3.3二元一次不等式(组)与简单的线性规划问题
- 格式:doc
- 大小:1.24 MB
- 文档页数:2
1.二元一次不等式表示的平面区域(1)一般地,二元一次不等式Ax+By+C>0在平面直角坐标系中表示直线Ax+By+C=0某一侧所有点组成的平面区域.我们把直线画成虚线以表示区域不包括边界直线.当我们在坐标系中画不等式Ax+By+C≥0所表示的平面区域时,此区域应包括边界直线,则把边界直线画成实线.(2)由于对直线Ax+By+C=0同一侧的所有点(x,y),把它的坐标(x,y)代入Ax+By+C,所得的符号都相同,所以只需在此直线的同一侧取一个特殊点(x0,y0)作为测试点,由Ax0+By0+C的符号即可判断Ax+By+C>0表示的直线是Ax+By+C=0哪一侧的平面区域.2.线性规划相关概念名称意义约束条件由变量x,y组成的一次不等式线性约束条件由x,y的一次不等式(或方程)组成的不等式组目标函数欲求最大值或最小值的函数线性目标函数关于x,y的一次解析式可行解满足线性约束条件的解可行域所有可行解组成的集合最优解使目标函数取得最大值或最小值的可行解线性规划问题在线性约束条件下求线性目标函数的最大值或最小值问题3.(1)画二元一次不等式表示的平面区域的直线定界,特殊点定域:①直线定界:不等式中无等号时直线画成虚线,有等号时直线画成实线;②特殊点定域:若直线不过原点,特殊点常选原点;若直线过原点,则特殊点常选取(0,1)或(1,0)来验证.(2)利用“同号上,异号下”判断二元一次不等式表示的平面区域: 对于Ax +By +C >0或Ax +By +C <0,则有①当B (Ax +By +C )>0时,区域为直线Ax +By +C =0的上方; ②当B (Ax +By +C )<0时,区域为直线Ax +By +C =0的下方. (3)最优解和可行解的关系:最优解必定是可行解,但可行解不一定是最优解.最优解不一定唯一,有时唯一,有时有多个. 【思考辨析】判断下面结论是否正确(请在括号中打“√”或“×”)(1)不等式Ax +By +C >0表示的平面区域一定在直线Ax +By +C =0的上方.( × ) (2)线性目标函数的最优解可能是不唯一的.( √ )(3)目标函数z =ax +by (b ≠0)中,z 的几何意义是直线ax +by -z =0在y 轴上的截距.( × ) (4)不等式x 2-y 2<0表示的平面区域是一、三象限角的平分线和二、四象限角的平分线围成的含有y 轴的两块区域.( √ )1.如图阴影部分表示的区域可用二元一次不等式组表示为________.答案 ⎩⎪⎨⎪⎧x +y -1≥0,x -2y +2≥0解析 两直线方程分别为x -2y +2=0与x +y -1=0. 由(0,0)点在直线x -2y +2=0右下方可知x -2y +2≥0, 又(0,0)点在直线x +y -1=0左下方可知x +y -1≥0,即⎩⎪⎨⎪⎧x +y -1≥0,x -2y +2≥0为所表示的可行域. 2.(教材改编)不等式组⎩⎪⎨⎪⎧x -3y +6<0,x -y +2≥0表示的平面区域是________.答案 ③解析 用特殊点代入,比如(0,0),容易判断为③. 3.若实数x ,y 满足不等式组⎩⎪⎨⎪⎧x -y ≥-1,x +y ≥1,3x -y ≤3,则该约束条件所围成的平面区域的面积是________. 答案 2解析 因为直线x -y =-1与x +y =1互相垂直, 所以如图所示的可行域为直角三角形,易得A (0,1),B (1,0),C (2,3),故AB =2,AC =22, 其面积为12×AB ×AC =2.4.(2015·北京改编)若x ,y 满足⎩⎪⎨⎪⎧x -y ≤0,x +y ≤1,x ≥0,则z =x +2y 的最大值为________.答案 2解析 可行域如图所示.目标函数化为y =-12x +12z ,当直线y =-12x +12z 过点A (0,1)时,z 取得最大值2.5.(教材改编)投资生产A 产品时,每生产100吨需要资金200万元,需场地200平方米;投资生产B 产品时,每生产100吨需要资金300万元,需场地100平方米.现某单位可使用资金1 400万元,场地900平方米,则上述要求可用不等式组表示为__________________(用x ,y 分别表示生产A ,B 产品的吨数,x 和y 的单位是百吨).答案 ⎩⎪⎨⎪⎧200x +300y ≤1 400,200x +100y ≤900,x ≥0,y ≥0解析 用表格列出各数据A B 总数 产品吨数 x y 资金 200x 300y 1 400 场地200x100y900所以不难看出,x ≥0,y ≥0,200x +300y ≤1 400,200x +100y ≤900.题型一 二元一次不等式(组)表示的平面区域命题点1 不含参数的平面区域问题例1 (1)不等式(x -2y +1)(x +y -3)≤0在坐标平面内表示的区域(用阴影部分表示),应是下列图形中的________.(2)不等式组⎩⎪⎨⎪⎧x ≥0,x +3y ≥4,3x +y ≤4所表示的平面区域的面积等于________.答案 (1)③ (2)43解析 (1)(x -2y +1)(x +y -3)≤0⇒⎩⎪⎨⎪⎧x -2y +1≥0,x +y -3≤0,或⎩⎪⎨⎪⎧x -2y +1≤0,x +y -3≥0.画出平面区域后,只有③符合题意.(2)由题意得不等式组表示的平面区域如图阴影部分,A (0,43),B (1,1),C (0,4),则△ABC 的面积为12×1×83=43.