ansys屈曲分析
- 格式:docx
- 大小:26.62 KB
- 文档页数:12
AnsysMechanical屈曲分析技术1. 屈曲分析的基本概念当受拉杆件的应力达到屈服极限或强度极限时,将引起塑性变形或断裂。
这些是由于强度不足所引起的失效。
在工程中,我们会注意到当细长杆件受压时,表现出与强度失效完全不同的性质。
当杆件受压超过某一临界值时,再增加压力,杆件会产生很大的完全变形,最终折断。
内燃机配气机构中的挺杆,空气压缩机,蒸汽机的连杆等都是这样的受压构件。
日常生活中,我们也有很多这样的经验。
此时如果根据拉压杆件的强度公式进行校核,会发现此时杆件所受的压应力远小于屈服极限或强度极限。
此时,我们说结构丧失了稳定性,属于结构稳定性分析的范畴。
同样,对于薄板结构(如筒仓,钢塔),也同样存在受压载荷作用下的稳定性问题。
稳定性问题根据失稳发生的区域又分为整体稳定性与局部稳定性。
国内外的设计规程规范详细地规定了稳定性设计的技术指标,从结构设计方面保证了结构在稳定性方面的技术要求,如《钢结构设计标准GB50017-2010》、《空间网格结构技术规程JGJ7-2010》等。
对于非标构件,使用有限元校核也提出了明确的方法。
初始缺陷的施加是稳定性分析中一个重要的环节,我们看到《钢结构设计标准GB50017-2010》中给出了确定方法。
试验方法和有限元方法的结合广泛应用在强度设计和稳定性设计中。
2. ANSYS Mechanical屈曲分析下图是一端固定,另一端受压的柱子,当F增加到一个临界值后,此时如果有一个侧向的扰动,柱子顶端会产生很大的横向变形,此时结构处于不稳定状态。
对于理想的无缺陷的杆件,F的临界值对应右图的分支点,对应于ANSYS Mechanical中的特征值屈曲分析。
实际结构中,由于存在制造,安装误差,或者材料局部有缺陷,并不能达到分支点失稳,而是在极限载荷位置即丧失稳定性,此时需要使用ANSYS Mechanical的非线性屈曲分析。
3. ANSYS Mechanical特征值屈曲分析ANSYS Mechanical特征值屈曲是一种形式的线性扰动分析,上游的静力分析模型可以是线性的,也可以是非线性的。
3.1 几何非线性3.1.1 大应变效应一个结构的总刚度依赖于它的组成部件(单元)的方向和单刚。
当一个单元的结点经历位移后,那个单元对总体结构刚度的贡献可以以两种方式改变。
首先,如果这个单元的形状改变,它的单元刚度将改变(图3-1(a))。
其次,如果这个单元的取向改变,它的局部刚度转化到全局部件的变换也将改变(图3-1(b))。
小的变形和小的应变分析假定位移小到足够使所得到的刚度改变无足轻重。
这种刚度不变假定意味着使用基于最初几何形状的结构刚度的一次迭代足以计算出小变形分析中的位移(什么时候使用“小”变形和应变依赖于特定分析中要求的精度等级)。
相反,大应变分析考虑由单元的形状和取向改变导致的刚度改变。
因为刚度受位移影响,且反之亦然,所以在大应变分析中需要迭代求解来得到正确的位移。
通过发出 NLGEOM,ON(GUI路径Main Menu>Solution>Analysis Options),来激活大应变效应。
这种效应改变单元的形状和取向,且还随单元转动表面载荷。
(集中载荷和惯性载荷保持它们最初的方向。
)在大多数实体单元(包括所有的大应变和超弹性单元),以及部分的壳单元中大应变特性是可用的。
在ANSYS/Linear Plus程序中大应变效应是不可用的。
图3-1 大应变和大转动大应变过程对单元所承受的总旋度或应变没有理论限制。
(某些ANSYS单元类型将受到总应变的实际限制──参看下面。
)然而,应限制应变增量以保持精度。
因此,总载荷应当被分成几个较小的步,这可用〔 NSUBST, DELTIM, AUTOTS〕命令自动实现(通过GUI路径 MainMenu>Solution>Time/Frequent)。
