八下浙教版4.4平行四边形的判定(2)
- 格式:ppt
- 大小:608.50 KB
- 文档页数:18
4.4 平行四边形的判定定理教学目标知识与技能探索并掌握平行四边形的三个判定定理.过程与方法1.经历平行四边形判定条件的探索过程,使学生逐步掌握说理的基本方法,并在与他人交流的过程中,能合理清晰地表述自己的思维过程.2.在拼摆平行四边形的过程中,培养学生的动手实践能力及丰富的想象力,积累数学活动经验,增强学生的创新意识.情感、态度与价值观1.让学生主动参与探索的活动,在做“数学实验”的过程中,发展学生的合情推理意识、主动探究的习惯,激发学生学习数学的热情和兴趣.2.通过探索式证明学习,开拓学生的思路,发展学生的思维能力.3.在与他人的合作过程中,培养学生敢于面对挑战和勇于克服困难的意志,鼓励学生大胆尝试,从中获得成功的体验,培养学生的合作意识和团队精神.教学重点平行四边形的判定定理.教学难点平行四边形的判定定理的运用.教学设计—、课前导入1.什么叫平行四边形?平行四边形有什么性质?(学生口答,教师板书)2.将以上的性质定理,分别用命题形式叙述出来.(如果……,那么……)根据平行四边形的定义,我们研究了平行四边形的其他性质,那么如何来判定一个四边形是平行四边形呢?除了定义还有什么方法?平行四边形的性质定理的逆命题是否成立?二、自主探究活动1:你知道平行四边形的判定方法吗?如何用几何语言表示?(定义法):两组对边分别平行的四边形是平行四边形.几何语言表述定义法:∵AB//CD,AD//BC,∴四边形ABCD是平行四边形.结论:一个四边形只要其两组对边分别平行,就可判定这个四边形是一个平行四边形.活动2:设问:若一个四边形有一组对边平行且相等,能否判定这个四边形也是平行四边形呢?课堂探究,用准备好的纸条(纸条的长度相等),先将纸条放置不平行位置,让学生设想若两纸条的端点为四边形的顶点,则组成的四边形是不是平行四边形?设问:我们能否用推理的方法证明这个命题是正确的吗?(让学生找出题设、结论,然后写出已知、求证及证明过程)小结:用几何语言表述定义法和刚才的证明方法证明一个四边形是平行四边形的方法为:判定定理1:一组对边平行并且相等的四边形是平行四边形.用几何语言表述为:∵AB=CD且AB∥CD,∴四边形ABCD是平行四边形.例1 已知:如图,在□ABCD中,E,F分别是AB,CD的中点.求证:EF∥AD.活动3:用做好的纸条拼成一个四边形,其中强调两组对边分别相等.你得到什么结论?方法二:两组对边分别相等的四边形是平行四边形.设问:这个命题的条件和结论是什么?已知:在四边形ABCD中,AB=CD,AD=BC.求证:四边形ABCD是平行四边形.分析:判定平行四边形的依据目前只有定义,也就是要证明两组对边分别平行,当然是借助第三条直线证明角相等.连结BD,易证三角形全等.板书证明过程.小结:用几何语言表述定义法和刚才证明的方法证明一个四边形是平行四边形的方法为:判定定理2:两组对边分别相等的四边形是平行四边形.∵AB=CD,AD=BC,∴四边形ABCD是平行四边形.活动4:设问:“对角线互相平分的四边形是平行四边形.”这一命题的前提是什么?结论又是什么?活动:用事先准备好的纸条按课本探究方法做,让学生判定这个四边形是否是平行四边形.判定定理3:对角线互相平分的四边形是平行四边形.这个定理的前提是什么?结论又是什么?已知:如图,在四边形ABCD中,AC,BD相交于点O,OA=OC,OB=OD.求证:四边形ABCD是平行四边形.AC分析:证明这个四边形是平行四边形的方法有:(1)两组对边分别相等;(2)平行四边形的定义:两组对边分别平行.板书证明过程.小结:由刚才证明可得,只要对角线互相平分,就可判定这个四边形是平行四边形.几何语言表述:∵OA=OC,OB=OD,∴四边形ABCD是平行四边形.例2 已知:如图,在□ABCD中,E,F分别是BD上的两点,且∠BAE=∠DCF.求证:四边形AECF是平行四边形.三、本课小结今天我们主要研究了利用边和角的关系来判定平行四边形,注意满足的条件.两组对边分别平行两组对边分别相等的四边形是平行四边形一组对边平行且相等对角线互相平分注意:若一组对边平行,另一组对边相等,是否可以判断为平行四边形,它可能是梯形.四、布置作业教材P97作业题第2,3题.O。
