奥数讲义数论专题:6 进位制
- 格式:docx
- 大小:27.54 KB
- 文档页数:3
今日关键1. n 进制运算2. n 进制3. 位值原理【例 1】(63121)8-(1247)8-(16034)8-(26531)8-(1744)8=( )8。
【巩固】在八进制中,1234-456-322= 。
【例 2】⑴(101)2⨯(1011)2-(11011)2=( )2;⑵(11000111)2-(10101)2÷(11)2=( )2;⑶(3021)4+(605)7=( )10。
【巩固】⑴(1101)2⨯(1111)2-(101)2= ;⑵(4023)5+(542)8=( )10。
【例 3】在几进制中有125⨯125=16324?【巩固】算式1534⨯25=43214是几进制数的乘法?进制与位值原理逢n 进1借1当n位值原理十进制除n 取余法【例 4】有一个两位数,如果把数码3加写在它的前面,则可得到一个三位数,如果把数码3加写在它的后面,则可得到一个三位数,如果在它前后各加写一个数码3,则可得到一个四位数。
将这两个三位数和一个四位数相加等于3600。
求原来的两位数。
【巩固】在一个两位质数的两个数字之间,添上数字6以后,所得三位数比原数大870,那么原质数是。
【例 5】(第五届希望杯培训试题)有3个不同的数字,用它们组成6个不同的三位数,如果这6个三位数的和是1554,那么这3个数字分别是。
【巩固】(迎春杯决赛)有三个数字能组成6个不同的三位数,这6个三位数的和是2886,求所有这样的6个三位数中最小的三位数。
〖答案〗【例 1】13121【巩固】234【例 2】⑴11100,⑵11000000,⑶500 【巩固】⑴10111110,⑵867【例 3】七进制【巩固】八进制【例 4】14【巩固】97【例 5】1,2,4【巩固】139。
今日关键1. n 进制运算2. n 进制3. 位值原理【例 1】(63121)8-(1247)8-(16034)8-(26531)8-(1744)8=( )8。
【巩固】在八进制中,1234-456-322= 。
【例 2】⑴(101)2⨯(1011)2-(11011)2=( )2;⑵(11000111)2-(10101)2÷(11)2=( )2;⑶(3021)4+(605)7=( )10。
【巩固】⑴(1101)2⨯(1111)2-(101)2= ;⑵(4023)5+(542)8=( )10。
【例 3】在几进制中有125⨯125=16324?【巩固】算式1534⨯25=43214是几进制数的乘法?【例 4】有一个两位数,如果把数码3加写在它的前面,则可得到一个三位数,如果把数码3加写在它的后面,则可得到一个三位数,如果在它前后各加写一个数码3,则可得到一个四位数。
将这两个三位数和一个四位数相加等于3600。
求原的两位数。
【巩固】在一个两位质数的两个数字之间,添上数字6以后,所得三位数比原数大870,那么原质数是 。
进制与位值原理逢n 进1借1当n 位值原理 十进制 除n 取余法【例 5】(第五届希望杯培训试题)有3个不同的数字,用它们组成6个不同的三位数,如果这6个三位数的和是1554,那么这3个数字分别是。
【巩固】(迎春杯决赛)有三个数字能组成6个不同的三位数,这6个三位数的和是2886,求所有这样的6个三位数中最小的三位数。
〖答案〗【例 1】13121【巩固】234【例 2】⑴11100,⑵11000000,⑶500 【巩固】⑴10111110,⑵867【例 3】七进制【巩固】八进制【例 4】14【巩固】97【例 5】1,2,4【巩固】139。
“位值原理与数的进制”学生姓名授课日期教师姓名授课时长本讲是数论知识体系中的两大基本问题,也是学好数论知识所必须要掌握的知识要点。
通过本讲的学习,要求学生理解并熟练应用位值原理的表示形式,掌握进制的表示方法、各进制间的互化以及二进制与实际问题的综合应用。
并学会在其它进制中位值原理的应用。