命题点2 含参数的平面区域问题 例2 若不等式组⎩⎪⎨⎪⎧x ≥0,x +3y ≥4,3x +y ≤4所表示的平面区域被直线y =kx +43分为面积相等的两部分,则k 的值是____________________________________________________________. 答案 73解析 不等式组表示的平面区域如图所示.由于直线y =kx +43过定点⎝⎛⎭⎫0,43.因此只有直线过AB 中点时,直线y =kx +43能平分平面区域.因为A (1,1),B (0,4),所以AB 中点D ⎝⎛⎭⎫12,52. 当y =kx +43过点⎝⎛⎭⎫12,52时,52=k 2+43, 所以k =73.思维升华 (1)求平面区域的面积:①首先画出不等式组表示的平面区域,若不能直接画出,应利用题目的已知条件转化为不等式组问题,从而再作出平面区域;②对平面区域进行分析,若为三角形应确定底与高,若为规则的四边形(如平行四边形或梯形),可利用面积公式直接求解,若为不规则四边形,可分割成几个三角形分别求解再求和即可.(2)利用几何意义求解的平面区域问题,也应作出平面图形,利用数形结合的方法去求解.(1)不等式组⎩⎪⎨⎪⎧x ≥0,x +y ≤3,y ≥x +1表示的平面区域为Ω,直线y =kx -1与区域Ω有公共点,则实数k 的取值范围为________. (2)已知约束条件⎩⎪⎨⎪⎧x ≥1,x +y -4≤0,kx -y ≤0表示面积为1的直角三角形区域,则实数k 的值为________.答案 (1)[3,+∞) (2)1解析 (1)直线y =kx -1过定点M (0,-1),由图可知,当直线y =kx -1经过直线y =x +1与直线x +y =3的交点C (1,2)时,k 最小,此时k CM =2-(-1)1-0=3,因此k ≥3,即k ∈[3,+∞).(2)由于x =1与x +y -4=0不可能垂直,所以只有可能x +y -4=0与kx -y =0垂直或x =1与kx -y =0垂直.①当x +y -4=0与kx -y =0垂直时,k =1,检验知三角形区域面积为1,即符合要求. ②当x =1与kx -y =0垂直时,k =0,检验不符合要求.题型二 求目标函数的最值问题命题点1 求线性目标函数的最值例3 (2014·广东)若变量x ,y 满足约束条件⎩⎪⎨⎪⎧y ≤x ,x +y ≤1,y ≥-1,且z =2x +y 的最大值和最小值分别为m 和n ,则m -n =________. 答案 6解析 画出可行域,如图阴影部分所示. 由z =2x +y ,得y =-2x +z .由⎩⎪⎨⎪⎧ y =x ,y =-1,得⎩⎪⎨⎪⎧x =-1,y =-1,∴A (-1,-1).由⎩⎪⎨⎪⎧ x +y =1,y =-1,得⎩⎪⎨⎪⎧x =2,y =-1,∴B (2,-1).当直线y =-2x +z 经过点A 时,z min =2×(-1)-1=-3=n .当直线y =-2x +z 经过点B 时,z max =2×2-1=3=m ,故m -n =6. 命题点2 求非线性目标函数的最值 例4 实数x ,y 满足⎩⎪⎨⎪⎧x -y +1≤0,x >0,y ≤2.(1)若z =yx ,求z 的最大值和最小值,并求z 的取值范围;(2)若z =x 2+y 2,求z 的最大值与最小值,并求z 的取值范围. 解 由⎩⎪⎨⎪⎧x -y +1≤0,x >0,y ≤2,作出可行域,如图中阴影部分所示.(1)z =yx表示可行域内任一点与坐标原点连线的斜率,因此yx的范围为直线OB 的斜率到直线OA 的斜率(直线OA 的斜率不存在,即z max 不存在).由⎩⎪⎨⎪⎧x -y +1=0,y =2,得B (1,2), ∴k OB =21=2,即z min =2,∴z 的取值范围是[2,+∞).(2)z =x 2+y 2表示可行域内的任意一点与坐标原点之间距离的平方. 因此x 2+y 2的值最小为OA 2(取不到),最大值为OB 2.由⎩⎪⎨⎪⎧x -y +1=0,x =0,得A (0,1), ∴OA 2=(02+12)2=1,OB 2=(12+22)2=5,∴z 的取值范围是(1,5]. 引申探究1.若z =y -1x -1,求z 的取值范围.解 z =y -1x -1可以看作过点P (1,1)及(x ,y )两点的直线的斜率.∴z 的取值范围是(-∞,0).2.若z =x 2+y 2-2x -2y +3.求z 的最大值、最小值. 解 z =x 2+y 2-2x -2y +3 =(x -1)2+(y -1)2+1,而(x -1)2+(y -1)2表示点P (1,1)与Q (x ,y )的距离的平方,(PQ 2)max =(0-1)2+(2-1)2=2, (PQ 2)min =(|1-1+1|12+(-1)2)2=12,∴z max =2+1=3,z min =12+1=32.命题点3 求线性规划的参数例5 已知a >0,x ,y 满足约束条件⎩⎪⎨⎪⎧x ≥1,x +y ≤3,y ≥a (x -3),若z =2x +y 的最小值为1,则a =________.答案 12解析 作出不等式组表示的可行域,如图(阴影部分).易知直线z =2x +y 过交点A 时,z 取最小值,由⎩⎪⎨⎪⎧x =1,y =a (x -3), 得⎩⎪⎨⎪⎧x =1,y =-2a , ∴z min =2-2a =1,解得a =12.