无论何时如果系统是非保守系统,如在模型中有塑性或摩擦,或者有多个大位移解存在,如具有突然转换现象,使用小的载荷增量具有双重重要性。
3.1.2 应力-应变在大应变求解中,所有应力─应变输入和结果将依据真实应力和真实(或对数)应变(一维时,真实应变将表示为ε=Ln(l/l) 。
第13章 特征值屈曲分析
屈曲分析主要用于研究结构在特定载荷下的稳定性以及确定结构失稳的临界载荷,屈曲分析包括线性屈曲分析和非线性屈曲分析。
线性屈曲分析可以考虑固定的预载荷,也可使用惯性释放;非线性屈曲分析包括几何非线性失稳分析、弹塑性失稳分析、非线性后屈★ 了解线性屈曲分析。
13.1 屈曲分析概述
特征值屈曲分析(Eigenvolue Buckling)是以特征值为研究对象的,特征值或线性屈曲分析预测的是理想线性结构的理论屈曲强度(分歧点),特征值方程决定了结构的分歧点。
然而,非理想和非线性行为阻止了许多真实的结构达到它们理论上的弹性屈曲强度。
线性屈曲通常产生非保守的结果,应当谨慎使用。
尽管屈曲分析是非保守的,但是也有许多优点。
屈曲分析比非线性屈曲分析计算省时,并且应当作第一步计算来评估临界载荷(屈曲开始时的载荷)。
通过线性屈曲分析可以预知结构的屈曲模型形状,结构可能发生屈曲的方法可以作为设计中的向导。
13.1.1 关于欧拉屈曲
结构的丧失稳定性称为(结构)屈曲或欧拉屈曲。
L.Euler
从一端固定、另一端自由的受压理想柱出发,给出了压杆的临
界载荷。
所谓理想柱,是指起初完全平直而且承受中心压力的
受压杆,如图13-1所示。
设此柱完全是弹性的,且应力不超过比例极限,若轴向外
载荷P小于它的临界值,则此杆将保持直的状态而只承受轴向图13-1 受压杆。
《ANSYS屈曲分析总结》很多现有的ANSYS资料都对特征值屈曲分析进行了较为详细的解释,特征值屈曲分析属于线性分析,它对结构临界失稳力的预测往往要高于结构实际的临界失稳力,因此在实际的工程结构分析时一般不用特征值屈曲分析。
但特征值屈曲分析作为非线性屈曲分析的初步评估作用是非常有用的。
1. 非线性屈曲分析的第一步最好进行特征值屈曲分析,特征值屈曲分析能够预测临界失稳力的大致所在,因此在做非线性屈曲分析时所加力的大小便有了依据。
特征值屈曲分析想必大家都熟练的不行了,所以小弟不再罗嗦。
小弟只说明一点,特征值屈曲分析所预测的结果我们只取最小的第一阶,所以你所得出的特征值临界失稳力的大小应为F=实际施加力*第一价频率。
2. 由于非线性屈曲分析要求结构是不“完善”的,比如一个细长杆,一端固定,一端施加轴向压力。
若次细长杆在初始时没有发生轻微的侧向弯曲,或者侧向施加一微小力使其发生轻微的侧向挠动。
那么非线性屈曲分析是没有办法完成的,为了使结构变得不完善,你可以在侧向施加一微小力。
这里由于前面做了特征值屈曲分析,所以你可以取第一阶振型的变形结果,并作一下变形缩放,不使初始变形过于严重,这步可以在Main Menu> Preprocessor> Modeling> Update Geom中完成。
3. 上步完成后,加载计算所得的临界失稳力,打开大变形选项开关,采用弧长法计算,设置好子步数,计算。
4. 后处理,主要是看节点位移和节点反作用力(力矩)的变化关系,找出节点位移突变时反作用力的大小,然后进行必要的分析处理。
特载值分析得到的是第一类稳定问题的解,只能得到屈曲荷载和相应的失稳模态,它的优点就是分析简单,计算速度快。
事实上在实际工程中应用还是比较多的,比如分析大型结果的温度荷载,而且钢结构设计手册中的很多结果都是基于特征值分析的结果,例如钢梁稳定计算的稳定系数,框架柱的计算长度等。
它的缺点主要是:不能得到屈曲后路径,不能思忖初始缺陷如初始的变形和应力状态,不能思忖材料的非线性。
文章来源:安世亚太官方订阅号(搜索:peraglobal)案例背景屈曲分析对于一个成功的结构设计,尤其是包含壳和梁的结构,是至关重要的。
