ANSYS命令流学习笔记8-特征值屈曲分析
- 格式:docx
- 大小:57.28 KB
- 文档页数:3
!ANSYS命令流学习笔记8 -特征值屈曲分析--案例来自于公众号:ansys学习与应用!学习重点:!1、熟悉beam单元的建模!2、何为特征值屈曲分析Eigen Buckling增加轴向载荷(F)时, 一个理想化的端部固定的柱体将呈现下述行为。
分叉点是载荷历程中的一点,,在理想化情况下, 临界载荷(Fcr)作用时, 柱体可向左或向右屈曲。
当F < Fcr时, 柱体处于稳定平衡状态,若引入一个小的侧向扰动力,然后卸载, 柱体将返回到它的初始位置。
当F > Fcr时, 柱体处于不稳定平衡状态, 任何扰动力将引起坍塌。
当F = Fcr时, 柱体处于中性平衡状态,把这个力定义为临界载荷。
在实际结构中, 几何缺陷的存在或力的扰动将决定载荷路径的方向。
在实际结构中, 很难达到临界载荷,因为扰动和非线性行为, 低于临界载荷时结构通常变得不稳定。
特征值屈曲分析预测一个理想线弹性结构的理论屈曲强度,缺陷和非线性行为阻止大多数实际结构达到理想的弹性屈曲强度,特征值屈曲一般产生非保守解, 使用时应谨慎。
!3、特征值屈曲分析的理论计算及有限元计算!理论解,根据Euler公式。
其中μ=1。
临界载荷为44.342。
F cr=π2EI (μL)2!有限元方法,结构弹性矩阵为[K e],在屈曲载荷{P0}作用下,产生位移{U0},预应力{σ0}{P0}=[K e]{U0}结构同时由于预应力{σ}发生刚度变化,此时刚度矩阵为[K e(σ)],增量平衡方程为:{ΔP}=([K e]+[K e(σ)]){ΔU}线性条件下,屈曲行为是外载荷的线性函数则有[K e(σ)]=λ[K e(σ0)];{P}=λ{P0};{σ}=λ{σ0}增量平衡方程又表示为:{ΔP}=([K e]+λ[K e(σ0)]){ΔU}临界载荷时达到不稳定状态,即使{ΔP}≈0,{ΔU}仍有数值,此时必须有:det([K e]+λ[K e(σ0)])=0求解λ,即可得到临界载荷{F cr}=λ{P0}!4、特征值屈曲分析的缺点与优势如上分析,特征值屈曲分析得到的是非保守解,但是具有两个优点:快捷分析,屈曲模态形状可用作非线性屈曲分析的初始几何缺陷。
17.0 Release第八章:特征值屈曲和子模型ANSYS Mechanical 简介第八章主题本章主题包括特征值屈曲和子模型:1.特征值屈曲概述2.几何模型和材料属性3.接触4.载荷和约束5.求解设置6.结果7.子模型概述8.Submodeling Analysis Procedure9.算例 08.1:特征值屈曲10.算例 08.2:子模型对于很多结构,需要评价其结构稳定性。
例如,对于薄柱、压缩部件和真空罐来说,稳定性是非常重要的。
失稳(屈曲)的结构,负载基本上没有变化(大于一个小负载扰动),结构的位移就会发生非常大的变化{ x} 。
F F稳定失稳特征值(线性屈曲)分析预测理想线弹性结构的理论屈曲强度。
此方法相当于教科书上的线弹性屈曲分析方法。
−特征值屈曲求解满足标准的欧拉方恒。
缺陷和非线性行为,使现实结构无法达到其理论弹性屈曲强度。
由于无法考虑这些影响因素,线性屈曲一般会得出不保守的结果。
尽管不保守,线性屈曲的优势是,对于非线性屈曲而言,其计算简单,耗时短。
对于线性屈曲分析,求解特征值问题,得到屈曲载荷因子 l i 和屈曲模态 y i :[K] 和 [S] 为常量,即:•材料为线弹性 •小变形理论 •线性接触[][](){}0=+i i S K y l08.02 几何模型和材料属性在屈曲分析中可以使用所有 Mechanical 支持的几何模型:−实体−面体(需定义厚度)−线体(需定义截面)•对于线体,只能得到屈曲模态和位移结果。
−尽管模型中可以有点质量,但由于没有惯性载荷,所以对特征值屈曲分析没有效果;因此,可以限制使用该特征。
材料属性方面,必须定义弹性模量和泊松比。
08.03 接触在特征值屈曲分析中可以使用接触,但是,与模态分析类似,非线性接触将会退化为与之相应的线性接触。
Initially Touching Inside Pinball Region Outside Pinball Region BondedBondedBondedFree No Separation No Separation No Separation Free RoughBondedFree Free Frictionless No Separation Free Free FrictionalBondedFreeFreeContact Type Modal Analysis在静态结构分析之中,至少施加一个导致屈曲的结构载荷:−临界屈曲载荷为分析所施加的载荷乘以载荷因子(λ )。