思维升华 (1)先准确作出可行域,再借助目标函数的几何意义求目标函数的最值. (2)当目标函数是非线性的函数时,常利用目标函数的几何意义来解题,常见代数式的几何意义有: ①x 2+y 2表示点(x ,y )与原点(0,0)的距离,(x -a )2+(y -b )2表示点(x ,y )与点(a ,b )的距离;②yx 表示点(x ,y )与原点(0,0)连线的斜率,y -b x -a 表示点(x ,y )与点(a ,b )连线的斜率. (3)当目标函数中含有参数时,要根据临界位置确定参数所满足条件.(1)(2015·无锡一模)在直角坐标平面内,不等式组⎩⎪⎨⎪⎧y ≤x +1,y ≥0,0≤x ≤t所表示的平面区域的面积为32,则t 的值为________.(2)(2014·安徽改编)x ,y 满足约束条件⎩⎪⎨⎪⎧x +y -2≤0,x -2y -2≤0,2x -y +2≥0.若z =y -ax 取得最大值的最优解不唯一,则实数a 的值为________. 答案 (1)1 (2)2或-1 解析 (1)不等式组⎩⎨⎧y ≤x +1,y ≥0,0≤x ≤t所表示的平面区域如图中阴影部分所示.由⎩⎪⎨⎪⎧y =x +1,x =t ,解得交点B (t ,t +1),在y =x +1中,令x =0得y =1,即直线y =x +1与y 轴的交点为C (0,1),由平面区域的面积S =(1+t +1)×t 2=32,得t 2+2t -3=0,解得t =1或t =-3(不合题意,舍去).(2)如图,由y =ax +z 知z 的几何意义是直线在y 轴上的截距,故当a >0时,要使z =y -ax 取得最大值的最优解不唯一,则a =2; 当a <0时,要使z =y -ax 取得最大值的最优解不唯一,则a =-1.题型三 线性规划的实际应用例6 某客运公司用A 、B 两种型号的车辆承担甲、乙两地间的长途客运业务,每车每天往返一次.A 、B 两种车辆的载客量分别为36人和60人,从甲地去乙地的营运成本分别为1 600元/辆和2 400元/辆,公司拟组建一个不超过21辆车的客运车队,并要求B 型车不多于A 型车7辆.若每天运送人数不少于900,且使公司从甲地去乙地的营运成本最小,那么应配备A 型车、B 型车各多少辆?解 设A 型、B 型车辆分别为x 、y 辆,相应营运成本为z 元,则z =1 600x +2 400y .由题意,得x ,y 满足约束条件⎩⎪⎨⎪⎧x +y ≤21,y ≤x +7,36x +60y ≥900,x ,y ≥0,x ,y ∈N .作可行域如图所示,可行域的三个顶点坐标分别为P (5,12),Q (7,14),R (15,6).由图可知,当直线z =1 600x +2 400y 经过可行域的点P 时,直线z =1 600x +2 400y 在y 轴上的截距z2 400最小,即z 取得最小值.故应配备A 型车5辆、B 型车12辆,可以满足公司从甲地去乙地的营运成本最小. 思维升华 解线性规划应用问题的一般步骤: (1)分析题意,设出未知量; (2)列出线性约束条件和目标函数; (3)作出可行域并利用数形结合求解; (4)作答.(2015·陕西改编)某企业生产甲、乙两种产品均需用A ,B 两种原料,已知生产1吨每种产品所需原料及每天原料的可用限额如表所示,如果生产1吨甲、乙产品可获利润分别为3万元、4万元,则该企业每天可获得最大利润为________万元.甲 乙 原料限额 A (吨) 3 2 12 B (吨)128答案 18解析 设每天甲、乙的产量分别为x 吨,y 吨,由已知可得⎩⎪⎨⎪⎧3x +2y ≤12,x +2y ≤8,x ≥0,y ≥0,目标函数z =3x +4y ,线性约束条件表示的可行域如图阴影部分所示:可得目标函数在点A 处取到最大值.由⎩⎪⎨⎪⎧x +2y =8,3x +2y =12,得A (2,3). 则z max =3×2+4×3=18(万元).8.含参数的线性规划问题的易错点典例 已知实数x ,y 满足⎩⎪⎨⎪⎧y ≥1,y ≤2x -1,x +y ≤m ,如果目标函数z =x -y 的最小值为-1,则实数m =________.易错分析 题目给出的区域边界“两静一动”,可先画出已知边界表示的区域,分析动直线的位置时容易出错,没有抓住直线x +y =m 和直线y =-x 平行这个特点;另外在寻找最优点时也容易找错区域的顶点.解析 显然,当m <2时,不等式组表示的平面区域是空集;当m =2时,不等式组表示的平面区域只包含一个点A (1,1).此时z min =1-1=0≠-1. 显然都不符合题意.故必有m >2,此时不等式组⎩⎪⎨⎪⎧y ≥1,y ≤2x -1,x +y ≤m所表示的平面区域如图所示,平面区域为一个三角形区域,其顶点为A (1,1),B (m -1,1),C (m +13,2m -13).由图可知,当直线y =x -z 经过点C 时,z 取得最小值, 最小值为m +13-2m -13=2-m3.由题意,得2-m3=-1,解得m =5.答案 5温馨提醒 (1)当约束条件含有参数时,要注意根据题目条件,画出符合条件的可行域.本题因含有变化的参数,可能导致可行域画不出来. (2)应注意直线y =x -z 经过的特殊点.[方法与技巧]1.平面区域的画法:线定界、点定域(注意实虚线).2.求最值:求二元一次函数z =ax +by (ab ≠0)的最值,将函数z =ax +by 转化为直线的斜截式:y =-a b x +z b ,通过求直线的截距zb 的最值间接求出z 的最值.最优解在顶点或边界取得.3.解线性规划应用题,可先找出各变量之间的关系,最好列成表格,然后用字母表示变量,列出线性约束条件;写出要研究的函数,转化成线性规划问题.4.