广东省深圳市罗湖区乐而思教育2017-2018学年九年级上期末复习数学试题(无答案)
- 格式:doc
- 大小:172.94 KB
- 文档页数:5
九年级上学期期末数学试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.据有关部门统计,2019年“五一小长假”期间,广东各大景点共接待游客约14400000人次,将数14400000用科学记数法表示为( )A .71.4410⨯B .70.14410⨯C .81.4410⨯D .80.14410⨯ 【答案】A【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同;当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数.【详解】14400000=1.44×1.故选:A .【点睛】本题考查科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.2.如图,在平面直角坐标系中,若反比例函数(0)k y k x=≠过点(2)2,,则k 的值为( )A .2B .2﹣C .4D .4﹣【答案】C 【解析】把(2)2,代入k y x =求解即可. 【详解】反比例函数()0k y k x≠=过点()22,, =22=4k ∴⨯,故选:C .【点睛】本题考查反比例函数图象上的点的特征,解题的关键是熟练掌握基本知识,属于中考常考题型. 3.已知三角形的面积一定,则它底边a 上的高h 与底边a 之间的函数关系的图象大致是( )A .B .C .D .【答案】D【解析】先写出三角形底边a上的高h与底边a之间的函数关系,再根据反比例函数的图象特点得出.【详解】解:已知三角形的面积s一定,则它底边a上的高h与底边a之间的函数关系为S=12ah ,即2sha=;该函数是反比例函数,且2s>0,h>0;故其图象只在第一象限.故选:D.【点睛】本题考查反比例函数的图象特点:反比例函数kyx=的图象是双曲线,与坐标轴无交点,当k>0时,它的两个分支分别位于第一、三象限;当k<0时,它的两个分支分别位于第二、四象限.4.对于不为零的两个实数a,b,如果规定:a★b=()()a b a baa bb+<⎧⎪⎨-≥⎪⎩,那么函数y=2★x的图象大致是()A. B.C. D.【答案】C【解析】先根据规定得出函数y=2★x的解析式,再利用一次函数与反比例函数的图象性质即可求解.【详解】由题意,可得当2<x,即x>2时,y=2+x,y是x的一次函数,图象是一条射线除去端点,故A、D错误;当2≥x,即x≤2时,y=﹣2x,y是x的反比例函数,图象是双曲线,分布在第二、四象限,其中在第四象限时,0<x≤2,故B错误.故选:C.【点睛】本题考查了新定义,函数的图象,一次函数与反比例函数的图象性质,根据新定义得出函数y=2★x的解析式是解题的关键.5.不论m取何值时,抛物线21y x mx=--与x轴的交点有()A.0个B.1个C.2个D.3个【答案】C【分析】首先根据题意与x 轴的交点即0y =,然后利用根的判别式判定即可.【详解】由题意,得与x 轴的交点,即0y =240m =+△>∴不论m 取何值时,抛物线21y x mx =--与x 轴的交点有两个故选C .【点睛】此题主要考查根据根的判别式判定抛物线与坐标轴的交点,熟练掌握,即可解题.6.如图,AB 是O 的直径,点C ,D 是圆上两点,且CDB ∠=28°,则AOC ∠=( )A .56°B .118°C .124°D .152°【答案】C 【分析】根据一条弧所对的圆周角是它所对的圆心角的一半可得∠BOC 的度数,再根据补角性质求解.【详解】∵∠CDB=28°,∴∠COB=2∠CDB=2×28°=56°,∴∠AOC=180°-∠COB=180°-56°=124°.故选:C【点睛】本题考查圆周角定理,根据定理得出两角之间的数量关系是解答此题的关键.7.如图,123////l l l ,两条直线与三条平行线分别交于点,,A B C 和,,D E F .已知32DE EF =,则AB AC 的值为( )A .32B .23C .35D .25【答案】C【分析】由123////l l l 得,DE AB EF BC =设3,AB k =可得答案. 【详解】解: 123////l l l ,32DE EF =, 3,2DE AB EF BC ∴== 设3,AB k = 则2,BC k =5,AC k ∴=33.55AB k AC k ∴== 故选C .【点睛】本题考查的是平行线分线段成比例,比例线段,掌握这两个知识点是解题的关键.8.下面的图形中,既是轴对称图形又是中心对称图形的是( )A .B .C .D .【答案】C【分析】根据轴对称图形和中心对称图形的定义进行判断即可.【详解】解:A 、不是轴对称图形,是中心对称图形,故此选项错误;B 、不是轴对称图形,是中心对称图形,故此选项错误;C 、既是轴对称图形,也是中心对称图形,故此选项正确;D 、是轴对称图形,不是中心对称图形,故此选项错误;故选C.【点睛】本题考查了轴对称图形和中心对称图形的定义,属于基础题型,熟知轴对称图形和中心对称图形的定义是正确判断的关键.9.如图所示的两个三角形(B 、F 、C 、E 四点共线)是中心对称图形,则对称中心是( )A .点CB .点DC .线段BC 的中点D .线段FC 的中点【答案】D 【分析】直接利用中心对称图形的性质得出答案.【详解】解:两个三角形(B 、F 、C 、E 四点共线)是中心对称图形,则对称中心是:线段FC 的中点. 故选:D .【点睛】本题比较容易,考查识别图形的中心对称性.要注意正确区分轴对称图形和中心对称图形,中心对称是要寻找对称中心,旋转180度后重合.10.如图,在正方形ABCD 中,E F ,分别为ADCD ,的中点,CE BF ,交于点G ,连接AG ,则:CFG ABG S S ∆∆=( )A .1:8B .2:15C .3:20D .1:6【答案】A 【分析】延长CE 交BA 延长线于点M ,可证AM CD =,12AGM ABG BMG S S S ==,CFG ABG ,2CFG MBG S CF S BM ⎛⎫= ⎪⎝⎭ 【详解】解: 延长CE 交BA 延长线于点M在DCE 与AME △中90D EAM AE DEMEA DEC ∠=∠=︒⎧⎪=⎨⎪∠=∠⎩DCE AME ∴≅AM CD ∴=12AGM ABG BMG S S S ∴==//CD ABCFGABG 2116CFG MBG SCF S BM ⎛⎫== ⎪⎝⎭ :1:8CFG ABG S S ∆∆=故选A【点睛】本题考查了相似三角形的性质.11.圆锥形纸帽的底面直径是18cm,母线长为27cm,则它的侧面展开图的圆心角为()A.60°B.90°C.120°D.150°【答案】C【分析】根据圆锥侧面展开图的面积公式以及展开图是扇形,扇形半径等于圆锥母线长度,再利用扇形面积求出圆心角.【详解】解:根据圆锥侧面展开图的面公式为:πrl=π×9×27=243π,∵展开图是扇形,扇形半径等于圆锥母线长度,∴扇形面积为:227243 360nππ⨯=解得:n=1.故选:C.【点睛】此题主要考查了圆锥侧面积公式的应用以及与展开图各部分对应情况,得出圆锥侧面展开图等于扇形面积是解决问题的关键.12.相邻两根电杆都用锅索在地面上固定,如图,一根电杆钢索系在离地面4米处,另一根电杆钢索系在离地面6米处,则中间两根钢索相交处点P离地面()A.2.4米B.8米C.3米D.必须知道两根电线杆的距离才能求出点P离地面距离【答案】A【分析】如图,作PE⊥BC于E,由CD//AB可得△APB∽△CPD,可得对应高CE与BE之比,根据CD∥PE 可得△BPE∽△BDC,利用对应边成比例可得比例式,把相关数值代入求解即可.【详解】如图,作PE⊥BC于E,∵CD∥AB,∴△APB∽△CPD,∴6342 AB AP BECD PC CE====,∴35 BEBC=,∵CD∥PE,∴△BPE∽△BDC,∴PE BE CD BC=,∴3 45 PE=,解得:PE=2.1.故选:A.【点睛】本题考查相似三角形的应用,平行于三角形一边的直线和其它两边相交,所构成的三角形与原三角形相似;正确作出辅助线构建相似三角形并熟练掌握相似三角形的判定定理是解题关键.二、填空题(本题包括8个小题)13.设m,n分别为一元二次方程x2+2x-2 021=0的两个实数根,则m2+3m+n=______.【答案】1.【分析】根据一元二次方程的解结合根与系数的关系即可得出m2+2m=2021、m+n=-2,将其代入m2+3m+n 中即可求出结论.【详解】∵m,n分别为一元二次方程x2+2x-2018=0的两个实数根,∴m2+2m=2021,m+n=-2,∴m2+3m+n=m2+2m+(m+n)=1+(-2)=1.故答案为1.【点睛】本题考查了根与系数的关系以及一元二次方程的解,根据一元二次方程的解结合根与系数的关系即可得出m2+2m=1、m+n=-2是解题的关键.14.一元二次方程x(x﹣3)=3﹣x的根是____.【答案】x1=3,x2=﹣1.【分析】整体移项后,利用因式分解法进行求解即可.【详解】x(x﹣3)=3﹣x,x(x﹣3)-(3﹣x)=0,(x﹣3)(x+1)=0,∴x1=3,x2=﹣1,故答案为x 1=3,x 2=﹣1.15.已知两圆内切,半径分别为2厘米和5厘米,那么这两圆的圆心距等于_____厘米.【答案】1【解析】由两圆的半径分别为2和5,根据两圆位置关系与圆心距d ,两圆半径R ,r 的数量关系间的联系和两圆位置关系求得圆心距即可.【详解】解:∵两圆的半径分别为2和5,两圆内切,∴d =R ﹣r =5﹣2=1cm ,故答案为1.【点睛】此题考查了圆与圆的位置关系.解题的关键是掌握两圆位置关系与圆心距d ,两圆半径R ,r 的数量关系间的联系.16.三角形两边长分别为3和6,第三边的长是方程x 2﹣13x+36=0的根,则该三角形的周长为_____.【答案】13【分析】利用因式分解法解方程,得到14x =,29x =,再利用三角形的三边关系进行判断,然后计算三角形的周长即可.【详解】解:∵213360x x -+=,∴(4)(9)0x x --=,∴14x =,29x =,∵369+=,∴29x =不符合题意,舍去;∴三角形的周长为:36413++=;故答案为:13.【点睛】本题考查了解一元二次方程,以及三角形的三边关系的应用,解题的关键是正确求出第三边的长度,以及掌握三角形的三边关系.17.在△ABC 中,若∠A ,∠B 满足|cosA -12|+(sinB -22)2=0,则∠C =_________. 【答案】75°【解析】根据绝对值及偶次方的非负性,可得出cosA 及sinB 的值,从而得出∠A 及∠B 的度数,利用三角形的内角和定理可得出∠C 的度数.【详解】∵|cosA -12|+(sinB 2)2=0,∴cosA=12,sinB=22, ∴∠A=60°,∠B=45°,∴∠C=180°-∠A-∠B=75°,故答案为75°.【点睛】本题考查了特殊角的三角函数值及非负数的性质,解答本题的关键是得出cosA 及sinB 的值,另外要求我们熟练掌握一些特殊角的三角函数值.18.如图,△ABC 内接于⊙O ,若∠A=α,则∠OBC=_____.【答案】90°﹣α.【分析】首先连接OC ,由圆周角定理,可求得∠BOC 的度数,又由等腰三角形的性质,即可求得∠OBC 的度数.【详解】连接OC .∵∠BOC=2∠BAC ,∠BAC=α,∴∠BOC=2α.∵OB=OC ,∴∠OBC ()()1118018029022BOC αα=︒∠=︒=︒﹣﹣﹣. 故答案为:90α︒-.【点睛】此题考查了圆周角定理与等腰三角形的性质.此题比较简单,注意掌握辅助线的作法,注意数形结合思想的应用.三、解答题(本题包括8个小题)19.已知抛物线的解析式是y =x 1﹣(k+1)x+1k ﹣1.(1)求证:此抛物线与x 轴必有两个不同的交点;(1)若抛物线与直线y =x+k 1﹣1的一个交点在y 轴上,求该二次函数的顶点坐标.【答案】(1)此抛物线与x 轴必有两个不同的交点;(1)(32,﹣94). 【分析】(1)由△=[-(k+1)]1-4×1×(1k-1)=k 1-4k+11=(k-1)1+8>0可得答案;(1)先根据抛物线与直线y=x+k 1-1的一个交点在y 轴上得出1k-1=k 1-1,据此求得k 的值,再代入函数解析式,配方成顶点式,从而得出答案.【详解】(1)∵△=[﹣(k+1)]1﹣4×1×(1k ﹣1)=k 1﹣4k+11=(k ﹣1)1+8>0,∴此抛物线与x 轴必有两个不同的交点;(1)∵抛物线与直线y =x+k 1﹣1的一个交点在y 轴上,∴1k ﹣1=k 1﹣1,解得k =1,则抛物线解析式为y =x 1﹣3x =(x ﹣32)1﹣94, 所以该二次函数的顶点坐标为(32,﹣94). 【点睛】本题主要考查的是抛物线与x 轴的交点,解题的关键是掌握二次函数y=ax 1+bx+c (a ,b ,c 是常数,a≠0)的交点与一元二次方程ax 1+bx+c=0根之间的关系及熟练求二次函数的顶点式.20.计算:2cos60°+4sin60°•tan30°﹣cos45°【答案】3﹣2. 【分析】直接利用特殊角的三角函数值代入求出答案.【详解】2cos60°+4sin60°•tan30°﹣cos45°=2×122=1+2=3. 【点睛】此题主要考查了特殊角的三角函数值,正确记忆相关数据是解题关键.21.已知:如图,抛物线y =ax 2+bx +3与坐标轴分别交于点A ,B (﹣3,0),C (1,0),点P 是线段AB 上方抛物线上的一个动点.(1)求抛物线解析式;(2)当点P 运动到什么位置时,△PAB 的面积最大?(3)过点P 作x 轴的垂线,交线段AB 于点D ,再过点P 作PE ∥x 轴交抛物线于点E ,连接DE ,请问是否存在点P 使△PDE 为等腰直角三角形?若存在,求点P 的坐标;若不存在,说明理由.