(ANSYS屈曲分析)
- 格式:pdf
- 大小:624.65 KB
- 文档页数:32
《ANSYS屈曲分析总结》很多现有的ANSYS资料都对特征值屈曲分析进行了较为详细的解释,特征值屈曲分析属于线性分析,它对结构临界失稳力的预测往往要高于结构实际的临界失稳力,因此在实际的工程结构分析时一般不用特征值屈曲分析。
但特征值屈曲分析作为非线性屈曲分析的初步评估作用是非常有用的。
1. 非线性屈曲分析的第一步最好进行特征值屈曲分析,特征值屈曲分析能够预测临界失稳力的大致所在,因此在做非线性屈曲分析时所加力的大小便有了依据。
特征值屈曲分析想必大家都熟练的不行了,所以小弟不再罗嗦。
小弟只说明一点,特征值屈曲分析所预测的结果我们只取最小的第一阶,所以你所得出的特征值临界失稳力的大小应为F=实际施加力*第一价频率。
2. 由于非线性屈曲分析要求结构是不“完善”的,比如一个细长杆,一端固定,一端施加轴向压力。
若次细长杆在初始时没有发生轻微的侧向弯曲,或者侧向施加一微小力使其发生轻微的侧向挠动。
那么非线性屈曲分析是没有办法完成的,为了使结构变得不完善,你可以在侧向施加一微小力。
这里由于前面做了特征值屈曲分析,所以你可以取第一阶振型的变形结果,并作一下变形缩放,不使初始变形过于严重,这步可以在Main Menu> Preprocessor> Modeling> Update Geom中完成。
3. 上步完成后,加载计算所得的临界失稳力,打开大变形选项开关,采用弧长法计算,设置好子步数,计算。
4. 后处理,主要是看节点位移和节点反作用力(力矩)的变化关系,找出节点位移突变时反作用力的大小,然后进行必要的分析处理。
特载值分析得到的是第一类稳定问题的解,只能得到屈曲荷载和相应的失稳模态,它的优点就是分析简单,计算速度快。
事实上在实际工程中应用还是比较多的,比如分析大型结果的温度荷载,而且钢结构设计手册中的很多结果都是基于特征值分析的结果,例如钢梁稳定计算的稳定系数,框架柱的计算长度等。
它的缺点主要是:不能得到屈曲后路径,不能思忖初始缺陷如初始的变形和应力状态,不能思忖材料的非线性。
65CONSTRUCTION MACHINERY 2014.7设计计算DESIGN & CALCULATION[收稿日期]2014-03-10[通讯地址]舒俊,武汉市洪山区徐东大街45号中铁工程机械研究设计院基于Ansys 的起重机卷筒特征值屈曲分析舒 俊,徐 超(中铁工程机械研究设计院,湖北 武汉 430066)[摘要]以2000t 起重机焊接卷筒设计为对象,采用Ansys 对卷筒进行了特征值屈曲稳定性分析,结果表明采用传统公式设计偏于保守,为卷筒的结构优化设计提供了一种可靠的方法。
[关键词]卷筒;特征值屈曲分析;优化设计[中图分类号]TH21 [文献标识码]B [文章编号]1001-554X (2014)07-0065-03Eigenvalue buckling analysis of drum on crane based on AnsysSHU Jun ,XU Chao起重机卷筒壁厚大多是根据经验公式确定,即将基本壁厚取为所用钢丝绳的直径,对于大型卷筒而言,仍会出现计算时稳定性不足的状况。
实践证明,这种设计方法偏于保守,不仅增加了制造的困难,还造成了材料的浪费,降低了卷筒的使用性能。
因此有必要借助有限元分析软件对卷筒稳定性进行仿真分析,探讨卷筒壁厚优化设计的可靠 依据。
1 传统方法计算卷筒稳定性港珠澳大桥2000t 门式起重机小车卷筒设计为单层缠绕双联卷筒,卷筒表面加工有标准螺旋绳槽。
卷筒长度L =6200mm ,名义直径D =2500mm ,壁厚δ=44mm ,绳槽节距t =49mm ,单根钢丝绳拉力S max =366.9kN 。
卷筒结构如图1所示。
图1 2000t 起重机卷筒结构图对于直径大于1200mm ,长度大于2D 的薄壁焊接卷筒,需要进行稳定性验算。
传统的卷筒应力和稳定性计算公式如下:卷筒筒壁最大应力σc =A 1A 2S max /δt(1)失稳临界压强P w =52500δ3/R 3 (2)卷筒壁压强P =2S max /Dt (3)稳定性系数K =P w /P (4)其中A 1为绳圈绕入时对筒壁应力的影响系数,一般取A 1=0.75;A 2为与卷筒层数相关的系数,对单层卷绕取1;δ为卷筒壁厚;R 为卷筒绳槽底半径;D 为卷筒绳槽底直径;t 为钢丝绳卷绕节距;S max 为钢丝绳最大静拉力。