1、适用PLANE182和SHELL181建立单元时,旋转成体以后要手动将两个单元删除。
而是用MESH200时,系统会在运算时自动删除或关闭该单元状态。
2、EXPOPT体扫掠相关信息的定义,可用于旋转产生体,定义产生体的单元属性、单元尺寸、是否删除源面上的网格、是否自动选择源面和目标面等。
3、施加周向和径向约束需要在柱坐标系下进行。
4、柱坐标系的平面为XOY平面,在切换到柱坐标系时,要注意工作平面是哪个平面,如果图形不满足XOY平面,应建立局部坐标系,调整平面。
5.局部坐标系中蓝色代表Z轴,白色代表X轴,黄色代表Y轴。
6、转速的施加一般是按照弧度进行施加。
7、考虑预应力模态分析的求解,需要先进性预应力效应打开时静力分析,求解一次,然后点击FINISH,之后再进入求解,选择模态分析进行求解。
一、二1.1、采用三维单元分析平面问题时需要约束其Z向的全部位移。
三1、梁柱铰接可以通过两种形式设置(350):(1)梁柱连接处共用一个节点,使用梁单元弯矩释放功能,将转动自由度和平动自由度释放,可近似实现铰接。
(2)在建立模型是,梁柱不共用节点,通过约束方程,耦合节点位移实现铰接。
使用CP 命令。
2、BEAM188单元画内力图时,设置KEYOPT,1,3,3设置三次形函数可消除弯矩图出现锯齿状。
3、施加重力加速度时,方向与实际方向相反。
4、单元表中坐标系以单元坐标系为准。
四1、求解塑性极限荷载时,荷载大小未知:(1)可以通过理论求解,将大概的理论之求解出来,通过加载距离理论值相近的值进行求解,选取求解不收敛失败前最后一个荷载值作为极限荷载。
(2)通过不断试错,加一个很大的荷载,加到知道计算不收敛,将最大的荷载乘以不收敛的时刻点作为屈服极限荷载。
2、非线性求解中,时间点(TIME)可以写10也可以写1,最终数值要乘以时间点,最好填写1,方便计算。
求解完成后,打开Results Summary中TIME/FREQ列乘以施加力,可得到每一荷载子步施加的力的大小。
特征值屈曲分析步骤
ANSYS屈曲计算步骤:
进行屈曲分析,施加自重标准值和风荷载标准值,得到屈曲结果,大于5.
1.先静力分析:
2.设置计算选项:
3.运行,进行静力分析
4.设置屈曲分析计算选项
设置模态:20个,屈曲值得取值范围为:0-10000
显示结果,显示变形结果。
利用“by pick”得到模态屈曲值。
点击read,close。
在变形图上显示屈曲变形的趋势。
5.结果显示单元显示关闭
选择实体
sap屈曲计算步骤:
定义荷载工况类型:BUCKLING
添加荷载:自重和风荷载。
系数为1.(上图是特殊情况需要改荷载)在施加自重荷载时,用添加,而不用替代,要不然就把钢结构原有荷载给替换掉了。
进行运行计算
看结果。
查看变形图,按照模态查看查看第一模态的结果:
若要显示其他模态可以修改振型数。
3.1 几何非线性3.1.1 大应变效应一个结构的总刚度依赖于它的组成部件(单元)的方向和单刚。
当一个单元的结点经历位移后,那个单元对总体结构刚度的贡献可以以两种方式改变。
首先,如果这个单元的形状改变,它的单元刚度将改变(图3-1(a))。
其次,如果这个单元的取向改变,它的局部刚度转化到全局部件的变换也将改变(图3-1(b))。
小的变形和小的应变分析假定位移小到足够使所得到的刚度改变无足轻重。
这种刚度不变假定意味着使用基于最初几何形状的结构刚度的一次迭代足以计算出小变形分析中的位移(什么时候使用“小”变形和应变依赖于特定分析中要求的精度等级)。
相反,大应变分析考虑由单元的形状和取向改变导致的刚度改变。
因为刚度受位移影响,且反之亦然,所以在大应变分析中需要迭代求解来得到正确的位移。
通过发出 NLGEOM,ON(GUI路径Main Menu>Solution>Analysis Options),来激活大应变效应。
这种效应改变单元的形状和取向,且还随单元转动表面载荷。
(集中载荷和惯性载荷保持它们最初的方向。
)在大多数实体单元(包括所有的大应变和超弹性单元),以及部分的壳单元中大应变特性是可用的。
在ANSYS/Linear Plus程序中大应变效应是不可用的。
图3-1 大应变和大转动大应变过程对单元所承受的总旋度或应变没有理论限制。
