第二篇10-扫描电子显微分析
- 格式:ppt
- 大小:3.48 MB
- 文档页数:49
扫描电子显微分析与电子探针演示文稿一、介绍电子显微分析技术是通过对物质进行扫描和分析,利用扫描电子显微镜和电子探针来获取材料的化学成分、晶体结构和显微结构等信息。
本文将介绍扫描电子显微分析和电子探针的原理、应用和相关技术。
二、扫描电子显微分析原理1.高能电子入射2.电子-物质相互作用当高能电子束与样品表面相互作用时,会产生多种次级电子、散射电子和反冲电子等。
通过检测和分析这些次级电子,可以推断出材料的表面形态、原子分布等信息。
3.映射制图三、电子探针电子探针是在扫描电子显微镜上配备的一个仪器,用于对样品进行微区分析,可以获得样品的化学成分、晶体结构和显微结构等信息。
1.材料组成分析电子探针可以通过扫描样品表面并测量X射线谱来确定样品的化学成分。
当高能电子束与样品相互作用时,会产生特定能量的X射线,通过测量和分析这些X射线的能量和强度,可以准确地确定样品中元素的类型和含量。
2.显微区结构分析电子探针还具有高空间分辨率,可以在显微区域内对样品的晶体结构进行分析。
利用电子束的扫描和集线系统结构,研究者可以选择一个很小的区域进行分析,从而得到显微区的晶体结构信息。
四、应用领域1.材料科学在材料科学中,扫描电子显微分析和电子探针技术可用于分析和表征各种材料的组成、晶体结构和显微结构,如金属材料、陶瓷材料、复合材料等。
这些信息有助于研究者了解材料的性能和性质。
2.地质学3.生物学五、技术发展1.分辨率的提高新一代的扫描电子显微镜和电子探针仪器分辨率更高,可实现更高精度的成分分析和显微观察。
例如,现在的仪器可以实现亚纳米级别的空间分辨率。
2.信号检测和处理技术的改进通过改进信号检测和处理技术,使得扫描电子显微分析和电子探针技术对噪声和干扰信号的抑制能力更强,从而提高了数据的准确性和可靠性。
六、总结扫描电子显微分析和电子探针技术是现代材料科学研究中不可或缺的工具。
它们在分析样品的化学成分、晶体结构和显微结构等方面具有重要作用,广泛应用于材料科学、地质学和生物学等领域。
扫描电子显微分析§1、概述SEM在20世纪30年代由德国人Knoll和von Ardenne首创,40年代美国RCA研究室对它的进展起了重要作用,在后来的显微镜上可以发现许多他们预期的关于仪器的设计和性能。
现代的SEM是Oatley和他的学生从1948年到1965年期间在剑桥大学的研究成果,第一台商用SEM是1965年由英国剑桥仪器公司生产的Stereoscan。
扫描电镜(SEM)是材料学科领域应用最为广泛的一种显微镜,SEM的广泛使用是因为它既具有光学显微镜制样简易,又具有昂贵、复杂的透射电镜的众多功能和适用性。
SEM可对较大试样进行原始表面观察,能清晰地显示出试样表面的凸凹形貌,具有连续可调的的放大倍率,目前二次电子像的最高分辨率可达0.5纳米。
利用入射束与试样作用产生的各种信号,SEM还可以对试样进行成分、晶体学、阴极发光、感应电导等多方面分析;也可以在某些环境条件下进行动态观察。
§3、初级电子束轰击试样产生的信号 俄歇电子:透射电子:当样品很薄时,有一部分电子穿过样品(TEM或STEM)。
吸收电流:初级电子束由于和样品中的原子或电子发生多次散射后,能量逐渐减小以致最终被样品吸收。
特征x射线:阴极荧光:主要针对半导体和绝缘体,在入射电子或散射电子的作用下,价电带子发生跃迁,由于跃迁能量较低(几-几十电子伏特),所以发出可见光,其波长与杂质及其能级有关。
电子束感生电效应:电子在半导体中的非弹性性散射产生电子-空穴对。
通过外加电场可以分离正负电荷,产生附加电导;而p-n结对这些自由载流子的收集作用可以产生附加电动势。
Primary Electron Beam放大倍数:等于荧光屏上扫描振幅A C 和电子束在样品上扫描振幅A S 之比,即M = A C /A S ,是纯几何表示。
分辨率:指样品上两个邻近点靠近到何种程度仍可辨认出来;分辨率可从拍摄的图像上测量两亮区最小暗间隙宽度除以放大倍数得到。