利用线性规划的思想结合代数式的几何意义可以解决一些非线性规划问题. [失误与防范]1.画出平面区域.避免失误的重要方法就是首先使二元一次不等式标准化.2.在通过求直线的截距z b 的最值间接求出z 的最值时,要注意:当b >0时,截距zb 取最大值时,z 也取最大值;截距z b 取最小值时,z 也取最小值;当b <0时,截距zb 取最大值时,z 取最小值;截距zb 取最小值时,z 取最大值.A 组 专项基础训练(时间:30分钟)1.直线2x +y -10=0与不等式组⎩⎪⎨⎪⎧x ≥0,y ≥0,x -y ≥-2,4x +3y ≤20表示的平面区域的公共点有________个.答案 1解析 由不等式组画出平面区域如图(阴影部分).直线2x +y -10=0恰过点A (5,0),且其斜率k =-2<k AB =-43,即直线2x +y -10=0与平面区域仅有一个公共点A (5,0).2.若点(m,1)在不等式2x +3y -5>0所表示的平面区域内,则m 的取值范围是________. 答案 m >1解析 由2m +3-5>0,得m >1.3.设变量x ,y 满足约束条件⎩⎪⎨⎪⎧x +y -2≥0,x -y -2≤0,y ≥1,则目标函数z =x +2y 的最小值为________.答案 3解析 由线性约束条件画出可行域(如图所示).由z =x +2y ,得y =-12x +12z ,12z 的几何意义是直线y =-12x +12z 在y 轴上的截距,要使z 最小,需使12z 最小,易知当直线y =-12x +12z 过点A (1,1)时,z 最小,最小值为3.4.若不等式组⎩⎪⎨⎪⎧x -y ≥0,2x +y ≤2,y ≥0,x +y ≤a ,表示的平面区域是一个三角形,则a 的取值范围是______________. 答案 (0,1]∪⎣⎡⎭⎫43,+∞ 解析 不等式组⎩⎨⎧x -y ≥0,2x +y ≤2,y ≥0表示的平面区域如图(阴影部分),求得A ,B 两点的坐标分别为⎝⎛⎭⎫23,23和(1,0),若原不等式组表示的平面区域是一个三角形,则a 取值范围是0<a ≤1或a ≥43.5.某公司生产甲、乙两种桶装产品.已知生产甲产品1桶需耗A 原料1千克、B 原料2千克;生产乙产品1桶需耗A 原料2千克、B 原料1千克.每桶甲产品的利润是300元,每桶乙产品的利润是400元.公司在生产这两种产品的计划中,要求每天消耗A 、B 原料都不超过12千克.通过合理安排生产计划,从每天生产的甲、乙两种产品中,公司共可获得的最大利润是________元. 答案 2 800解析 设每天生产甲种产品x 桶,乙种产品y 桶,则根据题意得x 、y 的约束条件为⎩⎪⎨⎪⎧x ≥0,x ∈N ,y ≥0,y ∈N ,x +2y ≤12,2x +y ≤12.设获利z 元, 则z =300x +400y . 画出可行域如图.画直线l :300x +400y =0, 即3x +4y =0.平移直线l ,从图中可知,当直线过点M 时, 目标函数取得最大值.由⎩⎪⎨⎪⎧ x +2y =12,2x +y =12,解得⎩⎪⎨⎪⎧x =4,y =4,即M 的坐标为(4,4),∴z max =300×4+400×4=2 800(元).6.若函数y =2x 图象上存在点(x ,y )满足约束条件⎩⎪⎨⎪⎧x +y -3≤0,x -2y -3≤0,x ≥m ,则实数m 的最大值为________. 答案 1解析 在同一直角坐标系中作出函数y =2x的图象及⎩⎪⎨⎪⎧x +y -3≤0,x -2y -3≤0所表示的平面区域,如图阴影部分所示.由图可知,当m ≤1时,函数y =2x 的图象上存在点(x ,y )满足约束条件,故m 的最大值为1.7.(2015·枣庄模拟)已知实数x ,y 满足约束条件⎩⎪⎨⎪⎧x >0,4x +3y ≤4,y ≥0,则ω=y +1x的最小值是________. 答案 1解析 作出不等式组对应的平面区域如图,ω=y +1x 的几何意义是区域内的点P (x ,y )与定点A (0,-1)所在直线的斜率,由图象可知当P 位于点D (1,0)时,直线AP 的斜率最小,此时ω=y +1x 的最小值为-1-00-1=1.8.已知实数x ,y 满足⎩⎪⎨⎪⎧x -2y +1≥0,x <2,x +y -1≥0,则z =2x -2y -1的取值范围是__________.答案 [-53,5)解析 画出不等式组所表示的区域,如图中阴影部分所示,可知2×13-2×23-1≤z <2×2-2×(-1)-1,即z 的取值范围是[-53,5).9.铁矿石A 和B 的含铁率a ,冶炼每万吨铁矿石的CO 2的排放量b 及每万吨铁矿石的价格c 如表:a b (万吨) c (百万元)A 50% 1 3 B70%0.56某冶炼厂至少要生产1.9(万吨)铁,若要求CO 2的排放量不超过2(万吨),则购买铁矿石的最少费用为________(百万元). 答案 15解析 设购买铁矿石A 、B 分别为x 万吨,y 万吨,购买铁矿石的费用为z (百万元),则⎩⎪⎨⎪⎧0.5x +0.7y ≥1.9,x +0.5y ≤2,x ≥0,y ≥0.目标函数z =3x +6y ,由⎩⎪⎨⎪⎧0.5x +0.7y =1.9,x +0.5y =2,得⎩⎪⎨⎪⎧x =1,y =2.记P (1,2), 画出可行域可知,当目标函数z =3x +6y 过点P (1,2)时,z 取到最小值15. 10.