虽然线性特征值屈曲分析相对直接与简便,但是也有其自身缺点:因为实际屈曲过程是一个非线性(大变形)过程,如果不能考虑结构非线性,分析只能得到近似结果,另外线性屈曲分析对于结构后屈曲分析无能为力。
非线性屈曲分析过程较为复杂,同时可能需要多次尝试才能得到较为可信的结果,但是由于其不存在线性屈曲分析的局限性,所以工程上倾向通过非线性屈曲来评价结构的稳定性。
实际中,工程师很难判断结构究竟何时开始发生屈曲。
从工程和科研角度看,人们在整个屈曲过程中,最感兴趣的阶段其实是结构将要产生大变形,但是尚未产生较大变形的阶段,有时结构甚至还未产生变形,因为此时对应的载荷是结构的临界屈曲载荷。
非线性屈曲分析可以很好得在这方面提供工程意义上的指导。
非线性屈曲分析通过使用以下一些方法,控制整个仿真计算的收敛性,达到用户的工程需求:1 非线性稳定性控制(nonlinearstabilization)该方法可以应对屈曲分析中的局部和整体不稳定性,并且可以与其它非线性控制技术联合使用进行仿真(弧长法除外);2 弧长法该方法只能处理力载荷下的结构整体失稳。
3 将稳态分析处理成“准静态”的动力学问题该方法通过使用动力学效应防止计算发散,但是具体操作较为复杂。
本案例通过承受外部静水压力载荷的周向加强筋圆柱薄壁结构,说明如何通过仿真分析,预测结构的屈曲载荷和后屈曲状态,同时介绍控制非线性屈曲分析中,控制计算收敛性的方法。
问题描述圆柱薄壁的材料为2024-T3铝合金,由五层横截面为Z型的周向加强筋支撑,圆柱薄壁两端由两个厚盖板(厚度为25mm)密封,并分别由一个L型的铆接条加固。
圆柱薄壁承受外部均匀压强,从而使圆柱薄壁上两个Z型加强筋之间的局部屈曲,最终导致结构失效。
尺寸(mm)圆柱薄壁截面半径355.69圆柱薄壁深度431.8圆柱薄壁厚度 1.034盖板半径380盖板厚度25Z型加强筋厚度0.843L型铆接条厚度 1.64Z型加强筋横截面尺寸如下图所示:图1 Z型加强筋横截面形状及尺寸L型铆接条横截面尺寸为19*19mm,厚度为1.64mm。
Ansys第21例⾮线性屈曲分析实例第21例⾮线性屈曲分析实例—悬臂梁本例通过计算悬臂梁的临界载荷,介绍了利⽤ANSYS进⾏⾮线性屈曲分析的⽅法、步骤和过程。
21.1⾮线性屈曲分析过程1.建⽴模型⾮线性屈曲分析的建模过程与其他分析相似,包括选择单元类型、定义单元实常数、定义材料特性、定义横截⾯、建⽴⼏何模型和划分⽹格等。
2.求解(1)进⼊求解器。
(2)指定分析类型。
⾮线性屈曲分析属于⾮线性静⼒学分析。
(3)定义分析选项。
激活⼤变形效应。
(4)施加初始⼏何缺陷或初始扰动。
可以先进⾏线性屈曲分析,将分析所得到的屈曲模态形状乘以⼀个较⼩的系数后作为初始扰动施加到结构上,本例即采⽤该⽅法。
(5)施加载荷。
所施加的载荷应⽐预测值⾼10%⼀21%。
(6)定义载荷步选项。
(7)设置弧长法。
(8)求解。
3.查看结果在POST26时间历程后处理器中,建⽴载荷和位移关系曲线,从⽽确定结构的临界载荷。
21.2问题描述及解析解图21-1 (a)所⽰为⼀悬臂梁,图21-1 (b)为梁的横横截⾯形状,分析其在集中⼒P作⽤下的临界载荷。
已知截⾯各尺⼨分别为H=50mm、h=43mm、B=35mm、b=32mm,梁的长度L=1m。
钢的弹性模量E=2xl011N/m2,泊松⽐p=0.3。
图21-1⼯⼦悬臂梁21.3分析步骤21.3.1改变任务名拾取菜单Utility Menu→File→Change Jobname,弹出如图21-2所⽰的对话框,在“[/FJLNAM]”⽂本框中输⼊EXAMPLE21,单击“OK”按钮。
