ansys 屈曲分析详细过程
- 格式:pdf
- 大小:414.39 KB
- 文档页数:11
!ANSYS命令流学习笔记8 -特征值屈曲分析--案例来自于公众号:ansys学习与应用!学习重点:!1、熟悉beam单元的建模!2、何为特征值屈曲分析Eigen Buckling增加轴向载荷(F)时, 一个理想化的端部固定的柱体将呈现下述行为。
分叉点是载荷历程中的一点,,在理想化情况下, 临界载荷(Fcr)作用时, 柱体可向左或向右屈曲。
当F < Fcr时, 柱体处于稳定平衡状态,若引入一个小的侧向扰动力,然后卸载, 柱体将返回到它的初始位置。
当F > Fcr时, 柱体处于不稳定平衡状态, 任何扰动力将引起坍塌。
当F = Fcr时, 柱体处于中性平衡状态,把这个力定义为临界载荷。
在实际结构中, 几何缺陷的存在或力的扰动将决定载荷路径的方向。
在实际结构中, 很难达到临界载荷,因为扰动和非线性行为, 低于临界载荷时结构通常变得不稳定。
特征值屈曲分析预测一个理想线弹性结构的理论屈曲强度,缺陷和非线性行为阻止大多数实际结构达到理想的弹性屈曲强度,特征值屈曲一般产生非保守解, 使用时应谨慎。
!3、特征值屈曲分析的理论计算及有限元计算!理论解,根据Euler公式。
其中μ=1。
临界载荷为44.342。
F cr=π2EI (μL)2!有限元方法,结构弹性矩阵为[K e],在屈曲载荷{P0}作用下,产生位移{U0},预应力{σ0}{P0}=[K e]{U0}结构同时由于预应力{σ}发生刚度变化,此时刚度矩阵为[K e(σ)],增量平衡方程为:{ΔP}=([K e]+[K e(σ)]){ΔU}线性条件下,屈曲行为是外载荷的线性函数则有[K e(σ)]=λ[K e(σ0)];{P}=λ{P0};{σ}=λ{σ0}增量平衡方程又表示为:{ΔP}=([K e]+λ[K e(σ0)]){ΔU}临界载荷时达到不稳定状态,即使{ΔP}≈0,{ΔU}仍有数值,此时必须有:det([K e]+λ[K e(σ0)])=0求解λ,即可得到临界载荷{F cr}=λ{P0}!4、特征值屈曲分析的缺点与优势如上分析,特征值屈曲分析得到的是非保守解,但是具有两个优点:快捷分析,屈曲模态形状可用作非线性屈曲分析的初始几何缺陷。
ansys屈曲分析练习模型:边界条件:底端固定几何:长为100mm,截面:10mm×10mm 惯性矩:Izz=833.333材料性质:E=2.0e5MPa,v=0.3分析压力的临界值分析过程:特征值屈曲分析方法:1、建立关键点1(0 0 0),2(0 100 0)2、在关键点1、2之间建立直线3、定义单元类型(Beam3)4、定义单元常数5、定义材料属性6、定义网格大小,指定单元边长为107、划分网格(首先此处应该做一次模态分析,有模态数据文件,后出来才可以看屈曲模态。
)8、定义分析类型(static)9、激活预应力效应。
要进行屈曲分析,必须激活预应力效应。
10、施加位移约束(关键点1固定)11、施加集中荷载,Fy=-1N12、求解13、结束求解,14、重新定义分析类型(Eigen Buckling)15、设置屈曲分析选项,提取1阶模态(菜单路径:Solution-->Analysis Type-->Analysis options16、求解,结束后退出17、解的展开1)设置expansion pass “on”2)设置展开模态为1(Load Step Options>ExpansionsPass>Single Expand>Expand Modes3)重新求解18、查看结果(临界载荷和屈曲模态等)二、非线性分析方法前8步与上述过程相同9、设置分析控制(主要黄色高亮部分区域需要修改)10、施加位移约束(关键点1固定)11、施加集中荷载,Fy=-50000N,Fx=-250N12、求解13、查看变形和位移14、定义时间-历史变量1)进入时间历程后处理器(TimeHist Postproc)2)在弹出的对话框中选择左上角的+号,添加一个监控变量(节点2的Y方向位移)15、查看位移-载荷曲线屈曲分析是一种用于确定结构开始变得不稳定时的临介荷载和屈曲结构发生屈曲响应时的模态形状的技术。
3.1 几何非线性3.1.1 大应变效应一个结构的总刚度依赖于它的组成部件(单元)的方向和单刚。
当一个单元的结点经历位移后,那个单元对总体结构刚度的贡献可以以两种方式改变。
首先,如果这个单元的形状改变,它的单元刚度将改变(图3-1(a))。
其次,如果这个单元的取向改变,它的局部刚度转化到全局部件的变换也将改变(图3-1(b))。
小的变形和小的应变分析假定位移小到足够使所得到的刚度改变无足轻重。
