小学奥数数论讲义 第十七讲 数论综合之整除相关问题强化篇
- 格式:doc
- 大小:24.52 KB
- 文档页数:2
数的整除( 1)性质、特色、奇偶性教室:姓名:学号:【知识要点】:整除性:( 1)若是数 a、b 都能被 c 整除,那么它的和( a+b)或差( a- b)也能被 c 整除。
(2)若是数 a 能被自然数 b 整除,自然数 b 能被自然数 c 整除,数 a 必能被数 c 整除。
(3)若干个数相乘,如其中有一个因数能被某一个数整除,那么,它的也能被个数整除。
(4)若是一个数能被两个互数中的每一个数整除,那么,个数能被两个互数的整除。
反之,若一个数能被两个互数的整除,那么个数能分被两个互数整除。
整除特色:( 1)若一个数的末两位数能被4(或25)整除,个数能被4(或25)整除。
(2)若一个数的末三位数能被8(或125)整除,个数能被8(或125)整除。
(3)若一个数的各位数字之和能被3(或9)整除,个数能被3(或9)整除。
(4)若一个数的奇数位数字和与偶数数字和之差(以大减小)能被11 整除,个数能被11 整除。
(5)若一个数的末三位数字所表示的数与末三位从前的数字所表示的数之差(大数减小数)能被 7(或 13)整除,个数能被7(或 13)整除。
奇偶性:( 1)奇数±奇数 =偶数( 2)偶数±偶数 =偶数( 3)奇数±偶数 =奇数( 4)奇数×奇数 =奇数( 5)偶数×偶数 =偶数( 6)奇数×偶数 =偶数( 7)奇数÷奇数 =奇数( 8)⋯【典型例】例 1:一个三位数能被 3 整除,去掉它的尾端数后,所得的两位数是17 的倍数,的三位数中,最大是几?解:在两位数中,是17 的倍数的数中最大的17×5=85( 17× 6=102) .于是所求数的前两位数字 85.因 8+5=13 ,故所求数的个位数字2、5、8 ,数能被 3 整除,使数最大,其个位数字8.最大三位数是858.例 2: 1~ 200 200 个自然数中,能被 6 或 8 整除的数共有多少个?解:1~ 200 中,能被 6 整除的数共有33 个( 200÷ 6=33⋯),能被 8 整除的数共有25 个( 200 ÷8=25 ) .但[ 6, 8]=24 , 200÷ 24=8⋯⋯ 8,即 1~ 200 中,有 8 个数既被 6 整除,又被8 整除。
九 进 制乔治·兰伯特是美国加利福尼亚州一所中学的数学教师,他对数学特别敏感而且有极大的研究兴趣。
他常年与数字、公式打交道,深感数学的神秘与魅力。
他开始注意一些巧合的事件,力图用数学的方式来破解巧合。
他发现:法国皇帝拿破仑与纳粹元首希特勒相隔一个多世纪,但是他们之间有很多数字巧合。
拿破仑1804年执政,希特勒1933年上台,相隔129年。
拿破仑1816年战败,希特勒1945年战败,相隔129年。
拿破仑1809年占领维也纳,希特勒在1938年攻人维也纳,也是相隔129年。
拿破仑1812年进攻俄国,希特勒在相隔129年后进攻苏联。
美国第16届总统林肯于1861年任总统,美国第35届总统肯尼迪于1961年任总统,时隔100年。
两人同在星期五并在女人的参与下被刺遇害。
接任肯尼迪和林肯的总统的名字都叫约翰逊。
更巧的是,杀害林肯的凶手出生于1829年,杀害肯尼迪的凶手出生于1929年,相隔又是100年。
兰伯特被这些数字迷住了,他经常将这些数字翻来覆去地分解组合。
他惊奇地发现,拿破仑和希特勒的巧合数129与林肯和肯尼迪的巧合数100,把它们颠倒过去分别是921和001,用921减去129,用100减去001,得数都能被9除尽:921-129=792,100-001=99;792+9=88,99÷9=11,结果都有一个十位和个位都相同的两位数的商。