(某些ANSYS单元类型将受到总应变的实际限制──参看下面。
)然而,应限制应变增量以保持精度。
因此,总载荷应当被分成几个较小的步,这可用〔 NSUBST, DELTIM, AUTOTS〕命令自动实现(通过GUI路径 MainMenu>Solution>Time/Frequent)。
无论何时如果系统是非保守系统,如在模型中有塑性或摩擦,或者有多个大位移解存在,如具有突然转换现象,使用小的载荷增量具有双重重要性。
3.1.2 应力-应变在大应变求解中,所有应力─应变输入和结果将依据真实应力和真实(或对数)应变(一维时,真实应变将表示为ε=Ln(l/l) 。
!ANSYS命令流学习笔记8 -特征值屈曲分析
--案例来自于公众号:ansys学习与应用!学习重点:
!1、熟悉beam单元的建模
!2、何为特征值屈曲分析Eigen Buckling
增加轴向载荷(F)时, 一个理想化的端部固定的柱体将呈现下述行为。
分叉点是载荷历程中的一点,,在理想化情况下, 临界载荷(Fcr)作用时, 柱体可向左或向右屈曲。
当F < Fcr时, 柱体处于稳定平衡状态,若引入一个小的侧向扰动力,然后卸载, 柱体将返回到它的初始位置。
当F > Fcr时, 柱体处于不稳定平衡状态, 任何扰动力将引起坍塌。
当F = Fcr时, 柱体处于中性平衡状态,把这个力定义为临界载荷。
在实际结构中, 几何缺陷的存在或力的扰动将决定载荷路径的方向。
在实际结构中, 很难达到临界载荷,因为扰动和非线性行为, 低于临界载荷时结构通常变得不稳定。
特征值屈曲分析预测一个理想线弹性结构的理论屈曲强度,缺陷和非线性行为阻止大多数实际结构达到理想的弹性屈曲强度,特征值屈曲一般产生非保守解, 使用时应谨慎。
!3、特征值屈曲分析的理论计算及有限元计算
!理论解,根据Euler公式。
其中μ=1。
临界载荷为44.342。
F cr=π2EI (μL)2
!有限元方法,
结构弹性矩阵为[K e],在屈曲载荷{P0}作用下,产生位移{U0},预应力{σ0}
{P0}=[K e]{U0}
结构同时由于预应力{σ}发生刚度变化,此时刚度矩阵为[K e(σ)],增量平衡方程为:
{ΔP}=([K e]+[K e(σ)]){ΔU}
线性条件下,屈曲行为是外载荷的线性函数则有
[K e(σ)]=λ[K e(σ0)];{P}=λ{P0};{σ}=λ{σ0}
增量平衡方程又表示为:
{ΔP}=([K e]+λ[K e(σ0)]){ΔU}
临界载荷时达到不稳定状态,即使{ΔP}≈0,{ΔU}仍有数值,此时必须有:
det([K e]+λ[K e(σ0)])=0
求解λ,即可得到临界载荷{F cr}=λ{P0}
!4、特征值屈曲分析的缺点与优势
如上分析,特征值屈曲分析得到的是非保守解,但是具有两个优点:快捷分析,屈曲模态形状可用作非线性屈曲分析的初始几何缺陷。
因此为了得到较为精确的屈曲分析,还需要做非线性屈曲分析,后期继续非线性屈曲分析的学习,将会采用弧长法进行求解。
!问题描述
!中空矩形柱,长度500mm,宽度39mm,厚度1.2mm。
弹性模量E= 200 GPa,泊松比u =0.3。
约束条件为两端铰支。
!APDL命令:
finish
/clear
/prep7
et,1,beam188
keyopt,1,3,3 !定义beam188单元,并设置形函数为3次函数
sectype,1,beam,rect,,0
secoffset,cent
secdata,1.2,39, !定义beam截面为rect
mp,ex,1,2e5
mp,prxy,1,0.3 !材料属性
k,1,
k,2,0,500,0
l,1,2
lesize,all,50
lmesh,all !建模划分网格
dk,1,ux
dk,1,uy
dk,1,uz
dk,1,roty
dk,2,ux
dk,2,uz
fk,2,fy,-1 !施加边界条件,将P0的值定义为1,则F cr为求出的一阶频率乘上1
finish
/solu
pstres,on !打开预应力,先进行静力分析
solve
finish !先求出P0下的结构应力状态
/solu
antype,1 !设置分析类型为特征值屈曲分析
bucopt,subsp,3,0,0
mxpand,3 !求前三阶频率,其实一阶就行。
频率越来越大,临界载荷考虑最小的值。
solve
finish
/post1
set,list !列表显示频率值,一阶频率值即是所求临界载荷
plnsol,u,sum !观察一阶变形情况
finish。