ansys屈曲分析练习模型:边界条件:底端固定几何:长为100mm,截面:10mm×10mm 惯性矩:Izz=833.333材料性质:E=2.0e5MPa,v=0.3分析压力的临界值分析过程:特征值屈曲分析方法:1、建立关键点1(0 0 0),2(0 100 0)2、在关键点1、2之间建立直线3、定义单元类型(Beam3)4、定义单元常数5、定义材料属性6、定义网格大小,指定单元边长为107、划分网格(首先此处应该做一次模态分析,有模态数据文件,后出来才可以看屈曲模态。
)8、定义分析类型(static)9、激活预应力效应。
要进行屈曲分析,必须激活预应力效应。
10、施加位移约束(关键点1固定)11、施加集中荷载,Fy=-1N12、求解13、结束求解,14、重新定义分析类型(Eigen Buckling)15、设置屈曲分析选项,提取1阶模态(菜单路径:Solution-->Analysis Type-->Analysis options16、求解,结束后退出17、解的展开1)设置expansion pass “on”2)设置展开模态为1(Load Step Options>ExpansionsPass>Single Expand>Expand Modes3)重新求解18、查看结果(临界载荷和屈曲模态等)二、非线性分析方法前8步与上述过程相同9、设置分析控制(主要黄色高亮部分区域需要修改)10、施加位移约束(关键点1固定)11、施加集中荷载,Fy=-50000N,Fx=-250N12、求解13、查看变形和位移14、定义时间-历史变量1)进入时间历程后处理器(TimeHist Postproc)2)在弹出的对话框中选择左上角的+号,添加一个监控变量(节点2的Y方向位移)15、查看位移-载荷曲线屈曲分析是一种用于确定结构开始变得不稳定时的临介荷载和屈曲结构发生屈曲响应时的模态形状的技术。
3.1 几何非线性3.1.1 大应变效应一个结构的总刚度依赖于它的组成部件(单元)的方向和单刚。
当一个单元的结点经历位移后,那个单元对总体结构刚度的贡献可以以两种方式改变。
首先,如果这个单元的形状改变,它的单元刚度将改变(图3-1(a))。
其次,如果这个单元的取向改变,它的局部刚度转化到全局部件的变换也将改变(图3-1(b))。
小的变形和小的应变分析假定位移小到足够使所得到的刚度改变无足轻重。
这种刚度不变假定意味着使用基于最初几何形状的结构刚度的一次迭代足以计算出小变形分析中的位移(什么时候使用“小”变形和应变依赖于特定分析中要求的精度等级)。
相反,大应变分析考虑由单元的形状和取向改变导致的刚度改变。
因为刚度受位移影响,且反之亦然,所以在大应变分析中需要迭代求解来得到正确的位移。
通过发出 NLGEOM,ON(GUI路径Main Menu>Solution>Analysis Options),来激活大应变效应。
这种效应改变单元的形状和取向,且还随单元转动表面载荷。
(集中载荷和惯性载荷保持它们最初的方向。
)在大多数实体单元(包括所有的大应变和超弹性单元),以及部分的壳单元中大应变特性是可用的。
在ANSYS/Linear Plus程序中大应变效应是不可用的。
图3-1 大应变和大转动大应变过程对单元所承受的总旋度或应变没有理论限制。
(某些ANSYS单元类型将受到总应变的实际限制──参看下面。
)然而,应限制应变增量以保持精度。
因此,总载荷应当被分成几个较小的步,这可用〔 NSUBST, DELTIM, AUTOTS〕命令自动实现(通过GUI路径 MainMenu>Solution>Time/Frequent)。
无论何时如果系统是非保守系统,如在模型中有塑性或摩擦,或者有多个大位移解存在,如具有突然转换现象,使用小的载荷增量具有双重重要性。
3.1.2 应力-应变在大应变求解中,所有应力─应变输入和结果将依据真实应力和真实(或对数)应变(一维时,真实应变将表示为ε=Ln(l/l) 。