从而使一些与数论相关的问题简单化。
一、位值原理位值原理的定义:同一个数字,由于它在所写的数里的位置不同,所表示的数值也不同。
也就是说,每一个数字除了有自身的一个值外,还有一个“位置值”。
例如“2”,写在个位上,就表示2个一,写在百位上,就表示2个百,这种数字和数位结合起来表示数的原则,称为写数的位值原理。
二、数的进制我们常用的进制为十进制,特点是“逢十进一”。
在实际生活中,除了十进制计数法外,还有其他的大于1的自然数进位制。
比如二进制,八进制,十六进制等。
二进制:在计算机中,所采用的计数法是二进制,即“逢二进一”。
因此,二进制中只用两个数字0和1。
二进制的计数单位分别是1、21、22、23、……,=1二进制数也可以写做展开式的形式,例如100110在二进制中表示为:(100110)2×25+0×24+0×23+1×22+1×21+0×20。
二进制的运算法则是“满二进一”、“借一当二”,乘法口诀是:零零得零,一零得零,零一得零,一一得一。
注意:对于任意自然数n,我们有n0=1。
n进制:n进制的运算法则是“逢n进一,借一当n”,n进制的四则混合运算和十进制一样,先乘除,后加减;同级运算,先左后右;有括号时先计算括号内的。
【试题来源】【题目】某三位数abc和它的反序数cba的差被99除,商等于与的差;ab与ba 的差被9除,商等于与的差;ab与ba的和被11除,商等于与的和。
【试题来源】【题目】如果ab×7= ,那么ab等于多少?【试题来源】【题目】从1~9九个数字中取出三个,用这三个数可组成六个不同的三位数。
小升初奥数数论进位制知识点经验是数学的基础,问题是数学的心脏,思考是数学的核心,发展是数学的目标,思想方法是数学的灵魂。
数学思想方法是数学知识的精髓,是分析、解决数学问题的基本原则,也是数学素养的重要内涵,它是培养学生良好思维品质的催化剂。
以下是无忧考网整理的相关资料,希望对您有所帮助。
【篇一】一、什么是进位制?例:(1)平时的计算,是满十进一的,我们称十进制(2)计算机里面,是满二进一的,我们称二进制(3)一年有十二个月,每过十二个月就叫一年,是满十二进一的。
我们称是十二进制(4)一天有二十四个小时,每过二十四个小时就叫一天。
即满二十四进一。
称二十四进制我们在不同的计数或运算过程中,可以使用不同的进位制。
定义:进位制是人们为了计数和运算方便而约定的记数系统。
即“满几进一”就是几进制。
几进制的基数就是几。
二、进位制的基数进位制的基数表示这个进位制所使用的数字的个数。
例:十进制:基数为10;表示十进制是使用0.1.2.…9。
十个数字。
二进制:基数为2;表示二进制是使用0和1。
两个数字七进制:基数为7;表示七进制是使用0.1.2.…6。
七个数字。
基数都是大于1的整数。
不同的进位制的基数是不同的。
注意:在计数时的数字必须小于基数。
【篇二】二进制及其应用十进制:用0~9十个数字表示,逢10进1;不同数位上的数字表示不同的含义,十位上的2表示20,百位上的2表示200。
所以234=200+30+4=2×102+3×10+4。
=An×10n-1+An-1×10n-2+An-2×10n-3+An-3×10n-4+An-4×10n-5+An-6×10n-7+……+A3×102+A2×101+A1×100注意:N0=1;N1=N(其中N是任意自然数)二进制:用0~1两个数字表示,逢2进1;不同数位上的数字表示不同的含义。
第十三章进位制知识要点在日常生活中,我们通常使用十进制,在我们熟知的十进制中,常有O,1,2,…,9共十个数字,相加时满十就要进一。
类似地,在二进制中有“满二进一”,在八进制中有“满八进一”等等。
进位制的选择和使用有一定的客观标准,哪种进位制更能方便地反映某类客观事物的数量关系,人们就会采用哪种进位制。
例如:1小时等于60分钟是六十进制,一年等于十二个月是十二进制等等。