设实数x ,y 满足约束条件⎩⎪⎨⎪⎧3x -y -6≤0,x -y +2≥0,x ≥0,y ≥0,若目标函数z =ax +by (a >0,b >0)的最大值为10,则a 2+b 2的最小值为________. 答案2513解析 因为a >0,b >0, 所以由可行域得,如图,当目标函数过点(4,6)时z 取最大值,∴4a +6b =10.a 2+b 2的几何意义是直线4a +6b =10上任意一点到点(0,0)的距离的平方,那么其最小值是点(0,0)到直线4a +6b =10距离的平方,则a 2+b 2的最小值是2513.B 组 专项能力提升(时间:20分钟)11.已知变量x ,y 满足约束条件⎩⎪⎨⎪⎧x +2y ≥1,x -y ≤1,y -1≤0,若z =x -2y 的最大值与最小值分别为a ,b ,且方程x 2-kx +1=0在区间(b ,a )上有两个不同实数解,则实数k 的取值范围是__________. 答案 (-103,-2)解析 作出可行域,如图所示,则目标函数z =x -2y 在点(1,0)处取得最大值1,在点(-1,1)处取得最小值-3, ∴a =1,b =-3,从而可知方程x 2-kx +1=0在区间(-3,1)上有两个不同实数解. 令f (x )=x 2-kx +1,则⎩⎪⎨⎪⎧f (-3)>0,f (1)>0,-3<k2<1,Δ=k 2-4>0⇒-103<k <-2.12.在平面直角坐标系中,点P 是由不等式组⎩⎪⎨⎪⎧x ≥0,y ≥0,x +y ≥1所确定的平面区域内的动点,Q 是直线2x +y =0上任意一点,O 为坐标原点,则|OP →+OQ →|的最小值为________. 答案55解析 在直线2x +y =0上取一点Q ′,使得Q ′O →=OQ →, 则|OP →+OQ →|=|OP →+Q ′O →| =|Q ′P →|≥|P ′P →|≥|BA →|,其中P ′,B 分别为点P ,A 在直线2x +y =0上的投影,如图.因为|AB →|=|0+1|12+22=55,因此|OP →+OQ →|min =55.13.设平面点集A ={(x ,y )|(y -x )·(y -1x )≥0},B ={(x ,y )|(x -1)2+(y -1)2≤1},则A ∩B 所表示的平面图形的面积为________. 答案 π2解析 平面点集A 表示的平面区域就是不等式组⎩⎪⎨⎪⎧ y -x ≥0,y -1x ≥0与⎩⎪⎨⎪⎧y -x ≤0,y -1x≤0表示的两块平面区域,而平面点集B 表示的平面区域为以点(1,1)为圆心, 以1为半径的圆及圆的内部, 作出它们表示的平面区域如图所示,图中的阴影部分就是A ∩B 所表示的平面图形. 由于圆和曲线y =1x 关于直线y =x 对称,因此,阴影部分所表示的图形面积为圆面积的12,即为π2.14.已知圆C :(x -a )2+(y -b )2=1,平面区域Ω:⎩⎪⎨⎪⎧ x +y -7≤0,x -y +3≥0,y ≥0.若圆心C ∈Ω,且圆C与x 轴相切,则a 2+b 2的最大值为________.答案 37解析 由已知得平面区域Ω为△MNP 内部及边界.∵圆C 与x 轴相切,∴b =1. 显然当圆心C 位于直线y =1与x +y -7=0的交点(6,1)处时,a max =6.∴a 2+b 2的最大值为62+12=37.15.已知变量x ,y 满足约束条件⎩⎪⎨⎪⎧ x +2y -3≤0,x +3y -3≥0,y -1≤0,若目标函数z =ax +y (其中a >0)仅在点(3,0)处取得最大值,则a 的取值范围是__________.答案 ⎝⎛⎭⎫12,+∞解析 画出x 、y 满足约束条件的可行域如图所示,要使目标函数z =ax +y 仅在点(3,0)处取得最大值,则直线y =-ax +z 的斜率应小于直线x +2y -3=0的斜率,即-a <-12,∴a >12.16.给定区域D :⎩⎪⎨⎪⎧ x +4y ≥4,x +y ≤4,x ≥0,令点集T ={(x 0,y 0)∈D |x 0,y 0∈Z ,(x 0,y 0)是z =x +y 在D上取得最大值或最小值的点},则T 中的点共确定________条不同的直线.答案 6解析 作出图形可知,△ABF 所围成的区域即为区域D ,其中A (0,1)是z 在D 上取得最小值的点,B ,C ,D ,E ,F 是z 在D 上取得最大值的点,则T 中的点共确定AB ,AC ,AD ,AE ,AF ,BF 共6条不同的直线.。
3.3.2简单的线性规划问题(二)►知识点一求解线性规划最优整数解的方法1.平移找解法:先打网格、描整点、平移直线l,最先经过或最后经过的整点便是最优解,这种方法需充分利用非整数最优解的信息,结合精确的作图进行.当可行域是有限区域且整点个数又较少时,可逐个将整点坐标代入目标函数求值,经比较求最优解.2.调整优值法:先求非整点最优解及最优值,再借助不定方程知识调整最优解,最后筛选出整点最优解.3.由于作图有误差,有时由图形不一定能准确而迅速地找到最优解,此时将可能的解逐一检验即可.►知识点二线性规划问题的实际应用1.线性规划的理论和方法主要用于解决以下两类问题:一是在人力、物力、资金等资源一定的条件下,如何使用它们来完成最多的任务;二是给定一项任务,如何合理安排和规划,能以最少的人力、财力、物力、资金等资源来完成该项任务.2.求解线性规划应用题的步骤解答线性规划应用题的一般步骤(1)审题——仔细阅读,对关键部分进行“精读”,准确理解题意,明确有哪些限制条件,起关键作用的变量有哪些,由于线性规划应用题中的量较多,为了理顺题目中量与量之间的关系,有时可借助表格来理顺.