第13章 特征值屈曲分析
屈曲分析主要用于研究结构在特定载荷下的稳定性以及确定结构失稳的临界载荷,屈曲分析包括线性屈曲分析和非线性屈曲分析。
线性屈曲分析可以考虑固定的预载荷,也可使用惯性释放;非线性屈曲分析包括几何非线性失稳分析、弹塑性失稳分析、非线性后屈★ 了解线性屈曲分析。
13.1 屈曲分析概述
特征值屈曲分析(Eigenvolue Buckling)是以特征值为研究对象的,特征值或线性屈曲分析预测的是理想线性结构的理论屈曲强度(分歧点),特征值方程决定了结构的分歧点。
然而,非理想和非线性行为阻止了许多真实的结构达到它们理论上的弹性屈曲强度。
线性屈曲通常产生非保守的结果,应当谨慎使用。
尽管屈曲分析是非保守的,但是也有许多优点。
屈曲分析比非线性屈曲分析计算省时,并且应当作第一步计算来评估临界载荷(屈曲开始时的载荷)。
通过线性屈曲分析可以预知结构的屈曲模型形状,结构可能发生屈曲的方法可以作为设计中的向导。
13.1.1 关于欧拉屈曲
结构的丧失稳定性称为(结构)屈曲或欧拉屈曲。
L.Euler
从一端固定、另一端自由的受压理想柱出发,给出了压杆的临
界载荷。
所谓理想柱,是指起初完全平直而且承受中心压力的
受压杆,如图13-1所示。
设此柱完全是弹性的,且应力不超过比例极限,若轴向外
载荷P小于它的临界值,则此杆将保持直的状态而只承受轴向图13-1 受压杆。
文)基于ANSYS的轴心受压柱屈曲分析吕辉哈尔滨工程大学航天与建筑工程学院摘要:为了了解和掌握轴心受压柱特征值屈曲和非线性屈曲差异,以及考虑在屈曲分析中划分不同单元数量对分析结果的影响,选取适当的单元数量,利用有限元软件ANSYS对结构进行分析。
初步了解特征值屈曲与非线性屈曲所得结果差异。
在此基础上进行了多例轴心受压柱的仿真模拟分析,同时考虑不同长细比对屈曲分析结果的影响,掌握了长细比变化对轴心受压柱特征值屈曲和非线性屈曲的计算结果的影响规律。
提出工程中应尽量采取非线性屈曲分析,并在分析中采取正确的分析方法。
关键词:ANSYS仿真模拟;轴心受压柱;单元数量;特征值屈曲;非线性屈曲The analysis of axial-compressed column buckling based onANSYSLv HuiHarbin Engineering University, College of Aerospace and Civil EngineeringAbstracts: The finite element software ANSYS is used to understand and master the diffierences between axial-compressed column buckling and nonlinear buckling, and to consider different numbers of modules`s impact on analysis results in buckling analysis, and choose the appropriate element numebrs. The differences of the results of eigenvalue buckling and nonlinear buckling is preliminary understood. Based that, simulation analysis of a number of cases of axial-compressed column is made, meanwhile different slenderness ratio`s impact on buckling analysis is taken into account, so the impact by variable slenderness ratio on the results of axial-compressed column buckling and nonlinear buckling is unterstood. So the nonlinear buckling analysis in the project is proposed,and the right analysis method should be taken.Key words:ANSYS Simulation; axial-compressed column; the number of element; eigenvalue buckling; nonlinear buckling文)引言:随着计算机的发展人类实现了一个又一个的突破,大大提高了产品开发、设计、分析和制造的效率和产品性能。