浙教版数学八年级下册《4.4 平行四边形的判定定理》教案2一. 教材分析《4.4 平行四边形的判定定理》是浙教版数学八年级下册的一个重要内容。
本节课主要让学生掌握平行四边形的判定方法,并通过相应的例题和练习题来巩固所学知识。
教材从学生的实际出发,通过直观的图形和生动的例题,引导学生探索和发现平行四边形的判定定理,培养学生的几何思维和解决问题的能力。
二. 学情分析学生在学习本节课之前,已经掌握了平行线的性质、四边形的分类等基础知识,具备了一定的几何思维能力。
然而,对于一些具体判定定理的理解和应用,学生可能还存在一定的困难。
因此,在教学过程中,教师需要关注学生的认知水平,针对不同学生的学习情况,采取合适的教学策略。
三. 教学目标1.知识与技能:让学生掌握平行四边形的判定方法,能够运用判定定理解决实际问题。
2.过程与方法:通过观察、操作、思考、交流等过程,培养学生的几何思维和解决问题的能力。
3.情感态度与价值观:激发学生学习数学的兴趣,培养学生的团队合作意识,使学生感受到数学在生活中的应用。
四. 教学重难点1.重点:平行四边形的判定方法。
2.难点:对平行四边形判定定理的理解和应用。
五. 教学方法1.情境教学法:通过直观的图形和生动的例题,引发学生的兴趣,激发学生的思考。
2.引导发现法:引导学生观察、操作、交流,发现平行四边形的判定定理。
3.实践操作法:让学生通过动手操作,加深对平行四边形判定定理的理解。
4.巩固练习法:通过有针对性的练习题,巩固所学知识。
六. 教学准备1.教学课件:制作课件,展示相关图形和例题。
2.练习题:准备一些有关平行四边形判定定理的练习题,用于课堂巩固和课后作业。
3.教学道具:准备一些四边形模型,用于实践操作。
七. 教学过程1.导入(5分钟)利用课件展示一些生活中的平行四边形图形,如电梯、窗户等,引导学生关注平行四边形的特点。
提问:你们知道什么是平行四边形吗?平行四边形有哪些性质?2.呈现(10分钟)呈现教材中的例题,引导学生观察图形,思考问题。
《平行四边形判定定理》教学设计【内容出处】浙江教育出版社八年级数学下册第4章第4课。
【素养指向】“直观想象”之“平行四边形的判定”。
【教学目标】1.能根据平行四边形的性质定理猜测判定定理,并尝试给出证明。
2.能根据边的关系判定一个四边形是否是平行四边形。
3.掌握平行四边形的判定定理“对角线互相平分的四边形是平行四边形”。
4.会综合应用平行四边形的性质定理和判定定理解决简单的几何问题。
【时间预设】课内2课时加课前10分钟、课后15分钟。
第一课时【侧重目标】侧重目标1,2。
【内容段落】内容段落一,探究判定。
【教学过程】一、先行学习复习平行四边形的主要性质,并写出性质定理的逆命题。
二、交互学习段落一探究判定〖小组合学〗根据平行四边形边的性质,判断逆命题是否成立。
怎样判定一个四边形是平行四边形?猜想一:一组对边平行且相等的四边形是平行四边形.猜想二:一组对边平行且另一组对边相等的四边形是平行四边形.猜想三:两组对边分别相等的四边形是平行四边形.证明猜想成立或举例说明某猜想不成立.〖展示评析〗小组推荐代表展示交流,其他小组质疑与纠错,交流评析后得到:以上猜想中正确的是猜想一和三,猜想二的反例为等腰梯形。
三、后续学习1.课本作业题第1,2,4,5题。
2.导学我达标第3,6,7题。
第二课时【侧重目标】侧重目标3,4。
【内容段落】内容段落二,实践应用。
【教学过程】一、交互学习段落二实践应用〖小组合学〗大家拿出准备好的两个全等三角形,来拼一个平行四边形。
小组内同学交流先学单任务中的问题1,讨论:能用文字叙述刚才得出的结论吗?〖展示评析〗小组推荐代表展示交流,其他小组质疑与补充。
得到结论:两条对角线互相平分的四边形是平行四边形。
〖检测评价〗独立完成下面题目,然后在小组内交流,进行互动评析。