(2)转化——设元.写出约束条件和目标函数,从而将实际问题转化为数学上的线性规划问题.(3)求解——解这个纯数学的线性规划问题.(4)作答——就应用题提出的问题作出回答.考点一求目标函数的最优整数解例1画出2x-3<y≤3表示的平面区域,并求出所有正整数解.【变式】 设变量x ,y 满足条件⎩⎪⎨⎪⎧3x +2y ≤10,x +4y ≤11,x ∈Z ,y ∈Z ,x >0,y >0,求S =5x +4y 的最大值.考点二 线性规划的实际应用例2 某农户计划种植黄瓜和韭菜,种植面积不超过50亩,投入资金不超过54万元,已知种植黄瓜和韭菜的产量、成本和售价如下表:为使一年的种植总利润(总利润=总销售收入-总种植成本)最大,那么黄瓜和韭菜的种植面积(单位:亩)应分别为多少亩?[小结]线性规划的实际应用问题,关键是建立线性规划的数学模型,需要通过审题理解题意,找出各量之间的关系,找出线性约束条件,写出所研究的目标函数,通过数形结合解答问题;解线性规划应用题时,先转化为简单的线性规划问题,再按作图、平移、求值的步骤完成即可.练习:1.直线2x +y -10=0与不等式组⎩⎪⎨⎪⎧x ≥0,y ≥0,x -y ≥-2,4x +3y ≤20表示的平面区域的公共点有( ) A .0个 B .1个C .2个 D .无数个2.在“家电下乡”活动中,某厂要将100台洗衣机运往邻近的乡镇.现有4辆甲型货车和8辆乙型货车可供使用.每辆甲型货车运输费用400元,可装洗衣机20台;每辆乙型货车运输费用300元,可装洗衣机10台.若每辆车至多只运一次,则该厂所花的最少运输费用为( )A .2000元B .2200元C .2400元D .2800元3.某公司租赁甲、乙两种设备生产A ,B 两类产品,甲种设备每天能生产A 类产品5件和B 类产品10件,乙种设备每天能生产A 类产品6件和B 类产品20件.已知设备甲每天的租赁费为200元,设备乙每天的租赁费为300元,现该公司至少要生产A 类产品50件,B 类产品140件,所需租赁费最少为________元.。
第十四课时二元一次不等式(组)与简单的线性规划问题【知识与技能】会画出二元一次不等式(组)所表示的平面区域.【重点难点】教学重点:二元一次不等式(组)表示的平面区域.教学难点:准确理解和判断二元一次不等式所表示的平面区域在直线的哪一侧.【教学过程】一、问题与探究1.给出不等式(1)2x+3y-4>0,(2)x-4y+1≤0,观察它们有什么共同特点?提示:都含有个未知数,未知数的次数都是.归纳:(1)含有未知数,并且未知数的次数是的不等式叫做二元一次不等式.由几个二元一次不等式组成的不等式组叫做二元一次不等式组.(2)满足二元一次不等式(组)的x和y的取值构成的有序数对(x,y),称为二元一次不等式(组)的一个,所有这样的有序数对(x,y)构成的集合称为二元一次不等式(组)的.2.如图作直线x+y-1=0,此直线将坐标平面分成几部分?提示:三个部分.即直线的两侧与直线上.3.在直线上任取点P(x0,y0),它与方程x+y-1=0有怎样的关系?提示:P点的坐标满足方程.4.在直线上方取点(0,2),(1,3),(0,5),(2,2),把它们分别代入式子x+y-1中,其符号怎样?在直线的下方取点呢?提示:直线上方的点的坐标都满足x+y-1>0,直线下方的点的坐标都满足x+y-1<0.归纳:(1)直线l:ax+by+c=0把直角坐标平面分成的三个部分:①直线l上的点(x,y)的坐标满足.②直线l一侧的平面区域内的点(x,y)的坐标满足ax+by+c>0,另一侧平面区域内的点(x,y)的坐标满足.(2)在直角坐标平面内,把直线l:ax+by+c=0画成,表示平面区域包括这一边界直线;画成表示平面区域不包括这一边界直线.(3)①对于直线ax+by+c=0同一侧的所有点,把它的坐标(x,y)代入ax+by+c所得的符号都.②在直线ax+by+c=0的一侧取某个特殊点(x0,y0),由的符号可以断定ax+by+c>0表示的是直线ax+by+c=0哪一侧的平面区域.(4)二元一次不等式组表示的平面区域是各个不等式表示的平面区域的.二、合作与探究类型1 二元一次不等式表示的平面区域【例1】画出下列不等式表示的平面区域:(1)2x +y -10<0; (2)y ≤-2x +3.小结:1.画平面区域时,要分清实线和虚线,“≥”“≤”应画成实线如(2),“>,<”应画成虚线,如(1).2.二元一次不等式表示的平面区域的画法是以线定界,以点定域(以Ax +By +C >0为例).(1)“以线定界”,即画二元一次方程Ax +By +C =0表示的直线定边界,其中要注意实线或虚线.(2)“以点定域”,由于对在直线Ax +By +C =0同侧的点,实数Ax +By +C 的值的符号都相同,故为了确定Ax +By +C 的符号,可采用取特殊点法,如取原点等.【练习】画出下列不等式表示的平面区域:(1)2x -3y +6≥0; (2)x ≥1; (3)2y +3<0.类型2 二元一次不等式组表示的平面区域 【例2】已知不等式组⎩⎪⎨⎪⎧x >0,y >0,4x +3y ≤12.(1)画出不等式组表示的平面区域;(2)求不等式所表示的平面区域的面积;(3)求不等式所表示的平面区域内的整点坐标.小结:1.在画二元一次不等式组所表示的平面区域时,应先画出每个不等式表示的区域,再取它们的公共部分即可,其步骤为:①画线(注意实、虚);②定侧;③求“交”;④表示.2.