兰伯特非常吃惊,他对9着了迷。
他发现将l 、2、3、4、5、6、7、8、9加在一起是45,而4+5=9。
他还发现,用9乘以任何一个数,将所得到的积的各位数字相加,所得到的和总是9。
取任何一个数,比如说2004,将每位数加起来是2+0+0+4=6,用2004减去6结果得到1998,而1998÷9=222,能被9除尽。
他还总结出这样一个规律:把一个大数的各位数字相加得到一个和,再把这个和的各位数字相加又得到一个和。
这样继续下去,直到最后的数字之和是一个一位数为止。
第十七讲数论综合之整除相关问题强化篇
【例1】
月月写了一个五位数,它能被9和11整除。
如果去掉第,1、3、5位,得到的数是35;如果去掉前三位,得到的数能被8整除;如果去掉后三位,得到的数能被7整除。
那么这个五位数是______。
【例2】
一个整数与12的和能整除该整数的平方,那么这个整数最大可能是______。
【例3】
有一类六位自然数,它们的前三位数组成的数与后三位数组成的数相同。
求在这类自然数中,能被4433整除的最大数。
【例4】(2009年“迎春杯”六年级初赛试题)
如果一个五位数,它的各位数字乘积恰好是它的各位数字和的25倍。
那么,这个五位数的前两位的最大值是______。
【例5】
构造6个互不相同的整数,使得其中任意两个数的乘积能被其和整除。
第19讲数论综合知识点精讲特殊数的整除特征1. 尾数判断法1) 能被2整除的数的特征:2) 能被5整除的数的特征:3) 能被4 (或25)整除的数的特征:4) 能被8 (或125)整除的数的特征:2. 数字求和法:3. 99的整除特性:4. 奇偶位求差法:5. 三位截断法:特别地:7X11X13=1001, abcabc=abcX1001二、多位数整除问题技巧:1>目的是使多位数变短”途径是结合数的整除特征和整除性质2>对于没有整除特性的数,利用竖式解决。
三、质数合数1. 基本定义【质数】一一【合数】一一注:自然数包括0、1、质数、合数.【质因数】一一【分解质因数】一一用短除法和分拆相乘法分解质因数。
任何一个合数分解质因数的结果是唯一的。
分解质因数的标准表示形式:N=a1Xa2Xa3X X n,其中a1、a2、a3 an都是合数N的质因数,且a 1 <a 2<a 3< va n。
【互质数】【偶数】【奇数】2. 质数重要性质1)100以内有25个质数:2)除了2和5,其余的质数个位数字只能是:3)1既不是质数,也不是合数4)在质数中只有2是偶数,其他质数都是奇数5)最小的质数是2•最小的奇质数是36)有无限多个3. 质数的判断:1)定义法:判断整除性2)熟记100以内的质数3)平方判断法:例如:对2011,首先442<2011<452,然后用1至44中的全部质数去除2011,即可叛断出2011为质数.4. 合数1)无限多个2)最小的合数是43)每个合数至少有三个约数5. 互质数1)什么样的两个数- -定是互质数?注意:分解质因数是指一个合数写成质因数相乘的形式21=3 7,不能写成:3 7=21.6. 偶数和奇数1)2)偶数;个位数字是1,3,5,7,9的数是奇数3)4)数是他们乘积的一半5)•因此,要分解的合数应写在等号左边,如:0属于偶数十进制中,个位数字是0,2,4,6,8的数是除2外所有的正偶数均为合数相邻偶数的最大公约数为2,最小公倍奇±奇=偶偶±禺=偶偶埼=奇奇X 奇=奇偶X 奇=偶偶 ><禺=偶四、约数与倍数1. 约数与倍数概念:2. 一个数约数的个数:3. 平方数与约数个数的关系:4.最大公约数与最小公倍数求法:分解质因数: 辗转相除法: 5. 两数的最大公约数乘以最小公倍数等于这两个数的乘积。