21.3.2选择单元类型拾取菜单Main Menu→Preprocessor→Element Type→Add/Edit/Delete,弹出如图21-3所⽰的对话框,单击“Add.”按钮,弹出如图21-4所⽰的对话框,在左侧列表中选“Structural Beam”,在右侧列表中选“3 node 189”,单击“OK”按钮,返回到如图21-3所⽰的对话框,单击“Close”按钮。
基于ANSYS Workbench变截面压杆屈曲分析方法I. 绪论A. 研究背景B. 研究问题C. 研究目的D. 研究方法E. 预期结果II. 变截面压杆屈曲理论分析A. 压杆的屈曲基本理论B. 变截面压杆的屈曲形式与影响因素C. 基于ANSYS Workbench的变截面压杆屈曲分析方法III. ANSYS Workbench变截面压杆屈曲仿真建模A. ANSYS Workbench基本介绍B. 变截面压杆的建模方式C. 加载条件与分析过程IV. 实验数据分析与结果比对A. 实验数据采集B. 屈曲载荷与形变数据分析C. 模拟结果与实验结果的比对V. 结论与展望A. 结论总结B. 未来研究方向第一章:绪论A. 研究背景随着工程领域的发展,越来越多的设计师和工程师开始采用轻量化的设计方案,以减少材料成本和节约能源。
压杆作为一种常用的结构元件,在许多机械结构和建筑结构中起着重要的作用。
而变截面压杆,则是压杆结构中一种重要的设计方案。
B. 研究问题在实际工程设计中,变截面压杆的屈曲分析是一项非常重要的工作。
由于其结构的复杂性和曲率变化的巨大性,传统的理论计算方法难以进行准确的分析。
因此,为了能够更好地理解和优化该结构,需要采用一种有效的数值仿真分析方法进行计算、分析和优化。
C. 研究目的本篇论文的研究目的是探究在ANSYS Workbench软件平台下,采用有限元分析方法进行变截面压杆屈曲分析的可行性,并进一步探讨优化设计策略和建议,以提高压杆的屈曲强度和性能。
D. 研究方法本研究将采用文献研究与数值仿真方法相结合的实验研究方法,首先对变截面压杆的相关理论背景进行探讨。
接着,将基于ANSYS Workbench的有限元分析方法建立变截面压杆屈曲模型,进行屈曲载荷的模拟计算。
然后,将通过分析模拟结果和实验数据的比对,验证计算的准确性和可信度,并提出相应的结论和建议。
E. 预期结果本研究预期将为工程设计师和研究者提供一种有效的变截面压杆屈曲分析方法,并为改进和优化该结构提供有理有据的数据和理论支持。
工程中很多结构需要进行结构稳定性计算,如细长杆、压缩部件、真空容器等,这些构件在不稳定(屈曲)开始时,结构本质上没有变化的载荷作用下(超过一个很小的动荡),在x 方向上的微小位移会使得结构有一个很大的改变,这类问题除了要考虑强度之外,还要分析其屈曲稳定性的问题。
本章所要学习的内容包括: ¾ 了解线性屈曲分析基础¾ 掌握ANSYS Workbench 屈曲分析的操作流程 ¾ 了解线性屈曲分析的应用场合 ¾ 理解屈曲分析的结果6.1 线性屈曲分析基础特征值或线性屈曲分析预测的是理想线弹性结构的理论屈曲强度(分歧点);而非理想和非线性行为阻止许多真实的结构达到它们的理论上的弹性屈曲强度。
线弹性通常产生非保守的结果,但也是有优点的。
(1)它比非线性屈曲计算省时间,并且应当做第一步计算来评估临界载荷(屈曲开始的载荷)。
(2)线性屈曲分析可以用来作为决定产生什么样的屈曲模型形状的设计工具,为设计做指导。
线性屈曲的分析方程为:{}([][])0i i K S λΨ+=式中各个符号的含义如下。
S 表示应力刚度矩阵; i λ表示屈曲载荷乘子;i Ψ表示屈曲模态。
实际上,线性屈曲方程和自由振动方程很相似,两者都是利用相似的矩阵方法来求解特征值问题的。
线性屈曲的分析步骤与之前的静力学分析非常相似,过程如下。
(7)求解计算并保存。
ANSYS Workbench1 4.5屈曲模态分析步骤与其他有限元分析步骤大同小异,软件支持模态分析中存在接触对,但因为屈曲分析是线性分析,所以接触行为不同于非线性接触行为,接触设置的线性屈曲分析设置如表6-1所示。