【答案】(1)y =﹣x 2﹣2x +3 (2)(﹣32,154) (3)存在,P (﹣2,3)或P 517-+5317-+) 【分析】(1)用待定系数法求解;(2)过点P 作PH⊥x 轴于点H ,交AB 于点F ,直线AB 解析式为y =x+3,设P (t ,﹣t 2﹣2t+3)(﹣3<t <0),则F (t ,t+3),则PF =﹣t 2﹣2t+3﹣(t+3)=﹣t 2﹣3t ,根据S △PAB =S △PAF +S △PBF 写出解析式,再求函数最大值;(3)设P (t ,﹣t 2﹣2t+3)(﹣3<t <0),则D (t ,t+3),PD =﹣t 2﹣3t ,由抛物线y =﹣x 2﹣2x+3=﹣(x+1)2+4,由对称轴为直线x =﹣1,PE∥x 轴交抛物线于点E ,得y E =y P ,即点E 、P 关于对称轴对称,所以2E P x x +=﹣1,得x E =﹣2﹣x P =﹣2﹣t ,故PE =|x E ﹣x P |=|﹣2﹣2t|,由△PDE 为等腰直角三角形,∠DPE=90°,得PD =PE ,再分情况讨论:①当﹣3<t≤﹣1时,PE =﹣2﹣2t ;②当﹣1<t <0时,PE =2+2t【详解】解:(1)∵抛物线y =ax 2+bx+3过点B (﹣3,0),C (1,0)∴933030a b a b -+=⎧⎨++=⎩ 解得:12a b =-⎧⎨=-⎩∴抛物线解析式为y =﹣x 2﹣2x+3(2)过点P 作PH⊥x 轴于点H ,交AB 于点F∵x=0时,y =﹣x 2﹣2x+3=3∴A(0,3)∴直线AB 解析式为y =x+3∵点P 在线段AB 上方抛物线上∴设P (t ,﹣t 2﹣2t+3)(﹣3<t <0)∴F(t ,t+3)∴PF=﹣t 2﹣2t+3﹣(t+3)=﹣t 2﹣3t∴S △PAB =S △PAF +S △PBF =12PF•OH+12PF•BH=12PF•OB=32(﹣t 2﹣3t )=﹣32(t+32)2+278∴点P 运动到坐标为(﹣32,154),△PAB 面积最大 (3)存在点P 使△PDE 为等腰直角三角形设P (t ,﹣t 2﹣2t+3)(﹣3<t <0),则D (t ,t+3)∴PD=﹣t 2﹣2t+3﹣(t+3)=﹣t 2﹣3t∵抛物线y =﹣x 2﹣2x+3=﹣(x+1)2+4∴对称轴为直线x =﹣1∵PE∥x 轴交抛物线于点E∴y E =y P ,即点E 、P 关于对称轴对称∴2E P x x +=﹣1 ∴x E =﹣2﹣x P =﹣2﹣t∴PE=|x E ﹣x P |=|﹣2﹣2t|∵△PDE 为等腰直角三角形,∠DPE=90°∴PD=PE①当﹣3<t≤﹣1时,PE =﹣2﹣2t∴﹣t 2﹣3t =﹣2﹣2t解得:t 1=1(舍去),t 2=﹣2∴P(﹣2,3)②当﹣1<t <0时,PE =2+2t∴﹣t 2﹣3t =2+2t 解得:t 1=517-+,t 2=517--(舍去) ∴P(517-+,5317-+) 综上所述,点P 坐标为(﹣2,3)或(5172-+,5317-+)时使△PDE 为等腰直角三角形.【点睛】考核知识点:二次函数的综合.数形结合分析问题,运用轴对称性质和等腰三角形性质分析问题是关键. 22.某山区不仅有美丽风光,也有许多令人喜爱的土特产,为实现脱贫奔小康,某村组织村民加工包装土特产销售给游客,以增加村民收入.已知某种士特产每袋成本10元.试销阶段每袋的销售价x (元)与该士特产的日销售量y (袋)之间的关系如表:若日销售量y 是销售价x 的一次函数,试求:(1)日销售量y (袋)与销售价x (元)的函数关系式;(2)假设后续销售情况与试销阶段效果相同,要使这种土特产每日销售的利润最大,每袋的销售价应定为多少元?每日销售的最大利润是多少元?【答案】(1)y =﹣x+40;(2)要使这种土特产每日销售的利润最大,每袋的销售价应定为25元,每日销售的最大利润是225元.【分析】(1)根据表格中的数据,利用待定系数法,求出日销售量y(袋)与销售价x(元)的函数关系式即可(2)利用每件利润×总销量=总利润,进而求出二次函数最值即可.【详解】(1)依题意,根据表格的数据,设日销售量y(袋)与销售价x(元)的函数关系式为y =kx+b 得 25152020k b k b =+⎧⎨=+⎩,解得140k b =-⎧⎨=⎩, 故日销售量y(袋)与销售价x(元)的函数关系式为:y =﹣x+40;(2)依题意,设利润为w 元,得w =(x ﹣10)(﹣x+40)=﹣x 2+50x+400,整理得w =﹣(x ﹣25)2+225,∵﹣1<0,∴当x =2时,w 取得最大值,最大值为225,故要使这种土特产每日销售的利润最大,每袋的销售价应定为25元,每日销售的最大利润是225元.【点睛】本题考查了一次函数的应用,二次函数的应用,正确分析得出各量间的关系并熟练掌握二次函数的性质是解题的关键.23.如图已知一次函数y 1=2x +5与反比例函数y 2=3x-(x <0)相交于点A ,B . (1)求点A ,B 的坐标;(2)根据图象,直接写出当y ₁≤y ₂时x 的取值范围.【答案】(1)A点的坐标为(﹣32,2),B点的坐标为(﹣1,3);(2)x≤﹣32或﹣1≤x <1.【分析】(1)联立两函数解析式,解方程组即可得到交点坐标;(2)写出一次函数图象在反比例函数图象下方的x的取值范围即可.【详解】解:(1)联立两函数解析式得,253y xyx=+⎧⎪⎨=-⎪⎩,解得13xy=-⎧⎨=⎩或322xy⎧=-⎪⎨⎪=⎩,所以A点的坐标为(﹣32,2),B点的坐标为(﹣1,3);(2)根据图象可得,当y₁≤y₂时x的取值范围是x≤﹣32或﹣1≤x<1.【点睛】本题考查了反比例函数与一次函数图象的交点问题,根据解析式列出方程组求出交点坐标是解题的关键.24.如图,AB是⊙O的直径,CD是⊙O的一条弦,且CD⊥AB于E,连结AC、OC、BC.求证:∠ACO=∠BCD.【答案】证明见解析【分析】根据圆周角定理的推论即可求得.【详解】证明:∵AB是⊙O的直径,CD⊥AB,∴BC BD=.∴∠A=∠1.又∵OA=OC,∴∠1=∠A.∴∠1=∠1.即:∠ACO=∠BCD.【点睛】本题考查了圆周角定理的推论:在同圆或等圆中同弧或等弧所对圆周角相等.25.京剧脸谱是京剧艺术独特的表现形式.京剧表演中,经常用脸谱象征人物的性格,品质,甚至角色和命运.如红脸代表忠心耿直,黑脸代表强悍勇猛.现有三张不透明的卡片,其中两张卡片的正面图案为“红脸”,另外一张卡片的正面图案为“黑脸”,卡片除正面图案不同外,其余均相同,将这三张卡片背面向上洗匀,从中随机抽取一张,记录图案后放回,重新洗匀后再从中随机抽取一张.请用画树状图或列表的方法,求抽出的两张卡片上的图案都是“红脸”的概率.(图案为“红脸”的两张卡片分别记为A1、A2,图案为“黑脸”的卡片记为B)【答案】4 9【分析】根据题意画出树状图,求出所有的情况数和两次抽取的卡片上都是“红脸”的情况数,再根据概率公式计算即可.【详解】画树状图为:由树状图可知,所有可能出现的结果共有9种,其中两次抽取的卡片上都是“红脸”的结果有4种,所以P(两张都是“红脸”)49 ,答:抽出的两张卡片上的图案都是“红脸”的概率是49.【点睛】本题考查了概率的求法.用到的知识点为数状图和概率,概率=所求情况数与总情况数之比,关键是根据题意画出树状图.26.如图,AB是⊙O的直径,点C是AB延长线上的点,CD与⊙O相切于点D,连结BD、AD.(1)求证;∠BDC=∠A.(2)若∠C=45°,⊙O的半径为1,直接写出AC的长.【答案】(1)详见解析;(2)1+2【解析】(1)连接OD,结合切线的性质和直径所对的圆周角性质,利用等量代换求解(2)根据勾股定理先求OC,再求AC.【详解】(1)证明:连结OD.如图,CD与O相切于点D,OD CD,∴⊥2BDC90∠∠∴+︒=,AB是O的直径,ADB90∠∴︒=,即1290∠∠+︒=,1BDC∠∠∴=,OA OD=,1A∠∠∴=,BDC A∠∠∴=;(2)解:在Rt ODC中,C45∠︒=,2212OC ODAC OA OC∴==∴=+=+.【点睛】此题重点考查学生对圆的认识,熟练掌握圆的性质是解题的关键.27.为积极响应新旧动能转换.提高公司经济效益.某科技公司近期研发出一种新型高科技设备,每台设备成本价为30万元,经过市场调研发现,每台售价为40万元时,年销售量为600台;每台售价为45万元时,年销售量为550台.假定该设备的年销售量y(单位:台)和销售单价x(单位:万元)成一次函数关系.(1)求年销售量y 与销售单价x 的函数关系式;(2)根据相关规定,此设备的销售单价不得高于70万元,如果该公司想获得10000万元的年利润.则该设备的销售单价应是多少万元?【答案】(1)101000y x =-+;(2)该公可若想获得10万元的年利润,此设备的销售单价应是3万元.【解析】分析:(1)根据点的坐标,利用待定系数法即可求出年销售量y 与销售单价x 的函数关系式;(2)设此设备的销售单价为x 万元/台,则每台设备的利润为(x ﹣30)万元,销售数量为(﹣10x +1)台,根据总利润=单台利润×销售数量,即可得出关于x 的一元二次方程,解之取其小于70的值即可得出结论.详解:(1)设年销售量y 与销售单价x 的函数关系式为y=kx +b (k ≠0),将(40,600)、(45,53)代入y=kx +b ,得:4060045550k b k b +=⎧⎨+=⎩, 解得:101000k b =-⎧⎨=⎩, ∴年销售量y 与销售单价x 的函数关系式为y=﹣10x +1.(2)设此设备的销售单价为x 万元/台,则每台设备的利润为(x ﹣30)万元,销售数量为(﹣10x +1)台,根据题意得:(x ﹣30)(﹣10x +1)=10,整理,得:x 2﹣130x +4000=0,解得:x 1=3,x 2=2.∵此设备的销售单价不得高于70万元,∴x=3.答:该设备的销售单价应是3万元/台.点睛:本题考查了待定系数法求一次函数解析式以及一元二次方程的应用,解题的关键是:(1)根据点的坐标,利用待定系数法求出函数关系式;(2)找准等量关系,正确列出一元二次方程.九年级上学期期末数学试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.下列命题中,正确的个数是()①直径是弦,弦是直径;②弦是圆上的两点间的部分;③半圆是弧,但弧不一定是半圆;④直径相等的两个圆是等圆;⑤等于半径两倍的线段是直径.A.2个B.3个C.4个D.5个【答案】A【分析】根据弦、等圆、弧的相关概念直接进行排除选项.【详解】①直径是弦,弦是不一定是直径,故错误;②弦是圆上两点之间的线段,故错误;③半圆是弧,但弧不一定是半圆,故正确;④直径相等的两个圆是等圆,故正确;⑤等于半径两倍的弦是直径,故错误;所以正确的个数为2个;故选A.【点睛】本题主要考查圆的相关概念,正确理解圆的相关概念是解题的关键.2.已知如图所示,在Rt△ABC中,∠A=90°,∠BCA=75°,AC=8cm,DE垂直平分BC,则BE的长是()A.4cm B.8cm C.16cm D.32cm【答案】C【分析】连接CE,先由三角形内角和定理求出∠B的度数,再由线段垂直平分线的性质及三角形外角的性质求出∠CEA的度数,由直角三角形中30°所对的直角边是斜边的一半即可解答.【详解】解:连接CE,∵Rt△ABC中,∠A=90°,∠BCA=75°,∴∠B=90°﹣∠BCA=90°﹣75°=15°,∵DE垂直平分BC,∴BE=CE,∴∠BCE=∠B=15°,∴∠AEC=∠BCE+∠B=30°,∵Rt△AEC中,AC=8cm,∴CE=2AC=16cm,∵BE=CE,∴BE=16cm.故选:C .【点睛】此题考查的是垂直平分线的性质、等腰三角形的性质、三角形外角的性质和直角三角形的性质,掌握垂直平分线的性质、等边对等角、三角形外角的性质和30°所对的直角边是斜边的一半是解决此题的关键. 3.已知抛物线24y x bx =-++经过(2,)n -和(4, )n 两点,则n 的值为( )A .﹣2B .﹣4C .2D .4 【答案】B【分析】根据(2, )n -和(4, )n 可以确定函数的对称轴=1x ,再由对称轴的2b x =即可求解; 【详解】解:抛物线24y x bx =-++经过(2, )n -和(4, )n 两点,可知函数的对称轴=1x , 12b ∴=, 2b ∴=;224y x x ∴=-++,将点(2, )n -代入函数解析式,可得=-4n ;故选B .【点睛】本题考查二次函数图象上点的坐标;熟练掌握二次函数图象上点的对称性是解题的关键.4.若关于x 的方程(m ﹣2)x 2+mx ﹣1=0是一元二次方程,则m 的取值范围是( )A .m≠2B .m=2C .m≥2D .m≠0【答案】A【解析】解:∵关于x 的方程(m ﹣1)x 1+mx ﹣1=0是一元二次方程,∴m-1≠0,解得:m≠1.故选A . 5.如图,已知A (2,1),现将A 点绕原点O 逆时针旋转90°得到A1,则A1的坐标是( )A .(﹣1,2)B .(2,﹣1)C .(1,﹣2)D .(﹣2,1)【答案】A 【解析】根据点(x ,y )绕原点逆时针旋转90°得到的坐标为(-y ,x )解答即可.【详解】已知A (2,1),现将A 点绕原点O 逆时针旋转90°得到A 1,所以A 1的坐标为(﹣1,2).故选A.【点睛】本题考查的是旋转的性质,熟练掌握坐标的旋转是解题的关键.6.下列说法中,正确的是( )A .不可能事件发生的概率为0B .随机事件发生的概率为12C .概率很小的事件不可能发生D .投掷一枚质地均匀的硬币100次,正面朝上的次数一定为50次【答案】A【解析】试题分析:不可能事件发生的概率为0,故A 正确;随机事件发生的概率为在0到1之间,故B 错误;概率很小的事件也可能发生,故C 错误;投掷一枚质地均匀的硬币100次,正面向上的次数为50次是随机事件,D 错误;故选A .考点:随机事件.7.已知关于x 的一元二次方程x 2-(2k+1)x+k+1=0, 若x 1+x 2=3,则k 的值是( )A .0B .1C .﹣1D .2 【答案】B【分析】利用根与系数的关系得出x 1+x 2=2k+1,进而得出关于k 的方程求出即可.【详解】解:设方程的两个根分别为x 1,x 2,由x 1+x 2=2k+1=3,解得:k=1,故选B .【点睛】本题考查了一元二次方程的根与系数的关系,能把求k 的值的问题转化为解方程得问题是关键. 8.《九章算术》总共收集了246个数学问题,这些算法要比欧洲同类算法早1500多年,对中国及世界数学发展产生过重要影响. 在《九章算术》中有很多名题,下面就是其中的一道. 原文:“今有圆材,埋在壁中,不知大小,以锯锯之,深一寸,锯道长一尺,问径几何?”翻译:如图,CD 为O 的直径,弦AB CD⊥于点E . 1CE =寸,10AB =寸,则可得直径CD 的长为( )A.13寸B.26寸C.18寸D.24寸【答案】B【分析】根据垂径定理可知AE的长.在Rt△AOE中,运用勾股定理可求出圆的半径,进而可求出直径CD 的长.【详解】⊥连接OA,AB CD由垂径定理可知,点E是弦AB的中点,1AE=AB=52OE=OC CE=OA CE--设半径为r,由勾股定理得,22222OA=AE OE=OA+(OA CE)+-即222+r=5(r-1)解得:r=13所以CD=2r=26,即圆的直径为26,故选B.【点睛】本题主要考查了垂径定理和勾股定理的性质和求法,熟练掌握相关性质是解题的关键.9.用配方法解方程x2+2x﹣5=0时,原方程应变形为()A.(x﹣1)2=6 B.