基于ANSYS的轴心受压柱屈曲分析吕辉哈尔滨工程大学航天与建筑工程学院摘要:为了了解和掌握轴心受压柱特征值屈曲和非线性屈曲差异,以及考虑在屈曲分析中划分不同单元数量对分析结果的影响,选取适当的单元数量,利用有限元软件ANSYS对结构进行分析。
初步了解特征值屈曲与非线性屈曲所得结果差异。
在此基础上进行了多例轴心受压柱的仿真模拟分析,同时考虑不同长细比对屈曲分析结果的影响,掌握了长细比变化对轴心受压柱特征值屈曲和非线性屈曲的计算结果的影响规律。
提出工程中应尽量采取非线性屈曲分析,并在分析中采取正确的分析方法。
关键词:ANSYS仿真模拟;轴心受压柱;单元数量;特征值屈曲;非线性屈曲The analysis of axial-compressed column bucklingbased on ANSYSLv HuiHarbin Engineering University, College of Aerospace and Civil EngineeringAbstracts: The finite element software ANSYS is used to understand and master the diffierences between axial-compressed column buckling and nonlinear buckling, and to consider different numbers of modules`s impact on analysis results in buckling analysis, and choose the appropriate element numebrs. The differences of the results of eigenvalue buckling and nonlinear buckling is preliminary understood. Based that, simulation analysis of a number of cases of axial-compressed column is made, meanwhile different slenderness ratio`s impact on buckling analysis is taken into account, so the impact by variable slenderness ratio on the results of axial-compressed column buckling and nonlinear buckling is unterstood. So the nonlinear buckling analysis in the project is proposed,and the right analysis method should be taken.Key words:ANSYS Simulation; axial-compressed column; the number of element; eigenvalue buckling; nonlinear buckling引言:随着计算机的发展人类实现了一个又一个的突破,大大提高了产品开发、设计、分析和制造的效率和产品性能。
文章来源:安世亚太官方订阅号(搜索:peraglobal)案例背景屈曲分析对于一个成功的结构设计,尤其是包含壳和梁的结构,是至关重要的。