表6-1 存在接触设置的线性屈曲分析设置Linear Buckling Analysis(线性屈曲分析)Contact Type (接触类型) Initially Touching (初始接触) Inside Pinball Region (Pinball 区域内) Outside Pinball Region (Pinball 区域外) Bonded (绑定) Bonded (绑定) Bonded (绑定) Free (自由) No Separation (不分离) No Separation (不分离) No Separation (不分离) Free (自由) Rough (粗糙) Bonded (绑定) Free (自由) Free (自由) Frictionless (光滑)No Separation (不分离)Free (自由)Free (自由)6.2 案例图解6.2.1 斜撑杆受压屈曲分析分析起落架中承受轴向压力的斜撑杆,杆为空心圆管,外径为52mm ,内径为44mm ,L =950mm 。
ANYSY屈曲分析APDLANSYS屈曲分析总结很多现有的ANSYS资料都对特征值屈曲分析进行了较为详细的解释,特征值屈曲分析属于线性分析,它对结构临界失稳力的预测往往要高于结构实际的临界失稳力,因此在实际的工程结构分析时一般不用特征值屈曲分析。
但特征值屈曲分析作为非线性屈曲分析的初步评估作用是非常有用的。
1.非线性屈曲分析的第一步最好进行特征值屈曲分析,特征值屈曲分析能够预测临界失稳力的大致所在,因此在做非线性屈曲分析时所加力的大小便有了依据。
特征值屈曲分析想必大家都熟练的不行了,所以小弟不再罗嗦。
小弟只说明一点,特征值屈曲分析所预测的结果我们只取最小的第一阶,所以你所得出的特征值临界失稳力的大小应为F=实际施加力*第一价频率。
2.由于非线性屈曲分析要求结构是不“完善”的,比如一个细长杆,一端固定,一端施加轴向压力。
若次细长杆在初始时没有发生轻微的侧向弯曲,或者侧向施加一微小力使其发生轻微的侧向挠动。
那么非线性屈曲分析是没有办法完成的,为了使结构变得不完善,你可以在侧向施加一微小力。
这里由于前面做了特征值屈曲分析,所以你可以取第一阶振型的变形结果,并作一下变形缩放,不使初始变形过于严重,这步可以在Main Menu>Preprocessor>Modeling>Update Geom 中完成。
3.上步完成后,加载计算所得的临界失稳力,打开大变形选项开关,采用弧长法计算,设置好子步数,计算。
4.后处理,主要是看节点位移和节点反作用力(力矩)的变化关系,找出节点位移突变时反作用力的大小,然后进行必要的分析处理。
特载值分析得到的是第一类稳定问题的解,只能得到屈曲荷载和相应的失稳模态,它的优点就是分析简单,计算速度快。
事实上在实际工程中应用还是比较多的,比如分析大型结果的温度荷载,而且钢结构设计手册中的很多结果都是基于特征值分析的结果,例如钢梁稳定计算的稳定系数,框架柱的计算长度等。
ANSYS屈曲分析报告1. 引言本报告旨在使用ANSYS软件进行屈曲分析,并对结果进行解释和分析。
屈曲分析是一种重要的工程分析方法,用于确定结构在受力作用下的稳定性能。
在本次分析中,我们将针对特定的结构进行屈曲分析,以评估其在实际应用中的可靠性和稳定性。
2. 分析模型本次分析使用的模型是一个具有特定几何形状和材料属性的结构。
具体的几何形状和材料属性将在下文中详细介绍。
3. 材料属性为了进行准确的屈曲分析,我们需要了解材料的力学性质。
在本次分析中,我们假设材料为均匀各向同性的弹性材料。
材料的力学性质如下:•弹性模量:E = XXX GPa•泊松比:ν = XXX•密度:ρ = XXX kg/m^34. 几何模型本次分析使用的结构模型的几何形状如下所示:(此处以文字描述结构模型的几何形状)5. 约束条件和加载在进行屈曲分析时,我们需要为结构模型设置适当的约束条件和加载。