(x+1)2=6 C.(x+2)2=9 D.(x﹣2)2=9【答案】B【解析】x2+2x﹣5=0,x2+2x=5,x2+2x+1=5+1,(x+1)2=6,故选B.10.在半径为6cm的圆中,长为6cm的弦所对的圆周角...的度数为()A.30°B.60°C.30°或150°D.60°或120°【答案】C【解析】试题解析:如图,弦AB所对的圆周角为∠C,∠D,连接OA、OB,因为AB=OA=OB=6,所以,∠AOB=60°,根据圆周角定理知,∠C=12∠AOB=30°,根据圆内接四边形的性质可知,∠D=180°-∠C=150°,所以,弦AB所对的圆周角的度数30°或150°.故选C.11.如图, 在同一坐标系中(水平方向是x轴),函数kyx=和3y kx=+的图象大致是()A.B.C.D.【答案】A【分析】根据一次函数及反比例函数的图象与系数的关系作答.【详解】解:A 、由函数y=k x 的图象可知k >0与y=kx+3的图象k >0一致,正确; B 、由函数y=k x的图象可知k >0与y=kx+3的图象k >0,与3>0矛盾,错误; C 、由函数y=k x的图象可知k <0与y=kx+3的图象k <0矛盾,错误; D 、由函数y=k x的图象可知k >0与y=kx+3的图象k <0矛盾,错误. 故选A .【点睛】本题主要考查了反比例函数的图象性质和一次函数的图象性质,要掌握它们的性质才能灵活解题.12.设1a =,则代数式2212a a +-的值为( )A .-6B .-5C .6D .5 【答案】A【分析】把a 2+2a-12变形为a 2+2a+1-13,根据完全平方公式得出(a+1)2-13,代入求出即可.【详解】∵1a =, ∴2212a a +-= a 2+2a+1-13=(a+1)2-13=-1+1)2-13=7-13=-6.故选A.【点睛】本题考查了二次根式的化简,完全平方公式的运用,主要考查学生的计算能力.题目比较好,难度不大.二、填空题(本题包括8个小题)13.一个圆锥的侧面展开图是半径为8的半圆,则该圆锥的全面积...是______________. 【答案】48π【分析】首先利用圆的面积公式即可求得侧面积,利用弧长公式求得圆锥的底面半径,得到底面面积,据此即可求得圆锥的全面积. 【详解】解:侧面积是:221122832r πππ=⨯⨯=, 底面圆半径为:28242ππ⨯÷=, 底面积2416ππ=⨯=,故圆锥的全面积是:321648πππ+=,故答案为:48π【点睛】本题考查了圆锥的计算,正确理解圆锥的侧面展开图与原来的扇形之间的关系是解决本题的关键,理解圆锥的母线长是扇形的半径,圆锥的底面圆周长是扇形的弧长.14.有两辆车按1,2编号,舟舟和嘉嘉两人可任意选坐一辆车.则两人同坐2号车的概率为_______. 【答案】14. 【解析】试题分析:列表或画树状图得出所有等可能的情况数,找出舟舟和嘉嘉同坐2号车的情况数,即可求出所求的概率:列表如下:∵所有等可能的情况有4种,其中舟舟和嘉嘉同坐2号车的的情况有1种,∴两人同坐3号车的概率P=14. 考点:1.列表法或树状图法;2.概率.15.若关于x 的方程250x x k ++=的一个根是1,则k 的值为______.【答案】-6【分析】把x=1代入原方程就可以得到一个关于k 的方程,解这个方程即可求出k 的值.【详解】把1x =代入方程250x x k ++=得到150k ++=,解得6k=-.故答案为:−6.【点睛】本题考查了一元二次方程的解,将方程的根代入并求值是解题的关键.16.若12,x x 是一元二次方程220x x +-=的两个实数根,则1212x x x x +-=_______.【答案】1【分析】利用一元二次方程根与系数的关系求出121x x +=-,122x x ⋅=-即可求得答案.【详解】∵12,x x 是一元二次方程220x x +-=的两个实数根,∴121x x +=-,122x x ⋅=-,。
广东省深圳市2017-2018届九年级上学期期末数学试卷一、选择题(本大题共6小题,每小题3分,共18分)每题只有一个正确的选项1.方程x2=1的根是()A.x=1 B.x=﹣1 C.x1=1,x2=0 D.x1=1,x2=﹣12.如图,该几何体的左视图是()A. B.C.D.3.一个口袋中有红球、白球共20只,这些球除颜色外都相同,将口袋中的球搅拌均匀,从中随机摸出一只球,记下它的颜色后再放回,不断重复这一过程,共摸了50次,发现有30次摸到红球,则估计这个口块中有红球大约多少只?()A.8只B.12只C.18只D.30只4.若x=2关于x的一元二次方程x2﹣ax+2=0的一个根,则a的值为()A.3 B.﹣3 C.1 D.﹣15.如果等腰三角形的面积为10,底边长为x,底边上的高为y,则y 与x的函数关系式为()A.y=B.y=C.y=D.y=6.如图,抛物线y=x2﹣4x与x轴交于点O、A,顶点为B,连接AB 并延长,交y轴于点C,则图中阴影部分的面积和为()A.4 B.8 C.16 D.32二、填空题(本大题共8个小题,每小题3分,共24分)7.2a3÷a2=__________.8.点A(m,m﹣3)在第一象限,则实数m的取值范围为__________.9.已知α,β均为锐角,且,则α+β=__________.10.如图,直线a∥b,直线l与a相交于点P,与直线b相交于点Q,且PM垂直于l,若∠1=58°,则∠2=__________.11.从﹣1,0,2这三个数中,任取两个数分别作为系数a,b代入ax2+bx+2=0中.在所有可能的结果中,任取一个方程为有实数解的一元二次方程的概率是__________.12.如图在平面直角坐标系中,点A在抛物线y=x2﹣4x+6上运动.过点A作AC⊥x轴于点C,以AC为对角线作矩形ABCD,则对角线BD的最小值为__________.13.如图,已知点A在双曲线上,过点A作AC⊥x轴于点C,OC=3,线段OA的垂直平分线交OC于点B,则△ABC的周长为__________.14.菱形ABCD的对角线AC=6cm,BD=4cm,以AC为边作正方形ACEF,则BF长为__________.三、解答题(本大题共4小题,每小题各6分,共24分)15.计算:.16.(1)如图,六边形ABCDEF满足:AB EF,AF CD.仅用无刻度的直尺画出一条直线l,使得直线l能将六边形ABCDEF的面积给平分;(2)假设你所画的这条直线l与六边形ABCDEF的AF边与CD边(或所在的直线)分别交于点G与点H,则下列结论:①直线l还能平分六边形ABCDEF的周长;②点G与点H恰为AF边与CD边中点;③AG=CH,FG=DH;④AG=DH,FG=CH.其中,正确命题的序号为__________.17.已知关于x的一元二次方程x2﹣(k﹣2)x+2k=0.(1)若x=1是这个方程的一个根,求k的值和它的另一根;(2)当k=﹣1时,求x12﹣3x2的值.18.在不透明的袋子中有四张标着数字1,2,3,4 的卡片,这些卡片除数字外都相同.甲同学按照一定的规则抽出两张卡片,并把卡片上的数字相加.如图是他所画的树状图的一部分.(1)帮甲同学完成树状图;(2)求甲同学两次抽到的数字之和为偶数的概率.四、(本大题共4小题,每小题各8分,共32分)19.如图,四边形ABCD为菱形,M为BC上一点,连接AM交对角线BD于点G,并且∠ABM=2∠BAM.(1)求证:AG=BG;(2)若点M为BC的中点,同时S△BMG=1,求三角形ADG的面积.20.据报道,历经一百天的调查研究,景德镇PM 2.5源解析已经通过专家论证.各种调查显示,机动车成为PM 2.5的最大来源,一辆车每行驶20千米平均向大气里排放0.035千克污染物.校环保志愿小分队从环保局了解到景德镇100天的空气质量等级情况,并制成统计图和表:2016年景德镇市100天空气质量等级天数统计表(1)表中a=__________,b=__________,图中严重污染部分对应的圆心角n=__________°;(2)彤彤是环保志愿者,她和同学们调查了机动车每天的行驶路程,了解到每辆车每天平均出行25千米.已知景德镇市2016年机动车保有量已突破50万辆,请你通过计算,估计2016年景德镇市一天中出行的机动车至少要向大气里排放多少千克污染物?21.如图,四边形ABCD为正方形,点A的坐标为(0,1),点B 的坐标为(0,﹣2),反比例函数y=的图象经过点C,一次函数y=ax+b 的图象经过A、C两点(1)求反比例函数与一次函数的解析式;(2)求反比例函数与一次函数的另一个交点M的坐标;(3)若点P是反比例函数图象上的一点,△OAP的面积恰好等于正方形ABCD的面积,求P点的坐标.22.小敏将笔记本电脑水平放置在桌子上,显示屏OB与底板OA所在水平线的夹角为120°,感觉最舒适(如图1),侧面示意图为图2.使用时为了散热,她在底板下垫入散热架ACO′后,电脑转到AO′B′位置(如图3),侧面示意图为图4.已知OA=OB=24cm,O′C⊥OA于点C,O′C=12cm.(1)求∠CAO′的度数;(2)显示屏的顶部B′比原来升高了多少?五、(本大题共1小题,每小题10分,共10分)23.如图,抛物线y=﹣x2+bx+c交x轴于点A(﹣3,0)和点B,交y轴于点C(0,3).(1)求抛物线的函数表达式;(2)若点P在抛物线上,且S△AOP=4S BOC,求点P的坐标;(3)如图b,设点Q是线段AC上的一动点,作DQ⊥x轴,交抛物线于点D,求线段DQ长度的最大值.六、(本大题共1小题,每小题12分,共12分)24.如图,在Rt△ABC中,∠ACB=90°,AC=6,BC=8,点D以每秒1个单位长度的速度由点A向点B匀速运动,到达B点即停止运动,M,N分别是AD,CD的中点,连接MN,设点D运动的时间为t.(1)判断MN与AC的位置关系;(2)求点D由点A向点B匀速运动的过程中,线段MN所扫过区域的面积;(3)若△DMN是等腰三角形,求t的值.广东省深圳市2017-2018届九年级上学期期末数学试卷一、选择题(本大题共6小题,每小题3分,共18分)每题只有一个正确的选项1.方程x2=1的根是()A.x=1 B.x=﹣1 C.x1=1,x2=0 D.x1=1,x2=﹣1【考点】解一元二次方程-直接开平方法.【分析】两边直接开平方即可.【解答】解:x2=1,两边直接开平方得:x=±=±1,故:x1=1,x2=﹣1,故选:D.【点评】此题主要考查了直接开平方法解一元二次方程,解这类问题要移项,把所含未知数的项移到等号的左边,把常数项移项等号的右边,化成x2=a(a≥0)的形式,利用数的开方直接求解.2.如图,该几何体的左视图是()A.B.C.D.【考点】简单组合体的三视图.【分析】根据从左边看得到的图形是左视图,可得答案.【解答】解:从左边看是一个正方形被水平的分成3部分,中间的两条分线是虚线,故C 正确;故选:C.【点评】本题考查了简单组合体的三视图,从左边看得到的图形是左视图,注意看不到的线用虚线表示.3.一个口袋中有红球、白球共20只,这些球除颜色外都相同,将口袋中的球搅拌均匀,从中随机摸出一只球,记下它的颜色后再放回,不断重复这一过程,共摸了50次,发现有30次摸到红球,则估计这个口块中有红球大约多少只?()A.8只B.12只C.18只D.30只【考点】利用频率估计概率.【分析】一共摸了50次,其中有30次摸到红球,由此可估计口袋中红球和总球数之比为3:5;即可计算出红球数.【解答】解:∵共摸了50次,其中有30次摸到红球,∴口袋中红球和总球数之比为3:5,∵口袋中有红球、白球共20只,∴估计这个口块中有红球大约有20×=12(只).故选B.【点评】本题考查了利用频率估计概率.大量反复试验下频率稳定值即概率.同时也考查了概率公式的应用.用到的知识点为:概率=所求情况数与总情况数之比.4.若x=2关于x的一元二次方程x2﹣ax+2=0的一个根,则a的值为()A.3 B.﹣3 C.1 D.﹣1【考点】一元二次方程的解.【分析】方程的根就是能使方程的左右两边相等的未知数的值,因而把x=2代入关于x的一元二次方程x2﹣ax+2=0,就可以求出a的值.【解答】解:把x=2代入x2﹣ax+2=0,得22﹣2a+2=0,解得a=3.故选:A.【点评】考查的是一元二次方程的根即方程的解的定义.本题逆用一元二次方程解的定义易得出a的值.5.如果等腰三角形的面积为10,底边长为x,底边上的高为y,则y与x的函数关系式为()A.y=B.y=C.y=D.y=【考点】根据实际问题列反比例函数关系式.【分析】利用三角形面积公式得出xy=10,进而得出答案.【解答】解:∵等腰三角形的面积为10,底边长为x,底边上的高为y,∴xy=10,∴y与x的函数关系式为:y=.故选:C.【点评】此题主要考查了根据实际问题抽象出反比例函数解析式,根据已知得出xy=10是解题关键.6.如图,抛物线y=x2﹣4x与x轴交于点O、A,顶点为B,连接AB并延长,交y轴于点C,则图中阴影部分的面积和为()A.4 B.8 C.16 D.32【考点】抛物线与x轴的交点.【专题】计算题.【分析】先通过解方程x2﹣4x=0得到A(4,0),再把解析式配成顶点式得到B(2,﹣4),接着利用待定系数法求出直线AB的解析式为y=2x﹣8,则可得到C(0,﹣8),然后利用抛物线的对称性得到图中阴影部分的面积和=S△OBC,最后根据三角形面积公式求解.【解答】解:当y=0时,x2﹣4x=0,解得x1=0,x2=4,则A(4,0),∵y=x2﹣4x=(x﹣2)2﹣4,∴B(2,﹣4),设直线AB的解析式为y=kx+b,把A(4,0),B(2,﹣4)代入得,解得,∴直线AB的解析式为y=2x﹣8;当x=0时,y=2x﹣8=﹣8,则C(0,﹣8),∴图中阴影部分的面积和=S△OBC=×8×2=8.故选B.【点评】本题考查了抛物线与x轴的交点:把求二次函数y=ax2+bx+c(a,b,c是常数,a≠0)与x轴的交点坐标转化为解关于x的一元二次方程.二、填空题(本大题共8个小题,每小题3分,共24分)7.2a3÷a2=2a.【考点】整式的除法.【专题】计算题;推理填空题;整式.【分析】单项式除以单项式,把系数,同底数幂分别相除后,作为商的因式,据此求出2a3÷a2的值是多少即可.【解答】解:2a3÷a2=2a.故答案为:2a.【点评】此题主要考查了整式的除法,解答此题的关键是熟练掌握整式的除法法则:(1)单项式除以单项式,把系数,同底数幂分别相除后,作为商的因式;对于只在被除式里含有的字母,则连同他的指数一起作为商的一个因式.(2)多项式除以单项式,先把这个多项式的每一项分别除以单项式,再把所得的商相加.8.点A(m,m﹣3)在第一象限,则实数m的取值范围为m>3.【考点】点的坐标;解一元一次不等式组.【分析】根据第一象限内点的横坐标大于零,纵坐标大于零,可得不等式组,根据解不等式组,可得答案.