虽然线性特征值屈曲分析相对直接与简便,但是也有其自身缺点:因为实际屈曲过程是一个非线性(大变形)过程,如果不能考虑结构非线性,分析只能得到近似结果,另外线性屈曲分析对于结构后屈曲分析无能为力。
非线性屈曲分析过程较为复杂,同时可能需要多次尝试才能得到较为可信的结果,但是由于其不存在线性屈曲分析的局限性,所以工程上倾向通过非线性屈曲来评价结构的稳定性。
实际中,工程师很难判断结构究竟何时开始发生屈曲。
从工程和科研角度看,人们在整个屈曲过程中,最感兴趣的阶段其实是结构将要产生大变形,但是尚未产生较大变形的阶段,有时结构甚至还未产生变形,因为此时对应的载荷是结构的临界屈曲载荷。
非线性屈曲分析可以很好得在这方面提供工程意义上的指导。
非线性屈曲分析通过使用以下一些方法,控制整个仿真计算的收敛性,达到用户的工程需求:1 非线性稳定性控制(nonlinearstabilization)该方法可以应对屈曲分析中的局部和整体不稳定性,并且可以与其它非线性控制技术联合使用进行仿真(弧长法除外);2 弧长法该方法只能处理力载荷下的结构整体失稳。
3 将稳态分析处理成“准静态”的动力学问题该方法通过使用动力学效应防止计算发散,但是具体操作较为复杂。
本案例通过承受外部静水压力载荷的周向加强筋圆柱薄壁结构,说明如何通过仿真分析,预测结构的屈曲载荷和后屈曲状态,同时介绍控制非线性屈曲分析中,控制计算收敛性的方法。
问题描述圆柱薄壁的材料为2024-T3铝合金,由五层横截面为Z型的周向加强筋支撑,圆柱薄壁两端由两个厚盖板(厚度为25mm)密封,并分别由一个L型的铆接条加固。
圆柱薄壁承受外部均匀压强,从而使圆柱薄壁上两个Z型加强筋之间的局部屈曲,最终导致结构失效。
尺寸(mm)圆柱薄壁截面半径355.69圆柱薄壁深度431.8圆柱薄壁厚度 1.034盖板半径380盖板厚度25Z型加强筋厚度0.843L型铆接条厚度 1.64Z型加强筋横截面尺寸如下图所示:图1 Z型加强筋横截面形状及尺寸L型铆接条横截面尺寸为19*19mm,厚度为1.64mm。
Ansys120Mechanical教程-6线性屈曲分析本章将介绍线性屈曲分析。
内容:A.屈曲的背景知识;B.屈曲分析步骤Workbench-MechanicalIntroduction7-1本章将介绍线性屈曲分析。
内容:A.屈曲的背景知识;B.屈曲分析步骤简介本章将介绍线性屈曲分析。
内容:A.屈曲的背景知识B屈曲分析步骤B.C.Workhop7-1TrainingManual本章所述的功能,一般可用于ANSYSDeignSpaceEntra及以上版本的许可。
–本章讨论的某些选项可能需要更高级的许可,但这些都指出相应的许可。
本章将介绍线性屈曲分析。
内容:A.屈曲的背景知识;B.屈曲分析步骤A.屈曲的背景知识TrainingManual需要评价许多结构的稳定性。
在薄柱,压缩部件,和真空罐的例子中,稳定性是重要的。
失稳(屈曲)的结构,负载基本上没有变化(超出一个小负载扰动)会有失稳曲的结构负载基本上有变化超出个小负载扰动会有一个非常大的变化位移{Δ某}F稳定的不稳定的F本章将介绍线性屈曲分析。
内容:A.屈曲的背景知识;B.屈曲分析步骤…屈曲的背景知识特征值或线性屈曲分析预测理想线弹性结构的理论屈曲强度。
此方法相当于教科书上线弹性屈曲分析的方法。
此方法相当于教科书上线弹性屈曲分析的方法–用欧拉行列式求解特征值屈曲会与经典的欧拉解一致。
TrainingManual缺陷和非线性行为使现实结构无法与它们的理论弹性屈曲强度一致缺陷和非线性行为使现实结构无法与它们的理论弹性屈曲强度致。
线性线性屈曲一般会得出不保守的结果。
线性屈曲无法解释的问题–非弹性的材料响应。
–非线性作用。
–不属于建模的结构缺陷(凹陷等)。
本章将介绍线性屈曲分析。
内容:A.屈曲的背景知识;B.屈曲分析步骤…屈曲的背景知识尽管不保守,线性屈曲有多种优点:TrainingManual–它比非线性屈曲计算省时,并且可以作第一步计算来评估临界载荷(屈曲开始时的载荷).在屈曲分析中做一些对比可以体现二者的明显不同–线性屈曲分析可以用来作为确定屈曲形状的设计工具具.结构屈曲的方式可以为设计提供向导本章将介绍线性屈曲分析。