一般地,设K为大于1的自然数时,K进位制的特点是:1.“满K进一”,即相邻两个单位的进率为K,把K叫做K进位制的基数。
2.K进位制有K个不同的记数符号。
如五进制用0,1,2,3,4五个记数符号。
一个K进位制的数就是各位数字与K的幂的乘积的和,其中幂指数等于相应的数字所在的位数(从右往左数)少1。
3.十进制和二进制的转化。
十进制和二进制的对应关系:十进制1,2,3,4,5,6,7,8,9,10,…二进制1,10, 11 ,100 ,101, 110, 111 ,1000 ,1001,1010,…把一个十进制数化为二进制数,只要用2连续去除,然后将每次所得的余数,按自下而上的顺序写出来。
例如,把(13)10化成二进制:把一个二进制数化为十进制数,只要把二进制数写成以2为底的幂的和的形式,再具体算出来。
例如:(1101)2=(1×23+1×22+0×21+1×20)10=(8+4+1)10=(13)10学习进位制知识,就要善于把进位制知识灵活地运用,把问题转化到最合适的进位制中解决问题。
例如计算机就是采用二进制,充分发挥了其运行速度快的特点。
例1 把十进制数(3568)10写成数码与计算单位乘积的和的形式。
点拨一个十进制整数的位数从右边第一位数起依次为个、十、百、千、万…”.计数单位是1,10,100,1000,10000,…,用乘方的形式来写,计数单位依次为1(100),101,102,103,104…。
一、数的进制1.十进制:我们常用的进制为十进制,特点是“逢十进一”。
在实际生活中,除了十进制计数法外,还有其他的大于1的自然数进位制。
比如二进制,八进制,十六进制等。
2.二进制:在计算机中,所采用的计数法是二进制,即“逢二进一”。
因此,二进制中只用两个数字0和1。
二进制的计数单位分别是1、21、22、23、……,二进制数也可以写做展开式的形式,例如100110在二进制中表示为:(100110)2=1×25+0×24+0×23+1×22+1×21+0×20。
二进制的运算法则:“满二进一”、“借一当二”,乘法口诀是:零零得零,一零得零,零一得零,一一得一。
注意:对于任意自然数n ,我们有n 0=1。
3.k 进制:一般地,对于k 进位制,每个数是由0,1,2,,1k -()共k 个数码组成,且“逢k 进一”.1k k >()进位制计数单位是0k ,1k ,2k ,.如二进位制的计数单位是02,12,22,,八进位制的计数单位是08,18,28,. 4.k 进位制数可以写成不同计数单位的数之和的形式1110110n n n n k n n a a a a a k a ka k a ---=⨯+⨯++⨯+()十进制表示形式:1010101010n n n n N a a a --=+++;二进制表示形式:1010222n n n n N a a a --=+++;为了区别各进位制中的数,在给出数的右下方写上k ,表示是k 进位制的数 如:8352(),21010(),123145(),分别表示八进位制,二进位制,十二进位制中的数. 5.k 进制的四则混合运算和十进制一样先乘除,后加减;同级运算,先左后右;有括号时先计算括号内的。
二、进制间的转换:一般地,十进制整数化为k 进制数的方法是:除以k 取余数,一直除到被除数小于k 为止,余数由下到上按从左到右顺序排列即为k 进制数.反过来,k 进制数化为十进制数的一般方法是:首先将k 进制数按k 的次幂形式展开,然后按十进制数相加即可得结果. 如右图所示:知识框架进位制【例 1】把9865转化成二进制、五进制、八进制,看看谁是最细心的。
数论(一)奇数与偶数【知识点概述】1.奇数和偶数的定义:整数可以分成奇数和偶数两大类.能被2整除的数叫做偶数,不能被2整除的数叫做奇数。
通常偶数可以用2k(k为整数)表示,奇数则可以用2k+1(k为整数)表示。
特别注意,因为0能被2整除,所以0是偶数。