1.数论——数的整除和余数2.1基本概念和基本性质2.1.1定义整数a除以整数b(b≠0),除得的商是整数而没有余数,我们就说a能被b整除,或者说b能整除a。
2.1.2表达式和读法b∣a,读着b能整除a;或a能被b整除;b a,不能整除;2.1.3基本性质①传递性:如果a|b,b|c,那么a|c;即b是a的倍数,c是b的倍数,则c肯定是a的倍数;②加减性:如果a|b、a|c,那么a|(b c);③因数性:如果ab|c,那么a|c,b|c;即如果ab的积能整除c,则a或b皆能整除c;④互质性,如果a|c,b|c,且(a,b)=1,那么ab|c,即如果a能整除c,b能整除c,且ab互质,则ab的积能整除c;⑤a个连续自然数中必恰有一个数能被a整除。
2.2数的整除的判别法2.2.1末位判别法2.2.2数字和判别法(用以判别能否被3或9整除)各数位上数字的和是3或9的倍数,则能被3或9整除。
173652÷9:1+7+3+6+5+2的和除以3或9;简便算法,利用整除的加减性,可以去掉1个或多个9,剩下数字的和x再除以3或9;如果x﹥9,则余数为x-9;如果x﹤9,则余数为x。
2.2.3奇偶数位判别法(用以判别能否被11整除)从右往左编号,编号为奇数的为奇数位,编号为偶数的为偶数位,看奇数位上的数字的和与偶数位上的数字的和的两者之差是否能被11整除;81729033÷11:奇数位和为6,偶数位和为27;如果奇数位和比偶数位和小,则奇数位和加1个或多个11,直到够减。
余数的判断法与整数位的判断法一致。
2.2.4三位一截判别法(用以判别能否被7/11/13整除)2.2.4.1基本用法从右往左三位一截并编号,编号为奇数的为奇数段,编号为偶数的为偶数段,看奇数段的数字的和与偶数段的数字的和的两者之差是否能被7、11、13整除;如,86372548,奇数段的和为(548+86),偶数段的和为372,求两者差看能否被7整除,同样,不够减前面加1个或多个7,直到够减,余数位的判断法与整数位的判断法一致。
数论知识点整除定义及特征判断1、数的整除性:整数a除以整数b(b≠0),所得的商是整数而没有余数,则称a能被b整除,或b整除a,记作:b|a.2、整除的性质:性质1. 如果c|a,c|b,则c|(a±b)性质2. 如果bc|a,则b|a,c|a性质3. 如果c|b,b|a,则c|a3、整除问题的解决方法:整除特征法;补9、补0试除法。
4、涉及极值的整除问题:贪心法、弃倍法、逐步调整法。
5、数的整除特征:a.一个数的末位能被2或5整除,这个数就能被2或5整除;一个数的末两位能被4或25整除,这个数就能被4或25整除;一个数的末三位能被8或125整除,这个数就能被8或125整除;b.一个数各位数字之和能被3整除,这个数就能被3整除;一个数各位数字之和能被9整除,这个数就能被9整除;c.如果一个整数的奇数位上的数字之和与偶数位上的数字之和的差能被11整除,那么这个数能被11整除;d.一个数从个位到高位,每三位进行分段,将形成的奇位之和与偶位之和以大减小,如果差可以被7、11、13整除,则此数也可被7、11、13整除;如果一个整数的末三位与末三位之前的数字组成的数之差能被7、11或13整除,那么这个数能被7、11或13整除;e.如果逐次去掉最后一位数字并减去末位数字的2倍后能被7整除,那么这个数能被7整除;如果逐次去掉最后一位数字并减去末位数字后能被11整除,那么这个数能被11整除;如果逐次去掉最后一位数字并减去末位数字的9倍后能被13整除,那么这个数能被13整除;f.一个数从个位到高位,每两位分成一段,将每段上的数相加。