已知:如图 4-22,E和F是ABCD对角钱AC上两点,AE=CF.求证:四边形BFDE 是平行四边形.三、后续学习1.课本作业题第1,2,3,5题。
浙教版数学八年级下册《4.4 平行四边形的判定定理》教学设计1一. 教材分析《4.4 平行四边形的判定定理》是浙教版数学八年级下册的教学内容。
本节课主要介绍了平行四边形的判定方法,通过判定定理的学习,使学生能够灵活运用这些方法判断一个四边形是否为平行四边形。
教材中给出了两个重要的判定定理,分别是:1.如果一个四边形的两组对边分别相等,那么这个四边形是平行四边形。
2.如果一个四边形的一组对边平行且相等,那么这个四边形是平行四边形。
通过对这两个判定定理的学习,学生能够掌握平行四边形的基本性质,并能够运用这些性质解决实际问题。
二. 学情分析学生在学习本节课之前,已经学习了四边形的性质,对四边形的概念有一定的了解。
同时,学生已经掌握了平行线的性质,能够判断两条直线是否平行。
但是,学生对平行四边形的判定方法还没有接触过,因此需要通过本节课的学习来掌握这些判定方法。
三. 教学目标1.让学生了解平行四边形的判定方法,能够判断一个四边形是否为平行四边形。
2.培养学生运用数学知识解决实际问题的能力。
3.培养学生的逻辑思维能力和团队合作能力。
四. 教学重难点1.判定定理的理解和运用。
2.判断一个四边形是否为平行四边形的实际操作。
五. 教学方法1.采用问题驱动的教学方法,引导学生通过探究、讨论来发现判定定理。
2.运用多媒体辅助教学,展示平行四边形的判定过程,增强学生的直观感受。
3.采用分组合作的学习方式,培养学生的团队合作能力。
4.通过练习题巩固所学知识,提高学生的应用能力。
六. 教学准备1.多媒体教学设备。
2.练习题。
3.判定定理的课件。
七. 教学过程1.导入(5分钟)教师通过多媒体展示几个平行四边形的图形,让学生观察并回答以下问题:•平行四边形有哪些特征?•你能用已学的知识判断一个四边形是否为平行四边形吗?2.呈现(10分钟)教师通过课件呈现两个重要的判定定理,并引导学生进行探究和讨论:•定理1:如果一个四边形的两组对边分别相等,那么这个四边形是平行四边形。
浙教版数学八年级下册4.4《平行四边形的判定》教学设计2一. 教材分析《平行四边形的判定》是浙教版数学八年级下册4.4节的内容,本节课的主要内容是让学生掌握平行四边形的判定方法,理解平行四边形的性质,并能运用这些性质解决实际问题。
教材通过丰富的图片和实例,引导学生探究平行四边形的判定方法,从而培养学生的空间想象能力和逻辑思维能力。
二. 学情分析学生在学习本节课之前,已经掌握了平行线的性质,四边形的分类等基础知识,具备了一定的空间想象能力和逻辑思维能力。
但对于平行四边形的判定方法,学生可能还比较陌生,需要通过实例和练习来进一步理解和掌握。
三. 教学目标1.知识与技能目标:使学生掌握平行四边形的判定方法,能正确判断一个四边形是否为平行四边形。
2.过程与方法目标:通过观察、操作、猜想、验证等活动,培养学生的空间想象能力和逻辑思维能力。
3.情感态度与价值观目标:激发学生学习数学的兴趣,培养学生的团队合作意识和自主学习能力。
四. 教学重难点1.重点:平行四边形的判定方法。
2.难点:理解并掌握平行四边形的性质,并能运用这些性质解决实际问题。
五. 教学方法1.情境教学法:通过丰富的图片和实例,激发学生的学习兴趣,引导学生探究平行四边形的判定方法。
2.启发式教学法:在教学中,教师提出问题,引导学生思考和探究,培养学生的逻辑思维能力。
3.合作学习法:学生分组讨论和操作,培养学生的团队合作意识和沟通能力。
六. 教学准备1.教学课件:制作课件,展示平行四边形的判定方法和相关实例。
2.学习材料:准备相关的学习材料,如图片、实例等。
3.课堂练习:准备一些练习题,帮助学生巩固所学知识。
七. 教学过程1.导入(5分钟)教师通过展示一些图片,如篮球场、教室里的桌子等,引导学生观察这些图片,并提问:“这些图片中的图形有什么共同的特点?”学生回答后,教师总结:这些图形都是平行四边形。