【解答】解:由A(m,m﹣3)在第一象限,得.解得m>3,故答案为:m>3.【点评】本题考查了点的坐标,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣).9.已知α,β均为锐角,且,则α+β=75°.【考点】特殊角的三角函数值;非负数的性质:绝对值;非负数的性质:偶次方.【分析】先根据非负数的性质求出sinα,tanβ的值,再由特殊角的三角函数值得出α、β的度数,进而可得出结论.【解答】解:∵,α,β均为锐角,∴sinα﹣=0,tanβ﹣1=0,∴sinα=,tanβ=1,∴α=30°,β=45°,∴α+β=30°+45°=75°.故答案为:75°.【点评】本题考查的是特殊角的三角函数值,熟记各特殊角的三角函数值是解答此题的关键.10.如图,直线a∥b,直线l与a相交于点P,与直线b相交于点Q,且PM垂直于l,若∠1=58°,则∠2=32°.【考点】平行线的性质.【分析】由平行线的性质得出∠3=∠1=58°,由垂直的定义得出∠MPQ=90°,即可得出∠2的度数.【解答】解:如图所示:∵a∥b,∴∠3=∠1=58°,∵PM⊥l,∴∠MPQ=90°,∴∠2=90°﹣∠3=90°﹣58°=32°;故答案为:32°.【点评】本题考查了平行线的性质、垂线的定义、角的互余关系;熟练掌握平行线的性质,弄清各个角之间的关系是解决问题的关键.11.从﹣1,0,2这三个数中,任取两个数分别作为系数a,b代入ax2+bx+2=0中.在所有可能的结果中,任取一个方程为有实数解的一元二次方程的概率是.【考点】列表法与树状图法;根的判别式.【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与所有可能的一元二次方程中有实数解的一元二次方程的情况,再利用概率公式即可求得答案.【解答】解:画树状图得:则共有6种等可能的结果,∵一元二次方程ax2+bx+2=0有实数解,∴a≠0,且△=b2﹣8a≥0,∴所有可能的一元二次方程中有实数解的一元二次方程的有2种情况,∴所有可能的一元二次方程中有实数解的一元二次方程的概率为:=.故答案为.【点评】本题考查的是用列表法或画树状图法求概率以及一元二次方程根的情况.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.12.如图在平面直角坐标系中,点A在抛物线y=x2﹣4x+6上运动.过点A作AC⊥x轴于点C,以AC为对角线作矩形ABCD,则对角线BD的最小值为2.【考点】二次函数图象上点的坐标特征;矩形的性质.【分析】先利用配方法得到抛物线的顶点坐标为(2,2),再根据矩形的性质得BD=AC,由于AC的长等于点A的纵坐标,所以当点A在抛物线的顶点时,点A到x轴的距离最小,最小值为2,从而得到BD的最小值.【解答】解:∵y=x2﹣4x+6=(x﹣2)2+2,∴抛物线的顶点坐标为(2,2),∵四边形ABCD为矩形,∴BD=AC,∵AC⊥x轴,∴AC的长等于点A的纵坐标,当点A在抛物线的顶点时,点A到x轴的距离最小,最小值为2,∴对角线BD的最小值为2.故答案为2.【点评】本题考查了二次函数图象上点的坐标特征:二次函数图象上点的坐标满足其解析式.也考查了矩形的性质.13.如图,已知点A在双曲线上,过点A作AC⊥x轴于点C,OC=3,线段OA的垂直平分线交OC于点B,则△ABC的周长为5.【考点】反比例函数图象上点的坐标特征;线段垂直平分线的性质.【专题】数形结合.【分析】由于BD是OA的垂直平分线,那么OB=AB,据图可知A点的横坐标是3,把x=3代入反比例函数解析式易求AC,进而可求△ABC的周长.【解答】解:如右图所示,∵BD是OA的垂直平分线,∴OB=AB,∵OC=3,∴点A的横坐标是3,把x=3代入,得y=2,即AC=2,∴△ABC的周长=AC+AB+BC=AC+OB+BC=AC+OC=2+3=5,故答案是5.【点评】本题考查了反比例函数图象上点的坐标特征、线段垂直平分线的性质,解题的关键是求出A点的坐标.14.菱形ABCD的对角线AC=6cm,BD=4cm,以AC为边作正方形ACEF,则BF长为5cm 或cm.【考点】菱形的性质;正方形的性质.【专题】压轴题;分类讨论.【分析】作出图形,根据菱形的对角线互相垂直平分求出AO、BO,然后分正方形在AC的两边两种情况补成以BF为斜边的Rt△BGF,然后求出BG、FG,再利用勾股定理列式计算即可得解.【解答】解:∵AC=6cm,BD=4cm,∴AO=AC=×6=3cm,BO=BD=×4=2m,如图1,正方形ACEF在AC的上方时,过点B作BG⊥AF交FA的延长线于G,BG=AO=3cm,FG=AF+AG=6+2=8cm,在Rt△BFG中,BF===cm,如图2,正方形ACEF在AC的下方时,过点B作BG⊥AF于G,BG=AO=3cm,FG=AF﹣AG=6﹣2=4cm,在Rt△BFG中,BF===5cm,综上所述,BF长为5cm或cm.故答案为:5cm或cm.【点评】本题考查了菱形的性质,正方形的性质,勾股定理,主要利用了菱形的对角线互相垂直平分,难点在于分情况讨论并作辅助线构造出直角三角形,作出图形更形象直观.三、解答题(本大题共4小题,每小题各6分,共24分)15.计算:.【考点】二次根式的混合运算;负整数指数幂;特殊角的三角函数值.【专题】计算题.【分析】先利用负整数指数幂的意义和平方差公式、特殊角的三角函数值得到原式=3+﹣2|﹣1|,然后去绝对值后合并即可.【解答】解:原式=3+﹣2|﹣1|=3﹣1+2(﹣1)=2+﹣2=.【点评】本题考查了二次根式的计算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.也考查了负整数指数幂.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.16.(1)如图,六边形ABCDEF满足:AB EF,AF CD.仅用无刻度的直尺画出一条直线l,使得直线l能将六边形ABCDEF的面积给平分;(2)假设你所画的这条直线l与六边形ABCDEF的AF边与CD边(或所在的直线)分别交于点G与点H,则下列结论:①直线l还能平分六边形ABCDEF的周长;②点G与点H恰为AF边与CD边中点;③AG=CH,FG=DH;④AG=DH,FG=CH.其中,正确命题的序号为③.【考点】作图—应用与设计作图.【分析】(1)根据平行四边形是中心对称图形,找到对称中心O1、O2,经过O1、O2直线就是所求的直线l.(2)连接BE交直线l于点K,由△AGO1≌△EKO1得AH=KE,同理KE=CH,由此不难判断结论.【解答】解:(1)直线l如图1所示.(2)如图2连接BE交直线l于点K.∵AB∥EF,AB=EF,∴四边形ABEF是平行四边形,∴AO1=O1E,BO2=O2D,AF∥BE,∵AF∥CD,AF=CD,∴BE∥CD,BE=CD,∴四边形BCDE是平行四边形,∵∠O1AG=∠O1EK,∠O1GA=∠O1KE,AO1=O1E∴△AGO1≌△EKO1,∴AG=EK,同理EK=CH,∴AG=CH,GF=HD,故③正确,④错误,∵AG≠GF,CH≠HD,∴AG+AB+BC+CH≠GF+EF+DE+DH,故①②错误.故答案为③.【点评】本题考查平行四边形的性质、全等三角形的判定和性质,利用平行四边形是中心对称图形找到对称中心是解题的关键.17.已知关于x的一元二次方程x2﹣(k﹣2)x+2k=0.(1)若x=1是这个方程的一个根,求k的值和它的另一根;(2)当k=﹣1时,求x12﹣3x2的值.【考点】根与系数的关系;根的判别式.【分析】(1)x=1代入方程可求得k的值,解方程即可求得方程的另一根,即可解题;(2)根据k=﹣1,方程两根是x1,x2,可以得到两根之和与两根之积,从而可以得到x12﹣3x2的值.【解答】解:(1)∵x=1是这个方程的一个根,∴1﹣(k﹣2)+2k=0,∴k=﹣3,∴方程为:x2+5x﹣6=0.整理得:(x﹣1)(x+6)=0,∴方程的根为1和﹣6,答:k=﹣3,另一根为﹣6;(2)当k=﹣1时,方程变形为x2+3x﹣2=0,∴且x1+x2=﹣3.∴.【点评】本题考查了一元二次方程的求解,本题中代入x=1求得k的值是解题的关键.18.在不透明的袋子中有四张标着数字1,2,3,4 的卡片,这些卡片除数字外都相同.甲同学按照一定的规则抽出两张卡片,并把卡片上的数字相加.如图是他所画的树状图的一部分.(1)帮甲同学完成树状图;(2)求甲同学两次抽到的数字之和为偶数的概率.【考点】列表法与树状图法.【分析】(1)根据本实验是一个不放回试验作出树状图即可;(2)根据树状图利用概率公式求解即可.【解答】解:(1)补全树状图如图所示:(2)由树状图得:共有12种情况,两次抽到的数字之和为偶数的有4种,故P(两次抽到的数字之和为偶数)=.【点评】本题考查了列表法和树状图法,利用列表法或树状图法展示某一随机事件中所有等可能出现的结果数n,再找出其中某一事件所出现的可能数m,然后根据概率的定义可计算出这个事件的概率.四、(本大题共4小题,每小题各8分,共32分)19.如图,四边形ABCD为菱形,M为BC上一点,连接AM交对角线BD于点G,并且∠ABM=2∠BAM.(1)求证:AG=BG;(2)若点M为BC的中点,同时S△BMG=1,求三角形ADG的面积.【考点】菱形的性质.【分析】(1)根据菱形的对角线平分一组对角,得出∠ABD=∠CBD,再根据∠ABM=2∠BAM,得出∠ABD=∠BAM,然后根据等角对等边证明即可.(2)根据相似三角形面积的比等于相似比的平方即可求得.【解答】(1)证明:∵四边形ABCD是菱形,∴∠ABD=∠CBD,∵∠ABM=2∠BAM,∴∠ABD=∠BAM,∴AG=BG;(2)解:∵AD∥BC,∴△ADG∽△MBG,∴=,∵点M为BC的中点,∴=2,∴=()2=4∵S△BMG=1,∴S△ADG=4.【点评】本题考查了菱形的性质,等腰三角形的判定,三角形相似的判定和性质,熟练掌握性质定理是解题的关键.20.据报道,历经一百天的调查研究,景德镇PM 2.5源解析已经通过专家论证.各种调查显示,机动车成为PM 2.5的最大来源,一辆车每行驶20千米平均向大气里排放0.035千克污染物.校环保志愿小分队从环保局了解到景德镇100天的空气质量等级情况,并制成统计图和表:a=25,b=20,图中严重污染部分对应的圆心角n=72°(2)彤彤是环保志愿者,她和同学们调查了机动车每天的行驶路程,了解到每辆车每天平均出行25千米.已知景德镇市2016年机动车保有量已突破50万辆,请你通过计算,估计2016年景德镇市一天中出行的机动车至少要向大气里排放多少千克污染物?【考点】扇形统计图;用样本估计总体;统计表.【分析】(1)根据优的天数和所占的百分比求出总天数,再乘以良和严重污染所占的百分比,求出a,b,再用360°乘以严重污染所占的百分比求出严重污染部分对应的圆心角的度数;(2)根据题意和用样本估计总体的方法,列出算式,求解即可.【解答】解:(1)根据题意得:=100(天),a=100×25%=25(天),严重污染所占的百分比是:1﹣10%﹣25%﹣12%﹣8%﹣25%=20%,b=100×20%=20(天),n=360°×20%=72°;故答案为:25,20,72;(2)根据题意得:50×0.035×10000×=21875(千克).答:2016年景德镇市一天中出行的机动车至少要向大气里排放21875千克污染物.【点评】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.21.如图,四边形ABCD为正方形,点A的坐标为(0,1),点B的坐标为(0,﹣2),反比例函数y=的图象经过点C,一次函数y=ax+b的图象经过A、C两点(1)求反比例函数与一次函数的解析式;(2)求反比例函数与一次函数的另一个交点M的坐标;(3)若点P是反比例函数图象上的一点,△OAP的面积恰好等于正方形ABCD的面积,求P点的坐标.【考点】反比例函数与一次函数的交点问题.【专题】计算题.【分析】(1)先根据A点和B点坐标得到正方形的边长,则BC=3,于是可得到C(3,﹣2),然后利用待定系数法求反比例函数与一次函数的解析式;(2)通过解关于反比例函数解析式与一次函数的解析式所组成的方程组可得到M点的坐标;(3)设P(t,﹣),根据三角形面积公式和正方形面积公式得到×1×|t|=3×3,然后解绝对值方程求出t即可得到P点坐标.【解答】解:(1)∵点A的坐标为(0,1),点B的坐标为(0,﹣2),∴AB=1+2=3,∵四边形ABCD为正方形,∴Bc=3,∴C(3,﹣2),把C(3,﹣2)代入y=得k=3×(﹣2)=﹣6,∴反比例函数解析式为y=﹣,把C(3,﹣2),A(0,1)代入y=ax+b得,解得,∴一次函数解析式为y=﹣x+1;(2)解方程组得或,∴M点的坐标为(﹣2,3);(3)设P(t,﹣),∵△OAP的面积恰好等于正方形ABCD的面积,∴×1×|t|=3×3,解得t=18或t=﹣18,∴P点坐标为(18,﹣)或(﹣18,).【点评】本题考查了反比例函数与一次函数的交点问题:求反比例函数与一次函数的交点坐标,把两个函数关系式联立成方程组求解,若方程组有解则两者有交点,方程组无解,则两者无交点.22.小敏将笔记本电脑水平放置在桌子上,显示屏OB与底板OA所在水平线的夹角为120°,感觉最舒适(如图1),侧面示意图为图2.使用时为了散热,她在底板下垫入散热架ACO′后,电脑转到AO′B′位置(如图3),侧面示意图为图4.已知OA=OB=24cm,O′C⊥OA于点C,O′C=12cm.(1)求∠CAO′的度数;(2)显示屏的顶部B′比原来升高了多少?【考点】解直角三角形的应用.【分析】(1)通过解直角三角形即可得到结果;(2)过点B作BD⊥AO交AO的延长线于D,通过解直角三角形求得BD的长,由C、O′、B′三点共线可得结果,计算O′B′+O′C﹣BD即可求解.【解答】解:(1)∵O′C⊥OA于C,OA=OB=24cm,∴sin∠CAO′=,∴∠CAO′=30°.(2)过点B作BD⊥AO交AO的延长线于D.∵sin∠BOD=,∴BD=OB•sin∠BOD,∵∠AOB=120°,∴∠BOD=60°,∴BD=OB•sin∠BOD=24×.∵O′C⊥OA,∠CAO′=30°,∴∠AO′C=60°.∵∠AO′B′=120°,∴∠AO′B′+∠AO′C=180°.∴O′B′+O′C﹣BD=24+12﹣=36﹣.∴显示屏的顶部B′比原来升高了(36﹣)cm.【点评】本题考查了解直角三角形的应用,旋转的性质,正确的画出图形是解题的关键.五、(本大题共1小题,每小题10分,共10分)23.如图,抛物线y=﹣x2+bx+c交x轴于点A(﹣3,0)和点B,交y轴于点C(0,3).