形,∴AO OC,AD BC ,DAO BCO ,在AOF 和COE 中,DAO BCO AO OC FOA COE∴ AOF COE ASA ≌,∴AF CE ,∵AD BC ,∴ AF AD CE BC ,即BE DF .【点睛】本题考查平行四边形的性质,全等三角形的判定定理及性质,解题的关键是掌握平行四边形的性质,全等三角形的判定定理及性质,证明 AOF COE ASA ≌.18.如图,ABCD Y 的对角线AC 和BD 相交于点O ,EF 过点O 且与边BC ,AD 分别相交于点E 和点F .(1)求证:OE OF ;(2)若4BC ,3AB ,2OF ,求四边形CDFE 的周长.【答案】(1)见解析(2)四边形CDFE 的周长为11【分析】(1)由四边形ABCD 是平行四边形,可得OA OC ,AD BC ∥,继而可证得 ASA AOE COF ≌△△,则可证得结论;(2)由全等三角形的性质及平行四边形的性质可得出答案.【详解】(1)证明:∵四边形ABCD 是平行四边形,∴OA OC ,AD BC ∥,∴OAF OCE,∵在OAF △和OCE △中OAF OCE OA OC AOF COE,∴ ASA AOE COF ≌△△,∴OF OE .(2)解:∵AOF COE ≌△△,∴AF CE ,∵四边形ABCD 是平行四边形,∴AD BC ,AB CD ,∵4BC ,3AB ,2OE OF ,∴CDFE EF DF CE CDC 四边形2OE DF AF CD2OE AD CD44311 .【点睛】本题主要考查了平行四边形的性质以及全等三角形的判定与性质.此题难度适中,注意掌握数形结合思想的应用.能力提升篇一、单选题:1.如图,ABCD Y 的对角线AC 与BD 相交于点O ,AE BC ,垂足为E .2,4AB AC BD ,则AE 的长为()A B .32C D .72.如图,在▭ABCD 中,对角线AC 、BD 相交于点O ,线段EF 经过点O ,AH ⊥BC 于点H .若AH =2,BC =3,则图中阴影部分的面积为()A .1.5B .2C .3D .4.5①OE OF ;②图中共有4对全等三角形;③若4AB ,6AC ,则214BD ;④ABC ABFE S S 四边形 ;其中正确的结论有()A.①④B.①②④C.①③④D.①②③的边OA在x轴上,对角线OB,AC相交于点E,已知A点坐标为(6,0),4.如图,OABC点E 的坐标为 4.5,2,则OABC 的周长为______.掌握平行四边形的性质,勾股定理是解题的关键.5.如图,在ABCD Y 中,32AO ,30ACB ,AC AB ,点E 在AC 上,1CE ,点P 是BC 边上的一动点,连接PE PA 、,则PE PA 的最小值是________.∵点A 与点F 关于直线BC 对称,∴CA CF ,30ACB FCB ,则∴ACF △是等边三角形,∵在ABCD Y 中,32AO ,∴23CF AC AO ,∴30CEG ,∴1122CG CE ,2213122EG,∴52FG FC CG ,∴2235722EF,∴PE PA 的最小值是7.故答案为:7.【点睛】本题考查了平行四边形的性质,等边三角形的判定和性质,含30度的直角三角形的性质以及勾股定理,解答本题的关键是明确题意,找出所求问题需要的条件.6.如图,在▱ABCD 中,45DBC DE BC ,于E BF CD ,于F DE ,、BF 交于H BF AD ,,的延长线交于G ,给出下列结论:①2DB BE ;②A BHE ;③AB BH ;④若BG 平分DBC ,则21BE EC ;其中正确的结论有______.(填序号)【答案】①②③④【分析】①由题意可知BDE △是等腰直角三角形,故此可得到2BD BE ;②由HBE CBF HEB CFB ,证明即可;③先证明BHE DEC △≌△,从而得到BH DC ,然后由平行四边形的性质可知AB BH ;④连接CH ,证CEH △是等腰直角三角形,DH CH ,设EH EC a ,得出22DH CH EC a ,进而得出21BE DE EC .【详解】解:DH BC ∵,90DEB ,AB CD∵,,③正确;AB BH7.如图所示,ABCD Y 的对角线AC 与BD 相交于点O ,AE BC ,垂足为点E ,AB ,2AC ,4BD .(1)求证:AB AC ;(2)求AE 的长.(1)如图1,若BD AB 的长;(2)如图2,过点C 作CE ⊥BD 于点E ,连接AE ,过点A 作AF ⊥AE 交BD 于点F ,求证:OF =CE +OE .∴∠FAC =∠OCG ,∠AFO =∠OGC ,∵OA =OC ,∴ AFO CGO AAS ,∴OF=OG,∵AB⊥AC,AF⊥AE,∴∠BAC=∠FAE=90°,∴∠BAC-∠FAO=∠FAE-∠FAO,∴∠BAF=∠CAE,∵CE⊥BD,∴∠CED=∠CEF=90°,∴∠AEC=∠AEF+∠CEF=90°+∠AEF,∵∠AFB是AFE的一个外角,∴∠AFB=∠FAE+∠AEF=90°+∠AEF,∴∠AEC=∠AFB,∵AB=AC,∴∠AFE=∠AEF=45°,∴∠AFE=∠CGO=45°,∴CEG是等腰直角三角形,∴CE=EG,∵OG=OE+EG,∴OF=OE+CE.【点睛】本题主要考查平行四边形的性质、三角形的全等、等腰三角形的性质以及勾股定理,掌握相关知识并灵活应用是解题的关键.。