从而引出本节课的主题。
2.呈现(10分钟)教师通过课件展示平行四边形的判定方法,并讲解相关实例。
浙教版数学八年级下册4.4《平行四边形的判定》教案1一. 教材分析《平行四边形的判定》是浙教版数学八年级下册4.4节的内容,本节课主要让学生掌握平行四边形的判定方法,培养学生运用几何知识解决实际问题的能力。
教材通过生活实例引入平行四边形的概念,接着引导学生探索平行四边形的判定方法,最后提供一些练习题让学生巩固所学知识。
二. 学情分析学生在学习本节课之前,已经掌握了平行线的性质、四边形的分类等基础知识。
他们对几何图形的认知和观察能力逐渐提高,但部分学生对几何图形的判定方法仍存在困难。
因此,在教学过程中,教师需要关注学生的学习需求,引导学生积极参与课堂活动,提高他们的空间想象能力和逻辑思维能力。
三. 教学目标1.知识与技能:使学生掌握平行四边形的判定方法,能运用所学知识解决实际问题。
2.过程与方法:通过观察、操作、猜想、验证等过程,培养学生的空间想象能力和逻辑思维能力。
3.情感态度与价值观:激发学生对数学的兴趣,培养他们勇于探索、积极思考的精神。
四. 教学重难点1.重点:平行四边形的判定方法。
2.难点:如何运用平行四边形的判定方法解决实际问题。
五. 教学方法1.情境教学法:通过生活实例引入平行四边形的概念,激发学生的学习兴趣。
2.启发式教学法:引导学生观察、操作、猜想、验证,培养学生的空间想象能力和逻辑思维能力。
3.小组合作学习:鼓励学生分组讨论,提高他们的沟通能力和团队协作精神。
4.练习法:提供适量练习题,让学生巩固所学知识。
六. 教学准备1.课件:制作课件,展示平行四边形的判定方法及实例。
2.练习题:准备一些练习题,用于巩固所学知识。
3.教学用具:直尺、三角板、剪刀等。
七. 教学过程1.导入(5分钟)利用课件展示一些生活实例,如教室里的桌子、篮球场上的篮板等,引导学生观察这些实例中的图形,提问:“这些图形是什么类型的四边形?”从而引出平行四边形的概念。
2.呈现(10分钟)展示平行四边形的判定方法,引导学生观察、操作、猜想、验证。
初二数学平行四边形的判定某某版【本讲教育信息】一. 教学内容:平行四边形的判定二. 重点、难点:1. 如果一个图形绕着一个点旋转180°后,所得到的图形能够和原来的图形互相重合。
(1)那这个图形叫做中心对称图形,这个点叫对称中心。
(平行四边形是中心对称图形,两条对角线的交点是它的对称中心)(2)一个图形绕着一个点O 旋转180°后,能够和另一个图形互相重合,那么这两个图形关于点O 成中心对称。
(3)对称中心平分连结两个对称点的线段。
2. 平行四边形的判定(1)定义:两组对边分别平行的四边形,是平行四边形。
(2)两组对边分别相等的四边形,是平行四边形。
(3)一组对边平行且相等的四边形是平行四边形。
(4)对角线互相平分的四边形是平行四边形。
(5)两组对角分别相等的四边形是平行四边形。
【典型例题】例1. 在线段、角、等边三角形、平行四边形、正方形和圆中,哪些是轴对称图形?哪些是中心对称图形?解:关键是寻找一条“直线”和一个“中心”根据定义可知:轴对称图形是:线段、角、等边三角形、正方形和圆;中心对称图形是:线段、平行四边形、正方形和圆。
注意:一般有奇数个“角”的图形一定不是中心对称图形、比如三角形、五角星等。
例2. 等腰Rt △ABC 中,∠C=90°,BC=2,如果以AC 的中点O 为旋转中心,将这个三角形旋转180°,使点B 落到B’处,问:点B’与点B 的原来位置相距多少?解:如图所示,∵△ABC 与△AB’C 关于点O 中心对称∴B 、B’是一对对称点∴必过点,且BB O OB OB BB '''==12又在Rt △BCO 中,BC=2,OC AC ==121 ∴∴OB BC OC BB =+==22525'A B例3. 如图所示,△ABC 中,∠BCA=90°,DE//BC 且BC=2DE ,F 在BC 的延长线上,∠CDF=∠A 。