(1)求抛物线的函数表达式;(2)若点P在抛物线上,且S△AOP=4S BOC,求点P的坐标;(3)如图b,设点Q是线段AC上的一动点,作DQ⊥x轴,交抛物线于点D,求线段DQ 长度的最大值.【考点】二次函数综合题.【专题】压轴题.【分析】(1)把点A、C的坐标分别代入函数解析式,列出关于系数的方程组,通过解方程组求得系数的值;(2)设P点坐标为(x,﹣x2﹣2x+3),根据S△AOP=4S△BOC列出关于x的方程,解方程求出x的值,进而得到点P的坐标;(3)先运用待定系数法求出直线AC的解析式为y=x+3,再设Q点坐标为(x,x+3),则D 点坐标为(x,x2+2x﹣3),然后用含x的代数式表示QD,根据二次函数的性质即可求出线段QD长度的最大值.【解答】解:(1)把A(﹣3,0),C(0,3)代入y=﹣x2+bx+c,得,解得.故该抛物线的解析式为:y=﹣x2﹣2x+3.(2)由(1)知,该抛物线的解析式为y=﹣x2﹣2x+3,则易得B(1,0).∵S△AOP=4S△BOC,∴×3×|﹣x2﹣2x+3|=4××1×3.整理,得(x+1)2=0或x2+2x﹣7=0,解得x=﹣1或x=﹣1±2.则符合条件的点P的坐标为:(﹣1,4)或(﹣1+2,﹣4)或(﹣1﹣2,﹣4);(3)设直线AC的解析式为y=kx+t,将A(﹣3,0),C(0,3)代入,得,解得.即直线AC的解析式为y=x+3.设Q点坐标为(x,x+3),(﹣3≤x≤0),则D点坐标为(x,﹣x2﹣2x+3),QD=(﹣x2﹣2x+3)﹣(x+3)=﹣x2﹣3x=﹣(x+)2+,∴当x=﹣时,QD有最大值.【点评】此题考查了待定系数法求二次函数、一次函数的解析式,二次函数的性质以及三角形面积、线段长度问题.此题难度适中,解题的关键是运用方程思想与数形结合思想.六、(本大题共1小题,每小题12分,共12分)24.如图,在Rt△ABC中,∠ACB=90°,AC=6,BC=8,点D以每秒1个单位长度的速度由点A向点B匀速运动,到达B点即停止运动,M,N分别是AD,CD的中点,连接MN,设点D运动的时间为t.(1)判断MN与AC的位置关系;(2)求点D由点A向点B匀速运动的过程中,线段MN所扫过区域的面积;(3)若△DMN是等腰三角形,求t的值.【考点】相似形综合题.【专题】压轴题.【分析】(1)利用三角形中位线证明即可;(2)分别取△ABC三边AC,AB,BC的中点E,F,G,并连接EG,FG,根据题意可得线段MN扫过区域的面积就是▱AFGE的面积求解即可;(3)分三种情况:①当MD=MN=3时,②当MD=DN,③当DN=MN时,分别求解△DMN 为等腰三角形即可.【解答】解:(1)∵在△ADC中,M是AD的中点,N是DC的中点,∴MN∥AC;(2)如图1,分别取△ABC三边AC,AB,BC的中点E,F,G,并连接EG,FG,根据题意可得线段MN扫过区域的面积就是▱AFGE的面积,∵AC=6,BC=8,∴AE=3,GC=4,∵∠ACB=90°,=AE•GC=3×4=12,∴S四边形AFGE∴线段MN所扫过区域的面积为12.(3)据题意可知:MD=AD,DN=DC,MN=AC=3,①当MD=MN=3时,△DMN为等腰三角形,此时AD=AC=6,∴t=6,②当MD=DN时,AD=DC,如图2,过点D作DH⊥AC交AC于H,则AH=AC=3,。
广东省深圳市罗湖区2018-2019学年九年级(上)期末数学模拟试卷一.选择题(共12小题,满分36分)1.如图,任意转动正六边形转盘一次,当转盘停止转动时,指针指向大于3的数的概率是( )A.B.C.D.2.下面四个图是同一天四个不同时刻树的影子,其时间由早到晚的顺序为( )A.1234B.4312C.3421D.42313.下列图形中,既是轴对称图形,又是中心对称图形的是( )A.B.C.D.4.tan30°的值为( )A.B.C.D.5.关于x的一元二次方程ax2+3x﹣2=0有两个不相等的实数根,则a的值可以是( )A.0B.﹣1C.﹣2D.﹣36.下列命题中,逆命题为真命题的是( )A.对顶角相等B.若a=b,则|a|=|b|C.同位角相等,两直线平行D.若ac2<bc2,则a<b7.根据下列表格中的对应值,判断一元二次方程x2﹣4x+2=0的解的取值范围是( )x00.51 1.52 2.53 3.54x2﹣4x+220.25﹣1﹣1.75﹣2﹣1.75﹣10.252A.0<x<0.5,或3.5<x<4B.0.5<x<1,或3<x<3.5C.0.5<x<1,或2<x<2.5D.0<x<0.5,或3<x<3.58.在平面直角坐标系中,点P(m,n)是线段AB上一点,以原点O为位似中心把△AOB放大到原来的两倍,则点P的对应点的坐标为( )A.(2m,2n)B.(2m,2n)或(﹣2m,﹣2n)C.(m, n)D.(m, n)或(﹣m,﹣n)9.若二次函数y1=ax2+bx与一次函数y2=ax+b的图象经过相同的象限,给出下列结论:①a,b同号;②若b<0,则x>1时,y1<y2.则下列判断正确的是( )A.①,②都对B.①,②都错C.①对,②错D.①错,②对10.已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列结论:①abc>0;②2a+b>0;③b2﹣4ac>0;④a﹣b+c>0,其中正确的个数是( )A.1B.2C.3D.411.如图,在△AOB中,∠BOA=90°,∠BOA的两边分别与函数、的图象交于B、A两点,若,则AO的值为( )A.B.2C.D.12.如图,正方形ABCD中,E,F分别在边AD,CD上,AF,BE相交于点G,若AE=3ED,DF=CF,则的值是( )A.B.C.D.二.填空题(共4小题,满分12分,每小题3分)13.2018年5月18日,益阳新建西流湾大桥竣工通车,如图,从沅江A地到资阳B地有两条路线可走,从资阳B地到益阳火车站可经会龙山大桥或西流湾大桥或龙洲大桥到达,现让你随机选择一条从沅江A地出发经过资阳B地到达益阳火车站的行走路线,那么恰好选到经过西流湾大桥的路线的概率是 .14.如图是由一些完全相同的小正方体搭成的几何体的俯视图和左视图,组成这个几何体的小正方体的个数最少是 .15.计算:﹣|2﹣|= 16.如图,直线MN∥PQ,直线AB分别与MN,PQ相交于点A,B.小宇同学利用尺规按以下步骤作图:①以点A为圆心,以任意长为半径作弧交AN于点C,交AB于点D;②分别以C,D为圆心,以大于CD长为半径作弧,两弧在∠NAB内交于点E;③作射线AE交PQ于点F.若AB=2,∠ABP=60°,则线段AF的长为 .三.解答题(共7小题,满分42分,每小题6分)17.(6分)x2﹣8x+12=0.18.(6分)小明和小亮计划暑期结伴参加志愿者活动.小明想参加敬老服务活动,小亮想参加文明礼仪宣传活动.他们想通过做游戏来决定参加哪个活动,于是小明设计了一个游戏,游戏规则是:在三张完全相同的卡片上分别标记4、5、6三个数字,一人先从三张卡片中随机抽出一张,记下数字后放回,另一人再从中随机抽出一张,记下数字,若抽出的两张卡片标记的数字之和为偶数,则按照小明的想法参加敬老服务活动,若抽出的两张卡片标记的数字之和为奇数,则按照小亮的想法参加文明礼仪宣传活动.你认为这个游戏公平吗?请说明理由.19.(7分)如图,直线y1=﹣x+4,y2=x+b都与双曲线y=交于点A(1,m),这两条直线分别与x轴交于B,C两点.(1)求y与x之间的函数关系式;(2)直接写出当x>0时,不等式x+b>的解集;(3)若点P在x轴上,连接AP把△ABC的面积分成1:3两部分,求此时点P的坐标.20.(7分)投资1万元围一个矩形菜园(如图),其中一边靠墙,另外三边选用不同材料建造.墙长24m,平行于墙的边的费用为200元/m,垂直于墙的边的费用为150元/m,设平行于墙的边长为x m(1)设垂直于墙的一边长为y m,直接写出y与x之间的函数关系式;(2)若菜园面积为384m2,求x的值;(3)求菜园的最大面积.21.(8分)小明在热气球A上看到正前方横跨河流两岸的大桥BC,并测得B,C两点的俯角分别为53°和45°,已知大桥BC与地面在同一水平面上,其长度为75m,请求出热气球离地面的高度.(参考数据:sin53°≈,cos53°≈,tan53°≈).22.(8分)如图①,在正方形ABCD中,P是对角线BD上的一点,点E在AD的延长线上,且PE=PA,PE交CD于F.(1)求证:PC=PE;(2)求∠CPE的度数;(3)如图②,把正方形ABCD改为菱形ABCD,其它条件不变,若∠ABC=65°,则∠CPE= 度.23.如图①,已知抛物线y=ax2+bx+c的图象经过点A(0,3)、B(1,0),其对称轴为直线l:x=2,过点A作AC∥x轴交抛物线于点C,∠AOB的平分线交线段AC于点E,点P是抛物线上的一个动点,设其横坐标为m.(1)求抛物线的解析式;(2)若动点P在直线OE下方的抛物线上,连结PE、PO,当m为何值时,四边形AOPE 面积最大,并求出其最大值;(3)如图②,F是抛物线的对称轴l上的一点,在抛物线上是否存在点P使△POF成为以点P为直角顶点的等腰直角三角形?若存在,直接写出所有符合条件的点P的坐标;若不存在,请说明理由.参考答案一.选择题1.解:∵共6个数,大于3的有3个,∴P(大于3)==;故选:D.2.解:时间由早到晚的顺序为4312.故选:B.3.解:A、既是轴对称图形,又是中心对称图形,故此选项正确;B、不是轴对称图形,是中心对称图形,故此选项错误;C、是轴对称图形,不是中心对称图形,故此选项错误;D、是轴对称图形,不是中心对称图形,故此选项错误;故选:A.4.解:tan30°=,故选:B.5.解:∵关于x的一元二次方程ax2+3x﹣2=0有两个不相等的实数根,∴△>0且a≠0,即32﹣4a×(﹣2)>0且a≠0,解得a>﹣1且a≠0,故选:B.6.【解答】解:A、对顶角相等的逆命题是两个相等的角是对顶角,假命题;B、若a=b,则|a|=|b|的逆命题是若|a|=|b|,则a=b,假命题;C、同位角相等,两直线平行的逆命题是两直线平行,两直线平行,真命题;D、若ac2<bc2,则a<b的逆命题是若a<b,则ac2<bc2,假命题;故选:C.7.解:根据下列表格中的对应值,得x=0.5时,x2﹣4x+2=0.25,x=1.5时,x2﹣4x+2=﹣1;x=3时,x2﹣4x+2=﹣1,x=3.5时,x2﹣4x+2=0.25,判断一元二次方程x2﹣4x+2=0的解的取值范围是0.5<x<1,或3<x<3.5,8.解:点P(m,n)是线段AB上一点,以原点O为位似中心把△AOB放大到原来的两倍,则点P的对应点的坐标为(m×2,n×2)或(m×(﹣2),n×(﹣2)),即(2m,2n)或(﹣2m,﹣2n),故选:B.9.解:由题意a、b同号,当a、b都是负数时,x>1时,y1<y2故①正确,②正确.故选:A.10.解:①∵抛物线对称轴是y轴的右侧,∴ab<0,∵与y轴交于负半轴,∴c<0,∴abc>0,故①正确;②∵a>0,x=﹣<1,∴﹣b<2a,∴2a+b>0,故②正确;③∵抛物线与x轴有两个交点,∴b2﹣4ac>0,④当x=﹣1时,y>0,∴a﹣b+c>0,故④正确.故选:D.11.解:∵∠AOB=90°,∴∠AOC+∠BOD=∠AOC+∠CAO=90°,∠CAO=∠BOD,∴△ACO∽△BDO,∴=()2,∵S△AOC=×2=1,S△BOD=×1=,∴()2==2,∴OA2=2OB2,∵OA2+OB2=AB2,∴OA2+OA2=6,∴OA=2,故选:B.12.解:如图作,FN∥AD,交AB于N,交BE于M.∵四边形ABCD是正方形,∴AB∥CD,∵FN∥AD,∴四边形ANFD是平行四边形,∵∠D=90°,∴四边形ANFD是矩形,∵AE=3DE,设DE=a,则AE=3a,AD=AB=CD=FN=4a,AN=DF=2a,∵AN=BN,MN∥AE,∴BM=ME,∴MN=a,∴FM=a,∵AE∥FM,∴===,故选:C.二.填空题(共4小题,满分12分,每小题3分)13.解:由题意可知一共有6种可能,经过西流湾大桥的路线有2种可能,所以恰好选到经过西流湾大桥的路线的概率==.故答案为.14.解:根据几何体的左视图,可得这个几何体共有3层,从俯视图可以可以看出最底层的个数是4个,(1)当第一层有1个小正方体,第二层有1个小正方体时,组成这个几何体的小正方体的个数是:1+1+4=6(个);(2)当第一层有1个小正方体,第二层有2个小正方体时,或当第一层有2个小正方体,第二层有1个小正方体时,组成这个几何体的小正方体的个数是:1+2+4=7(个);(3)当第一层有2个小正方体,第二层有2个小正方体时,组成这个几何体的小正方体的个数是:2+2+4=8(个).综上,可得组成这个几何体的小正方体的个数是6或7或8.所以组成这个几何体的小正方体的个数最少是6故答案为:615.解:原式=2﹣2+=,故答案为:16.解:∵MN∥PQ,∴∠NAB=∠ABP=60°,由题意得:AF平分∠NAB,∴∠1=∠2=30°,∵∠ABP=∠1+∠3,∴∠3=30°,∴∠1=∠3=30°,∴AB=BF,AG=GF,∵AB=2,∴BG=AB=1,∴AG=,∴AF=2AG=2,故答案为:2.三.解答题(共7小题,满分42分,每小题6分)17.解:x2﹣8x+12=0,分解因式得(x﹣6)(x﹣2)=0,∴x﹣6=0,x﹣2=0,解方程得:x1=6,x2=2,∴方程的解是x1=6,x2=2.18.解:不公平,列表如下:456489105910116101112由表可知,共有9种等可能结果,其中和为偶数的有5种结果,和为奇数的有4种结果,所以按照小明的想法参加敬老服务活动的概率为,按照小亮的想法参加文明礼仪宣传活动的概率为,由≠知这个游戏不公平;19.解:(1)把A(1,m)代入y1=﹣x+4,可得m=﹣1+4=3,∴A(1,3),把A(1,3)代入双曲线y=,可得k=1×3=3,∴y与x之间的函数关系式为:y=;(2)∵A(1,3),∴当x>0时,不等式x+b>的解集为:x>1;(3)y1=﹣x+4,令y=0,则x=4,∴点B的坐标为(4,0),把A(1,3)代入y2=x+b,可得3=+b,∴b=,∴y2=x+,令y=0,则x=﹣3,即C(﹣3,0),∴BC=7,∵AP把△ABC的面积分成1:3两部分,∴CP=BC=,或BP=BC=,∴OP=3﹣=,或OP=4﹣=,∴P(﹣,0)或(,0).20.解:(1)根据题意知,y==﹣x+;(2)根据题意,得:(﹣x+)x=384,解得:x=18或x=32,∵墙的长度为24m,∴x=18;(3)设菜园的面积是S,则S=(﹣x+)x=﹣x2+x=﹣(x﹣25)2+∵﹣<0,∴当x<25时,S随x的增大而增大,∵x≤24,∴当x=24时,S取得最大值,最大值为416,答:菜园的最大面积为416m2.21.