在本次分析中,我们假设结构的底部固定,并在顶部施加垂直向下的集中力。
施加的加载大小为XXX N。
6. 分析步骤屈曲分析可以通过逐步增加加载的方法进行。
在本次分析中,我们将使用以下步骤进行屈曲分析:1.施加约束条件和加载;2.进行线性静力分析,确定结构的初始状态;3.逐步增加加载,进行非线性分析,直到发生屈曲现象;4.记录并分析屈曲点。
7. 分析结果与讨论经过屈曲分析后,我们得到了以下结果:•屈曲载荷:XXX N•屈曲模态:X 模态•屈曲形状:(此处以文字描述屈曲形状的特征)根据分析结果,我们可以得出以下结论和讨论:•结构在受到XXX N的载荷时,发生了屈曲现象;•屈曲模态X是结构的主要屈曲模态,表示了结构在该模态下的变形形态;•屈曲形状的特征表明结构在屈曲时出现了X类型的失稳现象。
8. 结论本次屈曲分析报告对特定结构进行了屈曲分析,并得出了结构的屈曲载荷、屈曲模态和屈曲形状的结果。
根据分析结果,我们可以评估结构在实际应用中的可靠性和稳定性,并采取相应的措施来改进和优化结构设计。
ansys做屈曲分析的全部过程及示例(2011-08-10 21:47:07)转载▼标签:杂谈分析过程说明:屈曲分析是一种用于确定结构开始变得不稳定时的临介荷载和屈曲结构发生屈曲响应时的模态形状的技术。
ANSYS提供两种结构屈曲荷载和屈曲模态分析方法:非线性屈曲分析和特征值屈曲分析。
非线性屈曲分析是在大变形效应开关打开的情况下的一种非线性静力学分析,该分析过程一直进行到结构的极限荷载或最大荷载。
非线性屈曲分析的方法是,逐步地施加一个恒定的荷载增量,直到解开始发散为止。
尤其重要的是,要一个足够小的荷载增量,来使荷载达到预期的临界屈曲荷载。
若荷载增量太大,则屈曲分析所得到的屈曲荷载就可能不准确,在这种情况下打开自动时间步长功能,有助于避免这类问题,打开自动时间步长功能,ANSYS程序将自动寻找屈曲荷载。
特征值屈曲分析步骤为:1.建模2.获得静力解:与一般静力学分析过程一致,但必须激活预应力影响,通常只施加一个单位荷载就行了3.获得特征屈曲解:A.进入求解B.定义分析类型C.定义分析选项D.定义荷载步选项E.求解4.扩展解之后就可以察看结果了示例1:!<ansys 7.0 有限元分析实用教程>!3.命令流求解!ANSYS命令流:!Eigenvalue BucklingFINISH !这两行命令清除当前数据/CLEAR/TITLE,Eigenvalue Buckling Analysis/PREP7 !进入前处理器ET,1,BEAM3 !选择单元R,1,100,833.333,10 !定义实常数MP,EX,1,200000 !弹性模量MP,PRXY,1,0.3 !泊松比K,1,0,0 !创建梁实体模型K,2,0,100L,1,2 !创建直线ESIZE,10 !单元边长为1mmLMESH,ALL,ALL !划分网格FINISH !退出前处理!屈曲特征值部分/SOLU !进入求解ANTYPE,STATIC !在进行屈服分析之前,ANSYS需要从静态分析提取数据PSTRES,ON !屈服分析中采用预应力DK,1,ALL !定义约束FK,2,FY,-1 !顶部施加载荷SOLVE !求解FINISH !退出求解/SOLU !重新进入求解模型进行屈服分析ANTYPE,BUCKLE !屈服分析类型BUCOPT,LANB,1 !1阶模态,子空间法SOLVE !求解FINISH !退出求解/SOLU !重新进入求解展开模态EXPASS,ON !模态展开打开MXPAND,1 !定义需要展开的阶数SOLVE !求解FINISH !退出求解/POST1 !进入通用后处理SET,LIST !列出特征值求解结果SET,LAST !读入感兴趣阶数模态结果PLDISP !显示变形后图形!NonLinear Buckling !非线性分析部分FINISH !