这种刚度不变假定意味着使用基于最初几何形状的结构刚度的一次迭代足以计算出小变形分析中的位移(什么时候使用“小”变形和应变依赖于特定分析中要求的精度等级)。
相反,大应变分析考虑由单元的形状和取向改变导致的刚度改变。
因为刚度受位移影响,且反之亦然,所以在大应变分析中需要迭代求解来得到正确的位移。
通过发出 NLGEOM,ON(GUI路径Main Menu>Solution>Analysis Options),来激活大应变效应。
这种效应改变单元的形状和取向,且还随单元转动表面载荷。
(集中载荷和惯性载荷保持它们最初的方向。
)在大多数实体单元(包括所有的大应变和超弹性单元),以及部分的壳单元中大应变特性是可用的。
在ANSYS/Linear Plus程序中大应变效应是不可用的。
图3-1 大应变和大转动大应变过程对单元所承受的总旋度或应变没有理论限制。
(某些ANSYS单元类型将受到总应变的实际限制──参看下面。
)然而,应限制应变增量以保持精度。
因此,总载荷应当被分成几个较小的步,这可用〔 NSUBST, DELTIM, AUTOTS〕命令自动实现(通过GUI路径 MainMenu>Solution>Time/Frequent)。
无论何时如果系统是非保守系统,如在模型中有塑性或摩擦,或者有多个大位移解存在,如具有突然转换现象,使用小的载荷增量具有双重重要性。
3.1.2 应力-应变在大应变求解中,所有应力─应变输入和结果将依据真实应力和真实(或对数)应变(一维时,真实应变将表示为ε=Ln(l/l) 。
ANSYS WORKBENCH 11.0培训教程(DS)第七章线性屈曲分析本章概述•在本章中将讲述DS中的线性屈曲分析的应用.–在DS中,进行线性屈曲分析类似于应力分析.–假设用户在此之前已经讨论过第四章线性静力结构分析的内容.•本章所讨论的性能通常适用于ANSYS DesignSpace Entra licenses及更高licenses.–许多本章当中所讨论的选项需要更高级别的licenses,但这些都没有直接的指出.–简谐和非线性静态结构分析在此没有讨论,但是在相关章节当中会有介绍.屈曲分析的背景•许多结构需要估计结构的稳定性。
细长柱、压缩部件、以及真空容器都是需要考虑稳定性的例子.•在不稳定(屈曲)开始时,结构在本质上没有变化的载荷作用下(超过一个很小的动荡)在x方向上的位移{∆x}会有一个很大的改变.F FStable Unstable…屈曲分析的背景•特征值或线性屈曲分析预测的是理想线弹性结构的理论屈曲强度(分歧点).•特征值方程决定了结构的分歧点.教科书上相应的方法近似于线弹性屈曲分析方法.–Euler柱的特征值屈曲方法与经典的Euler方法匹配.…屈曲分析的背景•然而,非理想和非线性行为阻止许多真实的结构达到它们理论上的弹性屈曲强度。
线性屈曲通常产生非保守的结果, 应当谨慎使用.–把屈曲当成苏打水罐:•材料响应是非弹性的。
需要考虑几何非线性的影响,接触也是需要的。
因此这些类型的非线性行为都不被考虑.•在苏打水罐上的小的瑕疵,例如一个小的缺陷,将会影响响应并且使模型不对称.然而,这些小的瑕疵在线性屈曲分析中不予考虑.…屈曲分析的背景•尽管屈曲分析是非保守的,但是也有许多优点:–它比非线性屈曲计算省时,并且应当作第一步计算来评估临界载荷(屈曲开始时的载荷).–线性屈曲分析可以用来作为决定产生什么样的屈曲模型形状的设计工具.•结构可能发生屈曲的方法可以作为设计中的向导…线性屈曲分析基础•对于线性屈曲分析,下面的特征值方法用来得到屈曲载荷乘子λi 和屈曲模态ψi :这个结论在分析中有一些相对的假设:–[K]和[S] 是常量:•假设为线弹性材料行为•应用小变形理论,并且不包括非线性特性•基于载荷{F}的响应是一个线性的关于λi 的函数–附加的约束条件:•不允许非零位移约束或热载荷•在DS 中涉及到应用线性屈曲分析,记住这些假设是很重要的.[][](){}0=+i i S K ψλB. 屈曲分析步骤•线性屈曲分析步骤与线性静力分析很相似,因此不是每个步骤都详细介绍.其中的黄色斜体的步骤是屈曲分析的特殊步骤.–生成几何体–分配材料属性–定义接触(假如需要的话)–定义网格控制(可选择的)–定义载荷和约束–定义屈曲结果–求解模型–查看结果…几何模型和材料属性•与线性静力分析类似,任何DS支持的类型的几何体都可以使用:–实体–壳体(定义适当厚度)–线(定义适当的截面形状)•对于线模型仅有屈曲模态和位移结果是可以得到的.•对于材料特性,最少需要定义杨氏模量和泊松比ANSYS License AvailabilityDesignSpace Entra xDesignSpace xProfessional xStructural xMechanical/Multiphysics x…接触对•屈曲分析中可以定义接触对.