解:过A作AD⊥BC,在Rt△ACD中,tan∠ACD=,即CD==AD,在Rt△ABD中,tan∠ABD=,即BD==AD,由题意得:AD﹣AD=75,解得:AD=300m,则热气球离底面的高度是300m.22.解:(1)证明:在正方形ABCD中,AB=BC,∠ABP=∠CBP=45°,在△ABP和△CBP中,,∴△ABP≌△CBP(SAS),∴PA=PC,∵PA=PE,∴PC=PE;(2)由(1)知,△ABP≌△CBP,∴∠BAP=∠BCP,∴∠DAP=∠DCP,∵PA=PE,∴∠DAP=∠E,∴∠DCP=∠E,∵∠CFP=∠EFD(对顶角相等),∴180°﹣∠PFC﹣∠PCF=180°﹣∠DFE﹣∠E,即∠CPF=∠EDF=90°;(3)在菱形ABCD中,AD=DC,∠ADP=∠CDP,DP=DP,∴△DPA≌△DPC,∴∠DAP=∠DCP,PA=PC,∵PA=PE,∴∠DAP=∠E,∴∠E=∠PCD,∵∠DFE=∠CFP,∴∠CPF=∠EDF,∵∠ABC=∠ADC=65°,∴∠CPE=∠EDF=180°﹣∠ADC=115°故答案为115.23.解:(1)如图1,设抛物线与x轴的另一个交点为D,由对称性得:D(3,0),设抛物线的解析式为:y=a(x﹣1)(x﹣3),把A(0,3)代入得:3=3a,a=1,∴抛物线的解析式;y=x2﹣4x+3;(2)如图2,设P(m,m2﹣4m+3),∵OE平分∠AOB,∠AOB=90°,∴∠AOE=45°,∴△AOE是等腰直角三角形,∴AE=OA=3,∴E(3,3),易得OE的解析式为:y=x,过P作PG∥y轴,交OE于点G,∴G(m,m),∴PG=m﹣(m2﹣4m+3)=﹣m2+5m﹣3,∴S四边形AOPE=S△AOE+S△POE,=×3×3+PG•AE,=+×3×(﹣m2+5m﹣3),=﹣+,=﹣(m﹣)2+,∵﹣<0,∴当m=时,S有最大值是;(3)如图3,过P作MN⊥y轴,交y轴于M,交l于N,∵△OPF是等腰直角三角形,且OP=PF,易得△OMP≌△PNF,∴OM=PN,∵P(m,m2﹣4m+3),则﹣m2+4m﹣3=2﹣m,解得:m=或,∴P的坐标为(,)或(,);如图4,过P作MN⊥x轴于N,过F作FM⊥MN于M,同理得△ONP≌△PMF,∴PN=FM,则﹣m2+4m﹣3=m﹣2,解得:x=或;P的坐标为(,)或(,);综上所述,点P的坐标是:(,)或(,)或(,)或(,).。
2017-2018学年深圳市罗湖区九年级(上)期末数学试卷一、选择题(本大题共12小题,共36.0分)1.袋中有 5 个白球,3 个黑球,除颜色外均相同,从中一次任摸出一个球,则摸到黑球的概率是 A. B. C. D.2.一位小朋友拿一个等边三角形木框在阳光下玩,等边三角形木框在地面上的影子不可能是A. B.C. D.3.下列图形中,既是轴对称图形又是中心对称图形的有A. 4个B. 3个C. 2个D. 1个4.在中,,若,则的度数是A. B. C. D. 无法确定5.若关于x的一元二次方程有两个不相等的实数根,则m的取值范围是 A. B. C. D.6.下列命题中,属于假命题的是A. 有一个锐角相等的两个直角三角形一定相似B. 对角线相等的菱形是正方形C. 抛物线的开口向上D. 在一次抛掷图钉的试验中,若钉尖朝上的频率为,则钉尖朝下的概率为7.D.8.如图,位似图形由三角尺与其在灯光照射下的中心投影组成,相似比为1:2,且三角尺一边长为5cm,则投影三角形的对应边长为A. 8cmB. 20cmC.D. 10cm9.如图是二次函数的部分图象,由图象可知,满足不等式的x的取值范围是A. B. C. 且 D. 或10.如图,已知二次函数的图象如图所示,给出以下四个结论:;;;;其中正确的结论有A. 1个B. 2个C. 3个D. 4个11.如图,是直角三角形,,,点A在反比例函数的图象上若点B在反比例函数的图象上,则k的值为A. B. 4 C. D. 212.在边长为3的正方形ABCD中,点E、F、G、H分别在AB、BC、CD、DA边上,且满足,BD分别与HG、HF、EF相交于M、O、N给出以下结论:;;;,其中正确的个数有 A. 1 B. 2 C. 3 D. 4二、填空题(本大题共4小题,共12.0分)13.有两双完全相同的鞋,从中任取两只,恰好成为一双的概率为______.14.如图,是一个长方体的主视图、左视图与俯视图单位:,根据图中数据计算这个长方体的体积是______.12题14题16题15.随着数系不断扩大,我们引进新数i,新i满足交换率、结合律,并规定:,那么______结果用数字表示.16.如图,中,,,,以点A为圆心,AB长为半径作弧交AC于M,分别以B、M为圆心,以大于长为半径作弧,两弧相交于点N,射线AN与BC相交于D,则AD的长为______.三、计算题(本大题共3小题,共21.0分)17.解方程:.18.某商场将每件进价为80元的某种商品按每件100元出售,一天可售出100件后来经过市场调查,发现这种商品单价每降低1元,其销量可增加10件.若商场经营该商品一天要获利润2160元,则每件商品应降价多少元?设后来该商品每件降价x元,商场一天可获利润y元求出y与x之间的函数关系式,并求当x取何值时,商场获利润最大?19.随着科技进步,无人机的应用越来越广,如图1,在某一时刻,无人机上的探测器显示,从无人机A处看一栋楼顶部B点的仰角和看与顶部B在同一铅垂线上高楼的底部C的俯角.如果上述仰角与俯角分别为与,且该楼的高度为30米,求该时刻无人机的竖直高度CD;如图2,如果上述仰角与俯角分别为与,且该楼的高度为m米求用、、m表示该时刻无人机的竖直高度CD.三、解答题(本大题共4小题,共31.0分)20.小明和小亮玩一个游戏:取三张大小、质地都相同的卡片,上面分别标有数字2、3、背面完全相同,现将标有数字的一面朝下小明从中任意抽取一张,记下数字后放回洗匀,然后小亮从中任意抽取一张,计算小明和小亮抽得的两个数字之和.请你用画树状图或列表的方法,求出这两数和为6的概率.如果和为奇数,则小明胜;若和为偶数,则小亮胜你认为这个游戏规则对双方公平吗?做出判断,并说明理由.21.如图,一次函数与反比例函数的图象相交于、两点.求这两个函数的表达式;求证:.22.如图1,点P是菱形ABCD的对角线BD上的一动点,连接CP并延长交AD于E,交BA的延长线于点F.求证: ≌ ;如图2,当菱形ABCD变为正方形,且,时,求正方形ABCD的边长.23.如图1已知抛物线与x轴相交于、,P为抛物线上第四象限上的点.求该抛物线的函数关系式;如图1,过点P作轴于点D,PD交BC于点E,当线段PE的长度最大时,求点P的坐标.如图2,当线段PE的长度最大时,作于点F,连结在射线PD上有一点Q,满足,问在坐标轴上是否存在一点R,使得?如果存在,直接写出R点的坐标;如果不存在,请说明理由.。
九年级上学期期末数学试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.若二次函数y =x 2+4x+n 的图象与x 轴只有一个公共点,则实数n 的值是( )A .1B .3C .4D .6【答案】C【分析】二次函数y =x 2+4x+n 的图象与x 轴只有一个公共点,则240b ac =-=⊿,据此即可求得.【详解】∵1a =,4b =,c n =,根据题意得:2244410b ac n =-=⨯⨯=⊿﹣,解得:n =4,故选:C .【点睛】本题考查了抛物线与x 轴的交点,二次函数2y ax bx c =++(a ,b ,c 是常数,a ≠0)的交点与一元二次方程20ax bx c ++=根之间的关系.24b ac =-⊿决定抛物线与x 轴的交点个数.⊿>0时,抛物线与x 轴有2个交点;0=⊿时,抛物线与x 轴有1个交点;⊿<0时,抛物线与x 轴没有交点. 2.把抛物线2y x =-向右平移2个单位,再向下平移3个单位,即得到抛物线( )A .y=-(x+2) 2+3B .y=-(x-2) 2+3C .y=-(x+2) 2-3D .y=-(x-2) 2-3 【答案】D【分析】根据二次函数图象左加右减,上加下减的平移规律进行解答即可.【详解】抛物线2y x =-向右平移2个单位,得:()22y x =--, 再向下平移3个单位,得:()223=---y x .故选:D .【点睛】本题主要考查的是函数图象的平移,用平移规律“左加右减,上加下减”直接代入函数解析式求得平移后的函数解析式.3.如图,AB 为O 的直径,C 和D 分别是半圆AB 上的三等分点,连接AC AD BC BD 、、、,若2AB =,则图中阴影部分的面积为( )A .32π-B .232π- C .23π- D .3π- 【答案】B 【分析】阴影的面积等于半圆的面积减去△ABC 和△ABD 的面积再加上△ABE 的面积,因为△ABE 的面积是△ABC 的面积和△ABD 的面积重叠部分被减去两次,所以需要再加上△ABE 的面积,然后分别计算出即可.【详解】设AD BC 、相交于点,E C 和D 分别是半圆AB 上的三等分点,AB 为⊙O 的直径30ABC BAD ∴∠=∠=︒.90ACB BDA ∠=∠=︒.2AB =, 1,AC BD ∴==33,2ABC ABD BC AD S S ==∴== 如图,连接OE ,则OE AB ⊥,31,AO BO OE ==∴=13322ABE S ∴== 33232222323ABC ABE S S SS ππ∴=-+=-⨯+=-阴影半圆 故选B .【点睛】 此题主要考查了半圆的面积、圆的相关性质及在直角三角形中,30°角所对应的边等于斜边的一半,关键记得加上△ABE 的面积是解题的关键.4.下列说法正确的是( )A .“任意画一个三角形,其内角和为360︒”是随机事件B .某种彩票的中奖率是1100,说明每买100张彩票,一定有1张中奖C .“篮球队员在罚球线上投篮一次,投中”为随机事件D .投掷一枚质地均匀的硬币100次,正面向上的次数一定是50次【答案】C【分析】根据必然事件,随机事件,可能事件的概念解题即可.【详解】解:A. “任意画一个三角形,其内角和为360︒”是不可能事件,错误, B. 某种彩票的中奖率是1100,说明每买100张彩票,一定有1张中奖,可能事件不等于必然事件, 错误, C. “篮球队员在罚球线上投篮一次,投中”为随机事件,正确,D. 投掷一枚质地均匀的硬币100次,正面向上的次数可能是50次,错误,故选C.【点睛】本题考查了必然事件,随机事件,可能事件的概念,属于简单题,熟悉概念是解题关键.5.在反比例函数y =2k x -图象的每一条曲线上,y 都随x 的增大而增大,则k 的取值范围是( ) A .k >2B .k >0C .k≥2D .k <2 【答案】D【分析】根据反比例函数的性质,可求k 的取值范围.【详解】∵反比例函数y =2k x-图象的每一条曲线上,y 都随x 的增大而增大, ∴k ﹣2<0,∴k <2故选:D .【点睛】考核知识点:反比例函数.理解反比例函数性质是关键.6.如图,已知正方形ABCD ,将对角线BD 绕着点B 逆时针旋转,使点D 落在CB 的延长线上的D′点处,那么sin ∠AD′B 的值是( )A .33B 2C 2D .12【答案】A【分析】设AB a ,根据正方形的性质可得'2,90BD a ABD =∠=︒,再根据旋转的性质可得'BD 的长,然后由勾股定理可得'AD 的长,从而根据正弦的定义即可得.【详解】设AB a 由正方形的性质得'2,18090BD a ABD ABC =∠=︒-∠=︒由旋转的性质得'2BD BD a ==在'Rt ABD ∆中,'2'23AD AB BD a =+= 则''3sin 3AB AD B AD a ∠=== 故选:A .【点睛】 本题考查了正方形的性质、旋转的性质、正弦的定义等知识点,根据旋转的性质得出'BD 的长是解题关键. 7.关于2,6,1,10,6这组数据,下列说法正确的是( )A .这组数据的平均数是6B .这组数据的中位数是1C .这组数据的众数是6D .这组数据的方差是10.2 【答案】C【分析】先把数据从小到大排列,然后根据算术平均数,中位数,众数的定义得出这组数据的平均数、中位数、众数,再利用求方差的计算公式求出这组数据的方差,再逐项判定即可.【详解】解:数据从小到大排列为:1,2,6,6,10,中位数为:6;众数为:6;平均数为:()112661055⨯++++=; 方差为:()()()()()2222211525656510510.45⎡⎤⨯-+-+-+-+-=⎣⎦. 故选:C .【点睛】本题考查的知识点是平均数,中位数,众数,方差的概念定义,熟记定义以及方差公式是解此题的关键. 8.如图为二次函数2y ax bx c =++的图象,在下列说法中:①0ac <;②方程20ax bx c ++=的根是121,3x x =-=③ 0a b c ++>;④当1x >时,y 随x 的增大而增大;⑤20a b -=;⑥240b ac ->,正确的说法有( )A .1B .2C .3D .4 【答案】D【分析】根据抛物线开口向上得出a >1,根据抛物线和y 轴的交点在y 轴的负半轴上得出c <1,根据图象与x 轴的交点坐标得出方程ax 2+bx+c=1的根,把x=1代入y=ax 2+bx+c 求出a+b+c <1,根据抛物线的对称轴和图象得出当x >1时,y 随x 的增大而增大,2a=-b ,根据图象和x 轴有两个交点得出b 2-4ac >1.【详解】∵抛物线开口向上,∴a >1,∵抛物线和y 轴的交点在y 轴的负半轴上,∴c <1,∴ac <1,∴①正确;∵图象与x 轴的交点坐标是(-1,1),(3,1),∴方程ax 2+bx+c=1的根是x 1=-1,x 2=3,∴②正确;把x=1代入y=ax 2+bx+c 得:a+b+c <1,∴③错误;根据图象可知:当x >1时,y 随x 的增大而增大,∴④正确;∵-2b a=1, ∴2a=-b ,∴2a+b=1,不是2a-b=1,∴⑤错误;∵图象和x 轴有两个交点,∴b 2-4ac >1,∴⑥正确;正确的说法有:①②④⑥.故答案为:D .【点睛】本题考查了二次函数与系数的关系的应用,主要考查学生对二次函数的图象与系数的关系的理解和运用,同时也考查了学生观察图象的能力,本题是一道比较典型的题目,具有一定的代表性.9.已知x=﹣2是一元二次方程x 2+mx+4=0的一个解,则m 的值是( )A .﹣4B .4C .0D .0或4【答案】B【分析】直接把x=﹣2代入已知方程就得到关于m 的方程,再解此方程即可.【详解】∵x=﹣2是一元二次方程x 2+mx+4=0的一个解,∴4−2m+4=0,∴m=4.故选B.【点睛】本题考查一元二次方程的解,解题的关键是将x=﹣2代入已知方程.10.由四个相同的小正方体搭建了一个积木,它的三视图如图所示,则这个积木可能是( )A .B .C .D .