如果相加的和能被99所整除,那么这个数就能被99所整除。
奇数、偶数与奇偶性的应用一、奇数和偶数的概念:1)整数可以分成奇数和偶数两大类。
2)能被2整除的数叫做偶数,不能被2整除的数叫做奇数。
3)因为偶数是2的倍数,所以通常用2k这个式子来表示偶数(这里k是整数),因为任何奇数除以2其余数总是1,所以通常用式子2k+1来表示奇数(这里k是整数)。
小学奥数数论类试题解析:数的整除教案是教师为顺利而有效地开展教学活动,根据课程标准,教学大纲和教科书要求及学生的实际情况,以课时或课题为单位,对教学内容、教学步骤、教学方法等进行的具体设计和安排的一种实用性教学文书,包括教材简析和学生分析、教学目的、重难点、教学准备、教学过程及练习设计等,下面是由小编为大家整理的范文模板,仅供参考,欢迎大家阅读.这篇《小学奥数数论类试题解析:数的整除》,是小编特地为大家整理的,希望对大家有所帮助!把一个数由右边向左边数,将奇位上的数字与偶位上的数字分别加起来,再求它们的差,如果这个差是_的倍数(包括0),那么,原来这个数就一定能被_整除. 例如:判断49_78能不能被_整除.—→奇位数字的和9+6+8=23—→偶位数位的和4+1+7=_ 23-_=_因此,49_78能被_整除.这种方法叫”奇偶位差法”.除上述方法外,还可以用割减法进行判断.即:从一个数里减去_的_倍,_倍,30倍……到余下一个1_以内的数为止.如果余数能被_整除,那么,原来这个数就一定能被_整除.又如:判断583能不能被_整除.用583减去_的50倍(583-__50=33)余数是33, 33能被_整除,583也一定能被_整除.(1)1与0的特性:1是任何整数的约数,即对于任何整数a,总有1|a.0是任何非零整数的倍数,a≠0,a为整数,则a|0.(2)若一个整数的末位是0、2、4、6或8,则这个数能被2整除。
(3)若一个整数的数字和能被3整除,则这个整数能被3整除。
(4) 若一个整数的末尾两位数能被4整除,则这个数能被4整除。
(5)若一个整数的末位是0或5,则这个数能被5整除。
(6)若一个整数能被2和3整除,则这个数能被6整除。
小学奥数数论类试题解析:数的整除.到电脑,方便收藏和打印:。
学科培优数学“数论综合”学生姓名授课日期教师姓名授课时长数论是研究整数性质的一个数学分支,它历史悠久,而且有着强大的生命力。
数论问题叙述简明,“很多数论问题可以从经验中归纳出来,并且仅用三言两语就能向一个行外人解释清楚,但要证明它却远非易事”。
因而有人说:“用以发现天才,在初等数学中再也没有比数论更好的课程了。
任何学生,如能把当今任何一本数论教材中的习题做出,就应当受到鼓励,并劝他将来从事数学方面的工作。
”所以在国内外各级各类的数学竞赛中,数论问题总是占有相当大的比重。
涉及知识点多、解题过程比较复杂的整数综合题,以及基本依靠数论手段求解的其他类型问题.【题目】己知五个数依次是13,12, 15, 25,20它们每相邻的两个数相乘得四个数,这四个数每相邻的两个数相乘得三个数,这三个数每相邻的两个数相乘得两个数,这两个数相乘得一个数。
请问最后这个数从个位起向左数、可以连续地数到几个0?【题目】有4个不同的自然数,它们当中任意2个数的和是2的倍数,任意3个数的和是3的倍数.为了使得这4个数的和尽可能地小,这4个数分别是多少?【题目】将数字4,5,6,7,8,9各使用一次,组成一个被667整除的6位数,那么,这个6位数除以667的结果是.【题目】在小于5000的自然数中,能被11整除,并且数字和为13的数,共有多少个?【题目】从1,2,3,……n中,任取57个数,使这57个数必有两个数的差为13,则n的最大值为_______。