这两行命令清除当前数据/CLEAR/TITLE, Nonlinear Buckling Analysis/PREP7 !进入前处理ET,1,BEAM3 !选择单元MP,EX,1,200000 !弹性模量MP,PRXY,1,0.3 !泊松比R,1,100,833.333,10 !定义实常数K,1,0,0,0 !底端节点K,2,0,100,0 !顶点L,1,2 !连成线ESIZE,1 !网格尺寸参数设定LMESH,ALL !划分网格FINISH !退出前处理/SOLU !进入求解ANTYPE,STATIC !静态分析类型(非屈服分析)NLGEOM,ON !打开非线性大变形设置OUTRES,ALL,ALL !选择输出数据NSUBST,20 !5个子步加载NEQIT,1000 !20步迭代AUTOTS,ON !自动时间步长LNSRCH,ON !激活线搜索选项/ESHAPE,1 !显示二维状态下变形图DK,1,ALL,0 !约束底部节点FK,2,FY,-50000 !顶部载荷稍微比特征值分析结果大FK,2,FX,-250 ! 施加水平扰动载荷SOLVE !求解FINISH !退出求解/POST26 !进入时间-历程后处理器RFORCE,2,1,F,Y !2#变量表示力NSOL,3,2,U,Y !3#变量表示y方向位移XVAR,2 !将x轴显示2#变量PLVAR,3 !y轴显示3#变量数据/AXLAB,Y,DEFLECTION !修改y轴标签/AXLAB,X,LOAD !修改x轴标签/REPLOT !重新显示图形示例2:!悬臂梁受端部轴向压力作用的屈曲分析!先进行静力分析,在进行特征值屈曲分析,最后进行非线性分析!静力分析fini/cle/filname,beam-flexure/tittle,beam-flexure/prep7 !*set,f1,-1e6 !设置轴向压力荷载参数et,1,beam189 !mp,dens,1,7.85e3 !设置材料参数mp,ex,1,2.06e11 !mp,nuxy,1,0.2 !sectype,1,beam,I,,2 !设置截面参数secoffset,cent !secdata,0.15,0.15,0.25,0.015,0.015,0.015,0,0,0,0 !k,1,0 !k,2,2.5,0 !k,3,1.25,1 !lstr,1,2 !latt,1,,1,,3,,1 !lesize,1,,,10 !/view,1,1,1,1 !/eshape,1.0 !dk,1,,,,0,all, !fk,2,fx,f1 !施加关键点压力finish !!/solu !antype,0 !eqslv,spar !求解器设置稀疏矩阵直接法pstres,on !打开预应力开关solve !finish !!特征值屈曲分析/solu !antype,1 !bucopt,lanb,6,0 !取前六阶模态分析mxpand,6,0,0,1,0.001 !solve !finish !!/post1 !set,first !pldisp,1 !set,next !pldisp,2 !set,next !pldisp,3 !set,next !set,next !pldisp,5 !set,next !pldisp,6 !*get,freq1,mode,1,freq !finish !!非线性屈曲分析/config,nres,200 !只记录两百步的结果!/prep7 !tb,biso,1,1,2 !定义材料非线性tbtemp,0 !tbdata,,2.0e8,0 !upgeom,0.01,1,1,'beam-flexure','rst' !对有限元模型进行一阶模态的位移结果0.01倍的修改save,beam-flexure,dbfinish !resu,beam-flexure,db!/solu !antype,0 !nlgeom,1 !