【答案】A【解析】分析:从主视图上可以看出上下层数,从俯视图上可以看出底层有多少小正方体,从左视图上可以看出前后层数,综合三视图可得到答案.解答:解:从主视图上可以看出左面有两层,右面有一层;从左视图上看分前后两层,后面一层上下两层,前面只有一层,从俯视图上看,底面有3个小正方体,因此共有4个小正方体组成,故选A .11.点P 1(﹣1,1y ),P 2(3,2y ),P 3(5,3y )均在二次函数22y x x c =-++的图象上,则1y ,2y ,3y 的大小关系是( )A .321y y y >>B .312y y y >=C .123y y y >>D .123y y y =>【答案】D【解析】试题分析:∵22y x x c =-++,∴对称轴为x=1,P 2(3,2y ),P 3(5,3y )在对称轴的右侧,y 随x 的增大而减小,∵3<5,∴23y y >,根据二次函数图象的对称性可知,P 1(﹣1,1y )与(3,2y )关于对称轴对称,故123y y y =>,故选D .考点:二次函数图象上点的坐标特征.12.如图2,四边形ABCD 的对角线AC 、BD 互相垂直,则下列条件能判定四边形ABCD 为菱形的是( )A .BA =BCB .AC 、BD 互相平分 C .AC =BD D .AB ∥CD【答案】B 【详解】解:对角线互相垂直平分的四边形为菱形.已知对角线AC 、BD 互相垂直,则需添加条件:AC 、BD 互相平分故选:B二、填空题(本题包括8个小题)13.如图,在△ABC 中,AB≠AC .D,E 分别为边AB,AC 上的点.AC=3AD,AB=3AE,点F 为BC 边上一点,添加一个条件:______,可以使得△FDB 与△ADE 相似.(只需写出一个)【答案】//DF AC 或BFD A ∠=∠【解析】因为3AC AD =,3AB AE =,A A ∠=∠ ,所以ADE ∆ACB ~∆ ,欲使FDB ∆与ADE ∆相似,只需要FDB ∆与ACB ∆相似即可,则可以添加的条件有:∠A=∠BDF ,或者∠C=∠BDF ,等等,答案不唯一.【方法点睛】在解决本题目,直接处理FDB ∆与ADE ∆,无从下手,没有公共边或者公共角,稍作转化,通过ADE ∆ACB ~∆,FDB ∆得与ACB ∆相似.这时,柳暗花明,迎刃而解.14.如图,从甲楼底部A 处测得乙楼顶部C 处的仰角是30°,从甲楼顶部B 处测得乙楼底部D 处的俯角是45°,已知甲楼的高AB 是120m ,则乙楼的高CD 是_____m (结果保留根号)【答案】3【解析】利用等腰直角三角形的性质得出AB=AD ,再利用锐角三角函数关系即可得出答案.【详解】解:由题意可得:∠BDA=45°,则AB=AD=120m ,又∵∠CAD=30°,∴在Rt △ADC 中,tan ∠CDA=tan30°=33CD AD = 解得:3m ),故答案为3.【点睛】此题主要考查了解直角三角形的应用,正确得出tan∠CDA=tan30°=CDAD是解题关键.15.小亮和他弟弟在阳光下散步,小亮的身高为1.75米,他的影子长2米.若此时他的弟弟的影子长为1.6米,则弟弟的身高为________米.【答案】1.4【解析】∵同一时刻物高与影长成正比例,∴1.75:2=弟弟的身高:1.6,∴弟弟的身高为1.4米.故答案是:1.4.16.代数式21x-中x的取值范围是__________.【答案】12x≥;【分析】根据二次根式被开方数大于等于0,列出不等式即可求出取值范围. 【详解】∵二次根式有意义的条件是被开方数大于等于0∴210x-≥解得12 x≥故答案为:12 x≥.【点睛】本题考查二次根式有意义的条件,熟练掌握被开方数大于等于0是解题的关键.17.(2016湖北省咸宁市)如图,边长为4的正方形ABCD内接于点O,点E是AB上的一动点(不与A、B重合),点F是BC上的一点,连接OE、OF,分别与AB、BC交于点G,H,且∠EOF=90°,有以下结论:①AE BF=;②△OGH是等腰三角形;③四边形OGBH的面积随着点E位置的变化而变化;④△GBH周长的最小值为42+.其中正确的是________(把你认为正确结论的序号都填上).【答案】①②.【解析】解:①如图所示,∵∠BOE+∠BOF=90°,∠COF+∠BOF=90°,∴∠BOE=∠COF.在△BOE与△COF中,∵OB=OC ,∠BOE=∠COF ,OE=OF ,∴△BOE ≌△COF ,∴BE=CF ,∴AE BF =,①正确;②∵OC=OB ,∠COH=∠BOG ,∠OCH=∠OBG=15°,∴△BOG ≌△COH ,∴OG=OH .∵∠GOH=90°,∴△OGH 是等腰直角三角形,②正确;③如图所示,∵△HOM ≌△GON ,∴四边形OGBH 的面积始终等于正方形ONBM 的面积,③错误;④∵△BOG ≌△COH ,∴BG=CH ,∴BG+BH=BC=1.设BG=x ,则BH=1﹣x ,则22BG BH +22(4)x x +-22816x x -+22(2)8x -+,∴其最小值为22∴△GBH 周长的最小值=GB+BH+GH=1+2,D 错误.故答案为①②.18.关于x 的方程2230mx x -+=有两个不相等的实数根,那么m 的取值范围是__________. 【答案】13m <且0m ≠ 【解析】分析:根据一元二次方程的定义以及根的判别式的意义可得△=4-12m >1且m≠1,求出m 的取值范围即可.详解:∵一元二次方程mx 2-2x+3=1有两个不相等的实数根,∴△>1且m≠1,∴4-12m >1且m≠1,∴m <13且m≠1, 故答案为:m <13且m≠1. 点睛:本题考查了一元二次方程ax 2+bx+c=1(a≠1,a ,b ,c 为常数)根的判别式△=b 2-4ac .当△>1,方程有两个不相等的实数根;当△=1,方程有两个相等的实数根;当△<1,方程没有实数根.也考查了一元二次方程的定义.三、解答题(本题包括8个小题)19.为了提高教学质量,促进学生全面发展,某中学计划投入99000元购进一批多媒体设备和电脑显示屏,且准备购进电脑显示屏的数量是多媒体设备数量的6倍. 现从商家了解到,一套多媒体设备和一个电脑显示屏的售价分别为3000元和600元.(1)求最多能购进多媒体设备多少套?(2)恰逢“双十一”活动,每套多媒体设备的售价下降3%5a ,每个电脑显示屏的售价下降5a 元,学校决定多媒体设备和电脑显示屏的数量在(1)中购进最多量的基础上都增加%a ,实际投入资金与计划投入资金相同,求a 的值.【答案】(1)15套;(2)37.5【分析】(1)设购买A 种设备x 套,则购买B 种设备6x 套,根据总价=单价×数量结合计划投入99000元,即可得出关于x 的一元一次不等式,解之取其最大值即可得出结论;(2)根据总价=单价×数量结合实际投入资金与计划投入资金相同,即可得出关于a 的一元二次方程,解之取其正值即可得出结论.【详解】(1)设能购买多媒体设备x 套,则购买显示屏6x 套,根据题意得:3000600699000x x +⨯≤解得:15x ≤答:最多能购买多媒体设备15套.(2)由题意得:330001%15(1%)(6005)90(1%)990005a a a a ⎛⎫-⨯++-⨯+= ⎪⎝⎭设%t a =,则原方程为: 33000115(1)(600500)90(1)990005t t t t ⎛⎫-⨯++-⨯+= ⎪⎝⎭整理得:2830t t -=解得:10.375t =,20t =(不合题意舍去)∴37.5a =.答:a 的值是37. 5.【点睛】本题考查了一元一次不等式的应用以及一元二次方程的应用,解题的关键是:(1)根据各数量之间的关系,找出关于x 的一元一次不等式;(2)找准等量关系,正确列出一元二次方程.20.如图,AD 是⊙O 的弦,AC 是⊙O 直径,⊙O 的切线BD 交AC 的延长线于点B ,切点为D ,∠DAC =30°.(1)求证:△ADB 是等腰三角形;(2)若BC=3,求AD的长.【答案】(1)见解析;(2)AD=1.【分析】(1)根据切线的性质和等腰三角形的判定证明即可;(2)根据含10°角的直角三角形的性质解答即可.【详解】(1)证明:连接OD,∵∠DAC=10°,AO=OD∴∠ADO=∠DAC=10°,∠DOC=60°∵BD是⊙O的切线,∴OD⊥BD,即∠ODB=90°,∴∠B=10°,∴∠DAC=∠B,∴DA=DB,即△ADB是等腰三角形.(2)解:连接DC∵∠DAC=∠B=10°,∴∠DOC=60°,∵OD=OC,∴△DOC是等边三角形∵⊙O的切线BD交AC的延长线于点B,切点为D,∴BC=DC=OC=3,∴AD=2222-.(23)(3)3AC DC=-=【点睛】本题考查切线的判定和性质,解题的关键是根据切线的性质和等腰三角形的判定,以及勾股定理进行解题.21.如图,△ABC中,∠A=30°,∠B=45°,AC=4,求AB的长.【答案】3+1【解析】试题分析:本题注意考查的就是利用三角函数解直角三角形,过点C作CD⊥AB于D点,然后分别根据Rt △ADC 中∠A 的正弦、余弦值和Rt △CDB 中∠B 的正切值得出AD 和BD 的长度,从而得出AB 的长度.试题解析:过点C 作CD ⊥AB 于D 点,在Rt △ADC 中,∠A=30°,AC=4,∴CD=12AC=12×4=1,∴=在Rt △CDB 中,∠B=45°,CD=1,∴CD=DB=1,∴.22.某校为了普及推广冰雪活动进校园,准备购进速滑冰鞋和花滑冰鞋用于开展冰上运动,若购进30双速滑冰鞋和20双花滑冰鞋共需8500元;若购进40双速滑冰鞋和10双花滑冰鞋共需8000元. (1)求速滑冰鞋和花滑冰鞋每双购进价格分别为多少元?(2)若该校购进花滑冰鞋的数量比购进速滑冰鞋数量的2倍少10双,且用于购置两种冰鞋的总经费不超过9000元,则该校至多购进速滑冰鞋多少双?【答案】(1)每双速滑冰鞋购进价格为150元,每双花滑冰鞋购进价格为200元;(2)该校至多购进速滑冰鞋20双.【分析】(1)根据题意列出二元一次方程组,求解即可.(2)根据题意列出一元一次不等式,求解即可.【详解】(1)解:设每双速滑冰鞋购进价格为x 元,每双花滑冰鞋购进价格为y 元.根据题意得3020850040108000x y x y +=⎧⎨+=⎩解得150200x y =⎧⎨=⎩ 答:每双速滑冰鞋购进价格为150元,每双花滑冰鞋购进价格为200元.(2)解:设该校购进速滑冰鞋a 双,则购进花滑冰鞋210a -()双.根据题意 得1502002109000a a +-≤().解得20a ≤答:该校至多购进速滑冰鞋20双.【点睛】本题考查了二元一次方程组和一元一次不等式的实际应用,掌握二元一次方程组和一元一次不等式的性质和解法是解题的关键.23.知识改变世界,科技改变生活.导航装备的不断更新极大地方便了人们的出行.中国北斗导航已经全球组网,它已经走进了人们的日常生活.如图,某校周末组织学生利用导航到某地(用A 表示)开展社会实践活动,车辆到达B 地后,发现A 地恰好在B 地的正北方向,且距离B 地8千米.导航显示车辆应沿北偏东60°方向行驶至C 地,再沿北偏西45°方向行驶一段距离才能到达A 地.求A C 、两地间的距离(结果精确到0.1千米).(参考数据:2 1.4143 1.732≈≈,)【答案】7.2千米【解析】设AC x =千米,过点C 作CD AB ⊥,可得2AD CD x ==,220.408603x CD BD x tan ==≈︒根据AB AD BD =+,列方程求解即可.【详解】解:设AC x =千米,过点C 作CD AB ⊥,交AB 于点D在Rt CDA ∆中,2450.707CAD AD CD x x ∠=︒==≈, 在Rt CDB ∆中,60CBD ∠=︒ ,220.408603x CD BD x tan ==≈︒ ∵8AB AD BD =+=∴0.7070.4088x x +=∴7.2x ≈答:A C 、两地间的距离约为7.2千米.【点睛】本题主要考查解直角三角形应用和特殊三角函数..熟练掌握特殊三角函数值是解决问题的关键. 24.已知,如图,点A 、D 、B 、E 在同一直线上,AC =EF ,AD =BE ,∠A =∠E ,(1)求证:△ABC ≌△EDF ;(2)当∠CHD =120°,求∠HBD 的度数.【答案】(1)详见解析;(2)60°.【分析】(1)根据SAS 即可证明:△ABC ≌△EDF ;(2)由(1)可知∠HDB =∠HBD ,再利用三角形的外角关系即可求出∠HBD 的度数.【详解】(1)∵AD =BE ,∴AB =ED ,在△ABC 和△EDF 中,AC EF A E AB ED =⎧⎪∠=∠⎨⎪=⎩,∴△ABC ≌△EDF (SAS );(2)∵△ABC ≌△EDF ,∴∠HDB =∠HBD ,∵∠CHD =∠HDB+∠HBD =120°,∴∠HBD =60°.【点睛】本题考查了全等三角形的判定与性质,三角形外角的性质,熟练掌握和灵活运用相关知识是解题的关键. 25.如图,在ABC 中,AD 是BC 边上的高,tan cos B DAC =∠。