画出不等式表示的平面区域后,常常要求区域面积或区域内整点的坐标.(1)求区域面积时,要先确定好平面区域的形状,注意与坐标轴垂直的直线及区域端点的坐标,这样易求底与高.必要时分割区域为特殊图形.(2)整点是横纵坐标都是整数的点,求整点坐标时要注意虚线上的点和靠近直线的点,以免出现错误.【练习】画出不等式组⎩⎪⎨⎪⎧x +2y -1≥0,2x +y -5≤0,y ≤x +2所表示的平面区域,并求其面积.类型3 用二元一次不等式组表示实际问题【例3】一工厂生产甲、乙两种产品,生产每吨产品的资源需求如下表所示,设厂里有工人200人,每天只能保证160 kW·h 的用电额度,每天用煤不得超过150 t ,请在直角坐标系中画出每天甲、乙两种产品允许的产量范围.小结:用平面区域来表示实际问题相关量的取值范围的基本方法是:先根据问题的需要设出有关量,再根据有关量的限制条件和实际意义写出不等式,组成不等式组,最后画出平面区域.注意:在实际问题中写不等式组时,必须把所有的限制条件都表示出来,而不能遗漏任何一个.【练习】甲、乙、丙三种食物的维生素A 、维生素D 的含量如下表:混合食物中至少含有560单位维生素A 和630单位维生素D.请在平面直角坐标系画出甲、乙两种食物的用量范围.三、课时小结1.一般地,二元一次不等式Ax +By +C >0或Ax +By +C <0在平面直角坐标系内表示直线Ax +By +C =0某一侧的所有点组成的平面区域.2.在画二元一次不等式表示的平面区域时,应用“直线定边界、特殊点定区域”的方法来画区域.取点时,若直线不过原点,一般用“原点定区域”;若直线过原点,则取点(1,0)即可.总之,尽量减少运算量.3.画平面区域时,注意边界线的虚实问题. 四、课时作业1.(2013·岳阳高二检测)图中阴影部分表示的平面区域满足的不等式是( ) A .x +y -1<0 B .x +y -1>0 C .x -y -1<0D .x -y -1>02.(2013·新余高二检测)在平面直角坐标系中,可表示满足不等式x 2-y 2≤0的点(x ,y )的集合(用阴影部分来表示)的是( )3.(2013·福建师大附中高二检测)在平面直角坐标系中,若点(2,t )在直线x -2y +4=0的右下方区域包括边界,则t 的取值范围是( )A .t <3B .t >3C .t ≥3D .t ≤3 4. 5.若不等式组⎩⎪⎨⎪⎧x -y +5≥0,y ≥a ,0≤x ≤2表示的平面区域是一个三角形,则a 的取值范围是( )A .a <5B .a ≥7C .5≤a <7D .a <5或a ≥7 5.点P (m ,n )不在不等式5x +4y -1>0表示的平面区域内,则m ,n 满足的条件是________. 6.(2013·苏州高二检测)不等式|2x +y +m |<3表示的平面区域包含点(0,0)和点(-1,1),则m 的取值范围是________.7.(2013·南昌高二检测)已知点(3,1)和(-4,6)在直线3x -2y +a =0的两侧,则a 的取值范围是________.8.在△ABC 中,A (3,-1),B (-1,1),C (1,3),写出△ABC (包含边界)内部所对应的二元一次不等式组.9.画出下列不等式(组)表示的平面区域.(1)(x -y )(x -y -1)≤0; (2)|3x +4y -1|<5; (3)x ≤|y |≤2x .。
苏教版高三数学上册知识点:二元一次不等式(组)与简单的线性规划问题知足二元一次不等式(组 )的 x 和 y 的取值构成有序数对(x ,y) ,全部这样的有序数对(x,y)构成的会合称为二元一次不等式 (组 )的解集。
下边是苏教版高三数学上册知识点:二元一次不等式 (组 ) 与简单的线性规划问题。
1.?知足二元一次不等式(组)的 x 和 y 的取值构成有序数对(x ,y),称为二元一次不等式(组 )的一个解,全部这样的有序数对(x, y) 构成的会合称为二元一次不等式(组)的解集。
2.?二元一次不等式(组 )的每一个解 (x ,y) 作为点的坐标对应平面上的一个点,二元一次不等式(组 )的解集对应平面直角坐标系中的一个半平面(平面地区 )。
3.?直线 l :Ax+By+C=0(A 、B 不全为零 )把坐标平面区分红两部分,此中一部分(半个平面 )对应二元一次不等式Ax+By+C>0( 或≥0),另一部分对应二元一次不等式Ax+By+C0 所表示的平面地区时,应把界限画成虚线。
8.?若点 P(x0 ,y0) 与点 P1(x1, y1)在直线 l: Ax+By+C=0 的同侧,则Ax0+By0+C 与Ax1+Byl+C 符号同样;若点P(x0,y0)与点 P1(x1,y1) 在直线 l: Ax+By+C=0 的双侧,则Ax0+By0+C 与 Ax1+Byl+C符号相反。
9.?从实质问题中抽象出二元一次不等式(组 )的步骤是:教师范读的是阅读教课中不行缺乏的部分,我常采纳范读,第1页/共2页1 / 2让少儿学习、模拟。
如领读,我读一句,让少儿读一句,边读边记;第二通读,我高声读,我高声读,少儿小声读,边学边仿;第三赏读,我借用录好配朗诵磁带,一边放录音,一边少儿频频聆听,在频频聆听中体验、品尝。
(1)依据题意,设出变量 ;(2)剖析问题中的变量,并依据各个不等关系列出常量与变量x, y 之间的不等式;(3)把各个不等式连同变量x,y 存心义的实质范围合在一同,构成不等式组。
课题 3.3. 简单的线性规划问题课时 2
学习目标1、了解线性规划的有关概念.