但是,由于这是一个纯粹的线性分析,因此接触行为不同于非线性接触类型:•以下各方面需要重点注意:–Pinball 范围将影响一些接触类型–所有非线性接触类型被简化为“绑定”或“不分离”接触.•没有分离的接触在屈曲分析中带有警告,因为它在切向没有刚度.这将产生许多过剩的屈曲模态.如果合适的话,考虑应用绑定接触来代替.ANSYS License AvailabilityDesignSpace Entra DesignSpace x Professional x Initially Touching Inside Pinball Region Outside Pinball Region BondedBondedBonded Free No Separation No Separation No Separation Free RoughBondedFree Free FrictionlessNo SeparationFree FreeContact Type Linear Buckling Analysis…载荷和约束•至少要施加一个能够引起屈曲的结构载荷到模型上:–所有的结构载荷都要乘上载荷系数来决定屈曲载荷.因此不支持不成比例或常值的载荷(参考下一张幻灯片)–允许刚性约束(即无位移约束)–允许无热载荷–仅有压缩的约束是非线性,因此不推荐使用在屈曲分析中•结构可以是全约束–在模型中可以施加刚性位移.确定模型上的约束适当.ANSYS License AvailabilityDesignSpace Entra xDesignSpace xProfessional x…载荷和约束•假如施加常值和成比例的载荷则需要给出特殊的指定.–用户可以重复屈曲分析,调整可变载荷直到载荷乘数为1.0或接近1.0.–讨论一个柱子在自重W O和表面集中力A作用下的例子.可以通过重复计算,调整A的值直到λ= 1.0.ANSYS License AvailabilityDesignSpace Entra xDesignSpace xProfessional x…需求结果•许多屈曲分析的选项与静力分析选项相似.但是当在求解下拉菜单下的屈曲分析工具被选择时DS会分辨并执行屈曲分析:–屈曲工具在求解下拉菜单下增加了另一个菜单.–详细的屈曲菜单允许用户指定屈曲模态的阶数.缺省的时候只计算第一阶屈曲模态.增加模态阶数会增加计算时间.但是,通常只有少数屈曲模态是希望的.ANSYS License AvailabilityDesignSpace Entra xDesignSpace xProfessional x Although most users are only concerned with the first buckling mode, it is generally a good idea to request the first 2 or 3 buckling modes. There may be closely-space buckling modes, so this would tell the user if the model may be susceptible to more than one failure mode.…需求结果•需要求解的结果位于屈曲菜单下:–屈曲分析的模态受控于在屈曲菜单下有详细介绍的模态阶数–应力,应变或某方向的位移等附加结果可以在屈曲下拉菜单下指定•如果已指定,则每阶屈曲模态的应力,应变或位移结果都会得到•假如一个模型的应力和应变已经得到,那么另外的计算也是需要的.–在“Solution”下拉菜单下没有结果直接被指定.ANSYS License AvailabilityDesignSpace Entra xDesignSpace xProfessional xStructural x…求解选项•求解下拉菜单提供了详细的将要执行分析的类型–对于屈曲分析,求解下拉菜单的详细选项通常都不需要改变.•在大多情况下,“Solver Type”通常在默认的“ProgramControlled”选项的左边.它仅仅控制在初始静力分析中的求解器而不是屈曲求解方法.•“Weak springs”也意味着初始的静力分析.•屈曲分析不支持“Large Deflection”.–“Analysis Type”在线性屈曲分析情况下可以显示“Buckling”.ANSYS License AvailabilityDesignSpace Entra xDesignSpace xProfessional x…求解模型•设定好模型以后,可以像其它分析一样选择Slove按钮求解屈曲分析.