2.奇数与偶数的运算性质:性质1:偶数±偶数=偶数,奇数±奇数=偶数性质2:偶数±奇数=奇数性质3:偶数个奇数的和或差是偶数性质4:奇数个奇数的和或差是奇数性质5:偶数×奇数=偶数,奇数×奇数=奇数,偶数×偶数=偶数性质6:在加减法中偶数不改变运算结果奇偶性,奇数改变运算结果的奇偶性性质7:对于任意2个整数a,b ,有a+b与a-b同奇或同偶性质8:奇数的平方可以写作4k+1 ,偶数的平方可以写作4k【习题精讲】【例1】下列算式的得数是奇数还是偶数?(1) 29+30+31+……+87+88(2) (200+201+202+......+288)-(151+152+153+ (233)(3) 35+37+39+41+……+97+99【例2】能否在下式的“□”内填入加号或减号,使等式成立,若能请填入符号,不能请说明理由。
(1) 1□ 2 □ 3 □ 4 □ 5 □ 6 □ 7 □ 8 □ 9=10(2) 1□ 2 □ 3 □ 4 □ 5 □ 6 □ 7 □ 8 □ 9=27【例3】能否从四个3,三个5,两个7中选出5个数,使这5个数的和等于22 【例4】是否存在自然数a和b,使得ab(a+b)=115?【例5】是否存在自然数a、b、c,使得(a-b)(b-c)(a-c)=45327?【例6】你能不能将自然数1到9分别填入3×3的方格表中,使得每一行中的三个数之和都是偶数?【例7】任意交换某个三位数的数字顺序,得到一个新的三位数,原三位数与新三位数之和能否等于999?【例8】两个四位数相加,第一个四位数每个数码都小于5,第二个四位数仅仅是第一个四位数的四个数码调换了位置,两个数的和可能是7356吗?为什么?【例9】元旦前夕,同学们相互送贺年卡.每人只要接到对方贺年卡就一定回赠贺年卡,那么送了奇数张贺年卡的人数是奇数,还是偶数?为什么?【例10】a、b、c三个数的和与它们的积的和为奇数,问这三个数中有几个奇数?【例11】沿着河岸长着8丛植物,相邻两丛植物上所结的浆果数目相差1个.问:8丛植物上能否一共结有225个浆果?说明理由.【例12】在ll张卡片上各写有一个不超过4的数字.将这些卡片排成一行,得到一个1l位数;再将它们按另一种顺序排成一行,又得到一个1l位数.证明:这两个11位数的和至少有一位数字是偶数.【例13】圆桌旁坐着2k个人,其中有k个物理学家和k个化学家,并且其中有些人总说真话,有些人则总说假话.今知物理学家中说假话的人同化学家中说假话的人一样多.又当问及:“你的右邻是什么人”时,大家全部回答:“是化学家.”证明:k为偶数.【作业】1、是否可在下列各数之间添加加号或者减号,使得等式成立?1 2 3 4 5 6 7 8 9 10=36若可以,请写出符合条件的等式;若不可以,请说明理由。
华杯赛数论专题|:6 进位制
我们平常熟悉的十进制:
(2012)10=2×103+0×102+1×101+2
其他进制转化为十进制:
(a…bcde)n=a×n k-1+……+b×n3+c×n2+d×n+e
例题:
例1.A,B是两个自然数,如果A进位制数47和B进位制数74相等,那么A+B的最小可能值是多少?
【答案】24
【解答】由已知:4A+7=7B+4,即4A=7B-3,可见B除以4余1。
又B进制中有7出现,说明B>7,因此B的最小值是9,相应的计算出A=15。
所以A+B最小值是9+15=24。
例2.一个十进制的两位数A,它的十位数字为5,另一个R进制数为B,它的各位数字与A分别相等,而且B在十进制中恰好是A的3倍,那么数A和B在十进制中各是多少?
【答案】50、150,或者55,165
【解答】设A在十进制中表示是(),
由已知:5×R+m=3×(50+m),即5×R=150+2×m,
可见m是5的倍数,因此m=0或5。
相应的计算出R=30或32。
所以A和B分别是50、150,或者55,165。
例3.一个自然数的六进制表示与九进制表示均为三位数,并且它们各位数字的排列顺序恰好相反,那么此自然数用十进制表示法写出是多少?