打开大变形outres,all,all !arclen,1,0 !弧长法设置arctrm,l !弧长法终止准则达到第一个峰值是终止计算nsubst,200,,,1 !fk,2,fx,f1*freq1!fk,2,fx,f1*freq1*1.2 !将轴向压力值放大,放大系数为第一阶模态的主频solve !finish !!/post26 !nsol,2,2,u,y,deflection !提取自由端y方向的位移为变量deflection rforce,3,1,f,x,reactionf !提取固定端x方向的支座反力为变量reactionf/axlab,x,deflection !/axlab,y,reactionf !xvar,2 !plvar,3 !finish !共享ANSYS屈曲笔记总结(2011-08-10 21:48:59)转载▼标签:杂谈/pg/study/discuss/127.htmlANSYS屈曲笔记总结很多现有的ANSYS资料都对特征值屈曲分析进行了较为详细的解释,特征值屈曲分析属于线性分析,它对结构临界失稳力的预测往往要高于结构实际的临界失稳力,因此在实际的工程结构分析时一般不用特征值屈曲分析。
但特征值屈曲分析作为非线性屈曲分析的初步评估作用是非常有用的。
以下是我经过多次计算得出的一些分析经验,欢迎批评。
1. 非线性屈曲分析的第一步最好进行特征值屈曲分析,特征值屈曲分析能够预测临界失稳力的大致所在,因此在做非线性屈曲分析时所加力的大小便有了依据。
特征值屈曲分析想必大家都熟练的不行了,所以小弟不再罗嗦。
小弟只说明一点,特征值屈曲分析所预测的结果我们只取最小的第一阶,所以你所得出的特征值临界失稳力的大小应为F=实际施加力*第一价频率。
2. 由于非线性屈曲分析要求结构是不“完善”的,比如一个细长杆,一端固定,一端施加轴向压力。
若次细长杆在初始时没有发生轻微的侧向弯曲,或者侧向施加一微小力使其发生轻微的侧向挠动。
那么非线性屈曲分析是没有办法完成的,为了使结构变得不完善,你可以在侧向施加一微小力。
这里由于前面做了特征值屈曲分析,所以你可以取第一阶振型的变形结果,并作一下变形缩放,不使初始变形过于严重,这步可以在Main Menu> Preprocessor> Modeling> Update Geom中完成。
3. 上步完成后,加载计算所得的临界失稳力,打开大变形选项开关,采用弧长法计算,设置好子步数,计算。
4. 后处理,主要是看节点位移和节点反作用力(力矩)的变化关系,找出节点位移突变时反作用力的大小,然后进行必要的分析处理。
特载值分析得到的是第一类稳定问题的解,只能得到屈曲荷载和相应的失稳模态,它的优点就是分析简单,计算速度快。
事实上在实际工程中应用还是比较多的,比如分析大型结果的温度荷载,而且钢结构设计手册中的很多结果都是基于特征值分析的结果,例如钢梁稳定计算的稳定系数,框架柱的计算长度等。
它的缺点主要是:不能得到屈曲后路径,不能考虑初始缺陷如初始的变形和应力状态,不能考虑材料的非线性。
非线性分析比较好的是能够得到结构和构件的屈曲后特性,可以考虑初始缺陷还有材料的非线性包括边界的非线性性能。
但是在分析的时候最好是在线性特征值的基础上,因为这种方法的结果依赖所加的初始缺陷,如果所加的几何缺陷不是最低阶,可能得到高阶的失稳模态。
第一类稳定问题:是指完善结构的分支点屈曲和极值点屈曲。
第二类稳定问题:有初始缺陷的发生极值点屈曲屈曲又称失稳,是指结构和构件保持原有构形的能力,可分为分支点失稳和极值点失稳,前者是没有缺陷的情况下发生的,后者是实际有缺陷情况下发生的,求屈曲关键是想求其失稳荷载及模态。
数学公式能表达的屈曲很有限,典型的是轴心受压杆件的欧拉临界荷载公式Pcr=π2EI/l2问题一在考虑恒载和活载时的屈曲分析中(一圆弧拱,跨中受一竖向单位集中力)提取1、2阶模态,执行命令set,list后:2阶屈曲模态前的那个是屈曲荷载系数。