–对于同一个模型,线性屈曲分析比静力分析要耗费很多时间.这是因为此时静力分析和屈曲分析同时进行.–求解下拉菜单的Worksheet工具条提供了详细的计算输出,包括使用内存的大小以及多少阶模态已经扩展了.–假如在求解完成后应力或应变或再多的屈曲模态需要考虑,那么需要一个新的求解.ANSYS License AvailabilityDesignSpace Entra xDesignSpace xProfessional x…观察结果•求解结束可以观察屈曲的模态–每一阶屈曲模态的的乘子都有详细的描述.载荷乘子与真实载荷的乘积代表临界载荷.–屈曲模态代表相对体积而不是绝对尺寸.但是这些可以用来判定失效的模态的形状.ANSYS License AvailabilityDesignSpace Entra xDesignSpace xProfessional x…观察结果•屈曲载荷乘子(λ)的说明:–下面的塔模型被求解了两次. 首先施加一单位载荷.第二次施加了所希望的载荷(见下页)…观察结果屈曲载荷乘子(λ)的说明Load Unit ad BucklingLo _*λ=λLoadActual ad BucklingLo _=•第一个算例,屈曲载荷乘子(λ)就是屈曲载荷•第二个算例,屈曲载荷乘子(λ)可以解释为安全因子。
第13章 特征值屈曲分析
屈曲分析主要用于研究结构在特定载荷下的稳定性以及确定结构失稳的临界载荷,屈曲分析包括线性屈曲分析和非线性屈曲分析。
线性屈曲分析可以考虑固定的预载荷,也可使用惯性释放;非线性屈曲分析包括几何非线性失稳分析、弹塑性失稳分析、非线性后屈★ 了解线性屈曲分析。
13.1 屈曲分析概述
特征值屈曲分析(Eigenvolue Buckling)是以特征值为研究对象的,特征值或线性屈曲分析预测的是理想线性结构的理论屈曲强度(分歧点),特征值方程决定了结构的分歧点。
然而,非理想和非线性行为阻止了许多真实的结构达到它们理论上的弹性屈曲强度。
线性屈曲通常产生非保守的结果,应当谨慎使用。
尽管屈曲分析是非保守的,但是也有许多优点。
屈曲分析比非线性屈曲分析计算省时,并且应当作第一步计算来评估临界载荷(屈曲开始时的载荷)。
通过线性屈曲分析可以预知结构的屈曲模型形状,结构可能发生屈曲的方法可以作为设计中的向导。
13.1.1 关于欧拉屈曲
结构的丧失稳定性称为(结构)屈曲或欧拉屈曲。
L.Euler
从一端固定、另一端自由的受压理想柱出发,给出了压杆的临
界载荷。
所谓理想柱,是指起初完全平直而且承受中心压力的
受压杆,如图13-1所示。
设此柱完全是弹性的,且应力不超过比例极限,若轴向外
载荷P小于它的临界值,则此杆将保持直的状态而只承受轴向图13-1 受压杆。
弧型闸门支臂的屈曲分析一、问题和条件:钢闸门断面为工字钢,具体尺寸如下,试作屈曲分析:弹性模量E=200GPa泊松比μ=0.3集中力 F = 1N(单位力)二、进入ANSYS界面单击开始→程序→ansys8.0→configure ANSYS product然后在File Management中定义Working Directory(工作路径)如:class定义Job Name(工作文件名)。
如:zhamenququ三、定义单元及材料1 新建单元类型运行主菜单Preprocessor → Element Type → Add/Edit/Delete (新建/编辑/删除单元类型)命令,接着在对话框中单击“Add”按钮新建单元类型。
2 定义单元类型因为beam188单元适合于分析柔性梁结构,支持弹性,蠕变和塑性模型的计算。
先选择单元为beam,接着选择3D 2 node 188,然后单击“OK”按钮确定,完成单元类型的选择。
3 关闭单元类型对话框回到单元类型对话框,已经新建了beam单元,单击对话框中“Close”按钮关闭对话框。
4 定义截面形状及参数运行主菜单Preprocessor → Sections → Beam→Common sections命令,接着在对话框中sub-type中选择“工”字钢断面,在下面的尺寸中分别填入:W1=0.2, W2=0.2, W3=0.4,t1=0.01, t2=0.01, t3=0.01,点击OK结束。
5 设置材料属性运行主菜单Preprocessor → Material props→ Material Models (材料属性)命令。
选择材料属性命令后,系统会显示材料属性设置对话框。
6 设置杨氏弹性模量与泊松比在材料属性设置对话框右侧依次选择 Structural → Linear → Elastic → Isotropic。
完成选择命令后,接着在对话框中EX杨氏弹性模量输入2e11,PPXY泊松比输入0.3。