【答案】212
【解答】设自然数在六进制中表示是(),则在九进制中表示是()。
则36a+6b+c=81c+9b+a,35a=3b+80c,通过对等式的观察,可以发现b是5的倍数。
又由于b是在六进制中的数,所以,b是0或5。
(1)若b=0, 则上式变为35a=80c,即7a=16c,a需要是16的倍数,a又小于6。
所以,a=0。
但是a在首位,a又不能等于0。
所以,这样的数字不存在。
(2)若b=5, 则上式变为7a=3+16c,a=5,c=2。
所以,这个六进制数是(552)6化为十进制是5×62+5×6+2=212。
例4.如果某个自然数可以写成2的两个不同次幂(包括零次幂)的和,我们就称这样的数为“双子数”,比如9=+,36=+,它们都是双子数。
现有一个双子数
是1040。
(1)把1040写成2的两个不同次幂(包括零次幂)的和。
这样的写法唯一吗?
(2)比1040小的双子数共有多少个?
【答案】(1)+,写法是唯一的。
(2) 49
【解答】
(1)1040=1024+16=+,写法是唯一的。
(2)若某个双子数可以表示成的样子(k>m),
而且小于1040,则k<10或者k=10,m<4。
当k<10:则m也小于10,也就是k、m在0到9之间取值,
且不相同,利用排列组合,有=45种。
当k=10:m<4:m=0、1、2或3,4种情况。
因此共有45+4=49个。
例5.一副双色牌中,红、黑两种颜色各有10张,分别写着1、2、4、8、16、……、512.小梁从中任意抽取一些牌,计算抽出的牌面上所有数的和.
(1)若算出的和为183,那么小梁最多可能抽取了多少张牌?
(2)小梁有多少种抽取牌的方法,使得算出的和为23?
【答案】(1) 10 (2) 24
【解答】
(1)183=27+25+24+22+21+20,其中 26、22、21、20是恰有一个颜色选择,
25、24、23是两种颜色都可以选择的。
所以,最多可能抽取10张。
(2)23=0+23=1+22=2+21=……=23+0。
所以,总共有24种。
例6.有些正整数可以表示成496的不同约数之和,例如36符合条件,因为36可以表示成1+4+31;而62本身就是496的约数,那么认为62也符合条件.
(1)请把104写成496的不同约数之和;
(2)不能写成496的不同约数之和的最小正整数是多少?
【答案】(1) 104=62+31+8+2+1 (2) 993
【解答】(1) 496=31×16,所以,104=62+31+8+2+1
(2)496=31×16,因此496的约数有1,2,4,8,16,1×31,2×31,
4×31,8×31,16×31。
其所有约数的和为:
1+2+4+8+16+1×31+2×31+4×31+8×31+16×31=31+31×31=992。
对于小于992的任何一个正整数,都可以表示成n=31×k+r,其中0≤k,r≤31,将k和r分别用二进制表示,可知31×k可以表示成1×31,2×31,4×31,8×31,16×31中若干个数之和,r可以表示成1,2,4,8,16中若干个数之和。
因此n=31×k+r一定可以表示成496的若干个互不相同的约数之和。
又993比496的所有约数之和还要大,因此它不能写成496的不同约数之和,
故所求最小正整数就是993。
例7.用a、b、c、d、e分别代表五进制中五个互不相同的数字,如果(ade)5、(adc)5、(aab)5是由小到大排列的连续正整数,那么(cde)5所表示的整数写成十进制的表示是多少?
【答案】108
【解答】通过分析,得到c=4,d=1,e=3。
(413)5=4×52+1×5+3=108。
例8.三个两位数恰构成公差为6的等差数列,而在五进制的表示中,这三个数的数字和是依次减少的.那么符合这样要求的等差数列有多少个?
【答案】6
【解答】将6化成五进制数,就是11.因为这3个数的数字和是依次减少的,这就是说要找到1个五进制数,它加上1个11后有进位,再加1个11后还有进位.
,说明每一个两位数化成五进制数后最多只有3位.那么进位只可能在
个位和十位.
由此我们可以找到两种符合要求的数:a24、a43.在这两种数中,a都有3种选择0、1、2.所以一共有6个符合要求的等差数论。