【题目】一个自然数与自身相乘的结果称为完全平方数。
已知一个完全平方数是四位数,且各位数字均小于7。
如果把组成它的数字都加上3,便得到另外一个完全平方数,求原来的四位数。
【题目】4个不同的真分数的分子都是1,它们的分母有2个是奇数、2个是偶数,而且2个分母是奇数的分数之和与2个分母是偶数的分数之和相等.这样的奇数和偶数很多,小明希望这样的2个偶数之和尽量地小,那么这个和的最小可能值是多少?【题目】有一电话号码是 ABC-DEF-GHIJ ,其中每个字母代表一个不同的数字。
小学数的整除数论奥数知识讲解及习题小学数的整除数论奥数知识讲解及习题小学的学生学习奥数对学校所学数学的一个补充和提高,同学们快来做做奥数题来锻炼自己吧!下面是小编为大家收集到的数的整除数论奥数知识讲解及习题,供大家参考。
一、基本概念和符号:1、整除:如果一个整数a,除以一个自然数b,得到一个整数商c,而且没有余数,那么叫做a能被b整除或b能整除a,记作b|a。
2、常用符号:整除符号“|”,不能整除符号“ ”;因为符号“∵”,所以的符号“∴”;二、整除判断方法:1. 能被2、5整除:末位上的数字能被2、5整除。
2. 能被4、25整除:末两位的数字所组成的数能被4、25整除。
3. 能被8、125整除:末三位的数字所组成的数能被8、125整除。
4. 能被3、9整除:各个数位上数字的和能被3、9整除。
5. 能被7整除:①末三位上数字所组成的'数与末三位以前的数字所组成数之差能被7整除。
②逐次去掉最后一位数字并减去末位数字的2倍后能被7整除。
6. 能被11整除:①末三位上数字所组成的数与末三位以前的数字所组成的数之差能被11整除。
②奇数位上的数字和与偶数位数的数字和的差能被11整除。
③逐次去掉最后一位数字并减去末位数字后能被11整除。
7. 能被13整除:①末三位上数字所组成的数与末三位以前的数字所组成的数之差能被13整除。
②逐次去掉最后一位数字并减去末位数字的9倍后能被13整除。
三、整除的性质:1. 如果a、b能被c整除,那么(a+b)与(a-b)也能被c整除。
2. 如果a能被b整除,c是整数,那么a乘以c也能被b整除。
3. 如果a能被b整除,b又能被c整除,那么a也能被c整除。
4. 如果a能被b、c整除,那么a也能被b和c的最小公倍数整除。
例题:在四位数56□2中,被盖住的十位数分别等于几时,这个四位数分别能被9,8,4整除?解:如果56□2能被9整除,那么5+6+□+2=13+□应能被9整除,所以当十位数是5,即四位数是5652时能被9整除;如果56□2能被8整除,那么6□2应能被8整除,所以当十位数是3或7,即四位数是5632或5672时能被8整除;如果56□2能被4整除,那么□2应能被4整除,所以当十位数是1,3,5,7,9,即四位数是5612,5632,5652,5672,5692时能被4整除。
第十七讲数论综合之整除相关问题强化篇
【例1】
月月写了一个五位数,它能被9和11整除。
如果去掉第,1、3、5位,得到的数是35;如果去掉前三位,得到的数能被8整除;如果去掉后三位,得到的数能被7整除。
那么这个五位数是______。
【例2】
一个整数与12的和能整除该整数的平方,那么这个整数最大可能是______。
【例3】
有一类六位自然数,它们的前三位数组成的数与后三位数组成的数相同。
求在这类自然数中,能被4433整除的最大数。
【例4】(2009年“迎春杯”六年级初赛试题)
如果一个五位数,它的各位数字乘积恰好是它的各位数字和的25倍。
那么,这个五位数的前两位的最大值是______。
【例5】
构造6个互不相同的整数,使得其中任意两个数的乘积能被其和整除。