2、准确利用线性规划知识求解目标函数的最值.
3、掌握线性规划在解决实际问题中的应用.
重点难点准确利用线性规划知识
求解目标函数的最值.
学习流程
【回顾】:
一般地,直线y kx b
=+把平面分为两个区域:
y kx b
>+表示的区域是直线y kx b
=+。
y kx b
<+表示的区域是直线y kx b
=+。
【求知】:线性规划中的基本概念。
阅读教材82-84页,87-88页,完成下列知识点填充。
1.满足二元一次不等式(组)的x和y的取值构成有序对(x,y),所有这样的有序数对(x,y)构成的集合称为的解集。
2.一般的,在平面直角坐标系中,二元一次不等式Ax+By+C>0表示直线Ax+By+C=0某一侧所有点组成的平面区域,我们把直线画成,以表示区域不包括边界。
Ax+By+C≥0表示的平面区域包括边界,所以把边界画成。
因此,只需在直线Ax+By+C=0的同一侧取某个特殊点作为测试即可。
一般不过原点的直线直接取点验证即可。
过原点的直线可以取或者即可。
规则:“直线定界,特殊点定域”
3.对于直线Ax+By+C=0同一侧所有的点,把它的坐标代入Ax+By+C,所得的符号,二位于直线异侧的的点的坐标代入Ax+By+C后,所得的符号。
4.线性约束条件:由x,y的一次不等式(或方程)组成的
5.目标函数:
6.线性目标函数:如果目标函数是关于x,y的
7.线性规划:在____________条件下求的问题
8.可行解:满足______________的解(x,y) 9.可行域:所有__________组成的集合
10.最优解:使目标函数取得________________的可行解
【启智】:线性规划中的基本概念的理解
1.在线性约束条件下,最优解唯一吗?
2.在线性目标函数z=x+y中,目标函数z的最大、最小值与截
距的对应关系是怎样的?
【致用】:准确利用线性规划知识求解目标函数的最值,掌握线性
规划在解决实际问题中的两种类型
例1.目标函数z=4x+y,将其看成直线方程时,z的几何意义是
()
A.该直线的截距B.该直线的纵截距
C.该直线的横截距D.该直线的纵截距的相反数
例2.设变量x,y满足
⎩⎪
⎨
⎪⎧
x+y≤1,
x-y≤1,
x≥0,
则x+2y的最大值和最小值分
别为()
A.1,-1 B.2,-2 C.1,-2 D.2,-1
*例3.设m>1,在约束条件
⎩⎪
⎨
⎪⎧
y≥x
y≤mx
x+y≤1
下,目标函数z=x+5y的
最大值为4,则m的值为________.
例4.例5.例6.(见课本88页例5,例6,例7.)
【达标训练】
1..z=x-y在
⎩⎪
⎨
⎪⎧
2x-y+1≥0
x-2y-1≤0
x+y≤1
的线性约束条件下,取得最大值的可
行解为()
A.(0,1) B.(-1,-1) C.(1,0) D.(
1
2,
1
2)
2.若实数x,y满足不等式组
⎩⎪
⎨
⎪⎧
x+3y-3≥0,
2x-y-3≤0,
x-y+1≥0,
则x+y的最大值
为()
A.9 B.
15
7C.1 D.
7
15
3.已知点P(x,y)满足条件
⎩⎪
⎨
⎪⎧
x≥0
y≤x
2x+y+k≤0
(k为常数),若x+3y
的最大值为8,则k=________.
4.已知点P(x,y)在不等式组
⎩⎪
⎨
⎪⎧
x-2≤0
y-1≤0
x+2y-2≥0
表示的平面区域内运
动,则z=x-y的取值范围是()
A.[-2,-1] B.[-2,1]
C.[-1,2] D.[1,2]
*5.设动点坐标(x,y)满足
⎩⎪
⎨
⎪⎧(x-y+1)(x+y-4)≥0,
x≥3,y≥1.
则x2+y2的
最小值为()
A. 5
B.10
C.
17
2D.10
**6.在△ABC中,三顶点分别为A(2,4),B(-1,2),C(1,0),点
P(x,y)在△ABC内部及其边界上运动,则m=y-x的取值范围为
()
A.[1,3] B.[-3,1] C.[-1,3] D.[-3,-1]
【学后反思】:。