深圳罗湖区罗湖中学数学九年级上册期末试卷解析版一、选择题1.圆锥的底面半径为2,母线长为6,它的侧面积为( ) A .6πB .12πC .18πD .24π2.在平面直角坐标系中,O 的直径为10,若圆心O 为坐标原点,则点()8,6P -与O的位置关系是( ) A .点P 在O 上B .点P 在O 外C .点P 在O 内 D .无法确定3.已知圆锥的底面半径为3cm ,母线为5cm ,则圆锥的侧面积是 ( ) A .30πcm 2B .15πcm 2C .152πcm 2 D .10πcm 24.函数y=(x+1)2-2的最小值是( ) A .1B .-1C .2D .-25.如图,AB 是⊙O 的直径,BC 与⊙O 相切于点B ,AC 交⊙O 于点D ,若∠ACB=50°,则∠BOD 等于( )A .40°B .50°C .60°D .80°6.把二次函数y =2x 2的图象向右平移3个单位,再向上平移2个单位后的函数关系式是( )A .22(3)2y x =-+B .22(3)2y x =++C .22(3)?2y x =-D .22(3)?2y x =+7.将函数的图象用下列方法平移后,所得的图象不经过点A (1,4)的方法是( )A .向左平移1个单位B .向右平移3个单位C .向上平移3个单位D .向下平移1个单位 8.若圆锥的底面半径为2,母线长为5,则圆锥的侧面积为( )A .5πB .10πC .20πD .40π9.已知反比例函数ky x=的图象经过点(m ,3m ),则此反比例函数的图象在( ) A .第一、二象限B .第一、三象限C .第二、四象限D .第三、四象限10.在△ABC 中,∠C =90°,AC =8,BC =6,则sin B 的值是( ) A .45B .35C .43D .3411.已知△ABC ≌△DEF ,∠A =60°,∠E =40°,则∠F 的度数为( ) A .40 B .60C .80D .10012.在△ABC 中,点D 、E 分别在AB ,AC 上,DE ∥BC ,AD :DB =1:2,,则:ADE ABC S S ∆∆=( ), A .19B .14C .16D .1313.如图,随意向水平放置的大⊙O 内部区域抛一个小球,则小球落在小⊙O 内部(阴影)区域的概率为( )A .12B .14C .13D .1914.如图,点P (x ,y )(x >0)是反比例函数y=kx(k >0)的图象上的一个动点,以点P 为圆心,OP 为半径的圆与x 轴的正半轴交于点A ,若△OPA 的面积为S ,则当x 增大时,S 的变化情况是( )A .S 的值增大B .S 的值减小C .S 的值先增大,后减小D .S 的值不变15.如图物体由两个圆锥组成,其主视图中,90,105A ABC ︒︒∠=∠=.若上面圆锥的侧面积为1,则下面圆锥的侧面积为( )A .2B 3C .32D 2二、填空题16.已知一组数据为1,2,3,4,5,则这组数据的方差为_____.17.将二次函数y=2x 2的图像沿x 轴向左平移2个单位,再向下平移3个单位后,所得函数图像的函数关系式为______________.18.圆锥的母线长为5cm ,高为4cm ,则该圆锥的全面积为_______cm 2.19.飞机着陆后滑行的距离s (单位:m )关于滑行的时间t (单位:s )的函数解析式是2200.5s t t =-,飞机着陆后滑行______m 才能停下来.20.若一个圆锥的主视图是腰长为5,底边长为6的等腰三角形,则该圆锥的侧面积是____________.21.如图,在△ABC 中,AB =3,AC =4,BC =6,D 是BC 上一点,CD =2,过点D 的直线l 将△ABC 分成两部分,使其所分成的三角形与△ABC 相似,若直线l 与△ABC 另一边的交点为点P ,则DP =________.22.如图,已知O 的半径为2,ABC ∆内接于O ,135ACB ∠=,则AB =__________.23.如图,已知正方ABCD 内一动点E 到A 、B 、C 三点的距离之和的最小值为13+,则这个正方形的边长为_____________24.一个不透明的口袋中装有若干只除了颜色外其它都完全相同的小球,若袋中有红球6只,且摸出红球的概率为35,则袋中共有小球_____只. 25.如图,∠C=∠E=90°,AC=3,BC=4,AE=2,则AD=_________ .26.如图,△ABC 的顶点A 、B 、C 都在边长为1的正方形网格的格点上,则sinA 的值为________.27.在某市中考体考前,某初三学生对自己某次实心球训练的录像进行分析,发现实心球飞行高度y (米)与水平距离x (米)之间的关系为21251233y x x =-++,由此可知该生此次实心球训练的成绩为_______米.28.如图,圆形纸片⊙O 半径为 52,先在其内剪出一个最大正方形,再在剩余部分剪出 4个最大的小正方形,则 4 个小正方形的面积和为_______.29.某公园平面图上有一条长12cm 的绿化带.如果比例尺为1:2000,那么这条绿化带的实际长度为_____.30.有4根细木棒,它们的长度分别是2cm 、4cm 、6cm 、8cm .从中任取3根恰好能搭成一个三角形的概率是_____.三、解答题31.如图,四边形ABCD 内接于⊙O ,AC 为⊙O 的直径,D 为AC 的中点,过点D 作DE ∥AC ,交BC 的延长线于点E .(1)判断DE 与⊙O 的位置关系,并说明理由; (2)若CE =163,AB =6,求⊙O 的半径.32.已知二次函数y =(x -m )(x +m +4),其中m 为常数. (1)求证:不论m 为何值,该二次函数的图像与x 轴有公共点.(2)若A (-1,a )和B (n ,b )是该二次函数图像上的两个点,请判断a 、b 的大小关系. 33.如图,已知抛物线y 1=﹣12x 2+32x+2与x 轴交于A 、B 两点,与y 轴交于点C ,直线l 是抛物线的对称轴,一次函数y 2=kx+b 经过B 、C 两点,连接AC .(1)△ABC 是 三角形;(2)设点P 是直线l 上的一个动点,当△PAC 的周长最小时,求点P 的坐标; (3)结合图象,写出满足y 1>y 2时,x 的取值范围 .34.九(3)班组织了一次经典朗读比赛,甲、乙两队各10人的比赛成绩如下表: 甲 7 8 9 7 10 10 9 10 10 10 乙10879810109109(1)计算乙队的平均成绩和方差;(2)已知甲队成绩的方差是1.4分2,则成绩较为整齐的是哪个队?35.如图 1,直线 y=2x+2 分别交 x 轴、y 轴于点A 、B ,点C 为x 轴正半轴上的点,点 D 从点C 处出发,沿线段CB 匀速运动至点 B 处停止,过点D 作DE ⊥BC ,交x 轴于点E ,点 C′是点C 关于直线DE 的对称点,连接 EC′,若△ DEC′与△ BOC 的重叠部分面积为S ,点D 的运动时间为t (秒),S 与 t 的函数图象如图 2 所示. (1)V D = ,C 坐标为 ; (2)图2中,m= ,n= ,k= .(3)求出S 与t 之间的函数关系式(不必写自变量t 的取值范围).四、压轴题36.数学概念若点P 在ABC ∆的内部,且APB ∠、BPC ∠和CPA ∠中有两个角相等,则称P 是ABC ∆的“等角点”,特别地,若这三个角都相等,则称P 是ABC ∆的“强等角点”. 理解概念(1)若点P 是ABC ∆的等角点,且100APB ∠=,则BPC ∠的度数是 . (2)已知点D 在ABC ∆的外部,且与点A 在BC 的异侧,并满足180BDC BAC ∠+∠<,作BCD ∆的外接圆O ,连接AD ,交圆O 于点P .当BCD ∆的边满足下面的条件时,求证:P 是ABC ∆的等角点.(要求:只选择其中一道题进行证明!)①如图①,DB DC = ②如图②,BC BD =深入思考(3)如图③,在ABC ∆中,A ∠、B 、C ∠均小于120,用直尺和圆规作它的强等角点Q .(不写作法,保留作图痕迹)(4)下列关于“等角点”、“强等角点”的说法: ①直角三角形的内心是它的等角点; ②等腰三角形的内心和外心都是它的等角点; ③正三角形的中心是它的强等角点;④若一个三角形存在强等角点,则该点到三角形三个顶点的距离相等;⑤若一个三角形存在强等角点,则该点是三角形内部到三个顶点距离之和最小的点,其中正确的有 .(填序号)37.如图1,有一块直角三角板,其中AB 16=,ACB 90∠=,CAB 30∠=,A 、B 在x 轴上,点A 的坐标为()20,0,圆M 的半径为33,圆心M 的坐标为()5,33-,圆M 以每秒1个单位长度的速度沿x 轴向右做平移运动,运动时间为t 秒;()1求点C 的坐标;()2当点M 在ABC ∠的内部且M 与直线BC 相切时,求t 的值;()3如图2,点E 、F 分别是BC 、AC 的中点,连接EM 、FM ,在运动过程中,是否存在某一时刻,使EMF 90∠=?若存在,直接写出t 的值,若不存在,请说明理由.38.已知,如图Rt △ABC 中,∠C =90°,AC =6cm ,BC =8cm ,点P 为AC 的中点,Q 从点A 运动到B ,点Q 运动到点B 停止,连接PQ ,取PQ 的中点O ,连接OC ,OB .(1)若△ABC ∽△APQ ,求BQ 的长;(2)在整个运动过程中,点O 的运动路径长_____;(3)以O 为圆心,OQ 长为半径作⊙O ,当⊙O 与AB 相切时,求△COB 的面积.39.一个四边形被一条对角线分割成两个三角形,如果分割所得的两个三角形相似,我们就把这条对角线称为相似对角线.(1)如图,正方形ABCD 的边长为4,E 为AD 的中点,点F ,H 分别在边AB 和CD 上,且1AF DH ==,线段CE 与FH 交于点G ,求证:EF 为四边形AFGE 的相似对角线;(2)在四边形ABCD 中,BD 是四边形ABCD 的相似对角线,120A CBD ∠=∠=,2AB =,6BD =CD 的长;(3)如图,已知四边形ABCD 是圆O 的内接四边形,90A ∠=,8AB =,6AD =,点E 是AB 的中点,点F 是射线AD 上的动点,若EF 是四边形AECF 的相似对角线,请直接写出线段AF 的长度(写出3个即可).40.如图1,ABC ∆是⊙O 的内接等腰三角形,点D 是弧AC 上异于,A C 的一个动点,射线AD 交底边BC 所在的直线于点E ,连结BD 交AC 于点F . (1)求证:ADB CDE ∠=∠;(2)若7BD =,3CD =,①求AD DE •的值;②如图2,若AC BD ⊥,求tan ACB ∠;(3)若5tan 2CDE ∠=,记AD x =,ABC ∆面积和DBC ∆面积的差为y ,直接写出y 关于x 的函数关系式.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【解析】 【分析】根据圆锥的底面半径为2,母线长为6,直接利用圆锥的侧面积公式求出它的侧面积. 【详解】根据圆锥的侧面积公式:πrl =π×2×6=12π, 故选:B . 【点睛】本题主要考查了圆锥侧面积公式.熟练地应用圆锥侧面积公式求出是解决问题的关键.2.B解析:B 【解析】 【分析】求出P 点到圆心的距离,即OP 长,与半径长度5作比较即可作出判断. 【详解】解:∵()8,6P -, ∴228610+= , ∵O 的直径为10,∴r=5, ∵OP>5, ∴点P 在O 外.故选:B. 【点睛】本题考查点和直线的位置关系,当d>r时点在圆外,当d=r时,点在圆上,当d<r时,点在圆内,解题关键是根据点到圆心的距离和半径的关系判断.3.B解析:B【解析】试题解析:∵底面半径为3cm,∴底面周长6πcm∴圆锥的侧面积是12×6π×5=15π(cm2),故选B.4.D解析:D【解析】【分析】抛物线y=(x+1)2-2开口向上,有最小值,顶点坐标为(-1,-2),顶点的纵坐标-2即为函数的最小值.【详解】解:根据二次函数的性质,当x=-1时,二次函数y=(x+1)2-2的最小值是-2.故选D.【点睛】本题考查了二次函数的最值.5.D解析:D【解析】【分析】根据切线的性质得到∠ABC=90°,根据直角三角形的性质求出∠A,根据圆周角定理计算即可.【详解】∵BC是⊙O的切线,∴∠ABC=90°,∴∠A=90°-∠ACB=40°,由圆周角定理得,∠BOD=2∠A=80°,故选D.【点睛】本题考查的是切线的性质、圆周角定理,掌握圆的切线垂直于经过切点的半径是解题的关键.6.A解析:A【解析】将二次函数22y x =的图象向右平移3个单位,再向上平移2个单位后的函数关系式为:22(3)2y x =-+.故选A.7.D解析:D 【解析】A.平移后,得y=(x+1)2,图象经过A 点,故A 不符合题意;B.平移后,得y=(x−3)2,图象经过A 点,故B 不符合题意;C.平移后,得y=x 2+3,图象经过A 点,故C 不符合题意;D.平移后,得y=x 2−1图象不经过A 点,故D 符合题意; 故选D.8.B解析:B 【解析】 【分析】利用圆锥面积=Rr 计算. 【详解】Rr =2510,故选:B. 【点睛】此题考查圆锥的侧面积公式,共有三个公式计算圆锥的面积,做题时依据所给的条件恰当选择即可解答.9.B解析:B 【解析】 【分析】 【详解】解:将点(m ,3m )代入反比例函数ky x=得, k=m•3m=3m 2>0; 故函数在第一、三象限, 故选B .10.A解析:A 【解析】 【分析】先根据勾股定理计算出斜边AB 的长,然后根据正弦的定义求解. 【详解】如图,∵∠C=90°,AC=8,BC=6,∴AB222268BC AC+=+10,∴sin B=84105 ACAB==.故选:A.【点睛】本题考查了正弦的定义:在直角三角形中,一锐角的正弦等于它的对边与斜边的比值.也考查了勾股定理.11.C解析:C【解析】【分析】根据全等三角形对应角相等可得∠B=∠E=40°,∠F=∠C,然后利用三角形内角和定理计算出∠C的度数,进而可得答案.【详解】解:∵△ABC≌△DEF,∴∠B=∠E=40°,∠F=∠C,∵∠A=60°,∴∠C=180°-60°-40°=80°,∴∠F=80°,故选:C.【点睛】此题主要考查了全等三角形的性质,关键是掌握全等三角形的对应角相等.12.A解析:A【解析】【分析】根据DE∥BC得到△ADE∽△ABC,再结合相似比是AD:AB=1:3,因而面积的比是1:9.【详解】解:如图:∵DE ∥BC ,∴△ADE ∽△ABC ,∵AD :DB=1:2,∴AD :AB=1:3,∴S △ADE :S △ABC =1:9.故选:A .【点睛】本题考查的是相似三角形的判定与性质,熟知相似三角形面积的比等于相似比的平方是解答此题的关键.13.B解析:B【解析】【分析】针扎到内切圆区域的概率就是内切圆的面积与外切圆面积的比.【详解】解:∵如图所示的正三角形,∴∠CAB =60°,∴∠OAB =30°,∠OBA =90°,设OB =a ,则OA =2a ,则小球落在小⊙O 内部(阴影)区域的概率为()22142a a ππ=. 故选:B .【点睛】本题考查了概率问题,掌握圆的面积公式是解题的关键.14.D解析:D【解析】【分析】作PB⊥OA于B,如图,根据垂径定理得到OB=AB,则S△POB=S△PAB,再根据反比例函数k的几何意义得到S△POB=12|k|,所以S=2k,为定值.【详解】作PB⊥OA于B,如图,则OB=AB,∴S△POB=S△PAB.∵S△POB=12|k|,∴S=2k,∴S的值为定值.故选D.【点睛】本题考查了反比例函数系数k的几何意义:在反比例函数y=kx图象中任取一点,过这一个点向x轴和y轴分别作垂线,与坐标轴围成的矩形的面积是定值|k|.15.D解析:D【解析】【分析】先证明△ABD为等腰直角三角形得到∠ABD=45°,BD2AB,再证明△CBD为等边三角形得到BC=BD2AB,利用圆锥的侧面积的计算方法得到上面圆锥的侧面积与下面圆锥的侧面积的比等于AB:CB,从而得到下面圆锥的侧面积.【详解】∵∠A=90°,AB=AD,∴△ABD为等腰直角三角形,∴∠ABD=45°,BD2AB,∵∠ABC=105°,∴∠CBD=60°,而CB=CD,∴△CBD为等边三角形,∴BC=BD2AB,∵上面圆锥与下面圆锥的底面相同,∴上面圆锥的侧面积与下面圆锥的侧面积的比等于AB:CB,2×12.故选D.【点睛】本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.也考查了等腰直角三角形和等边三角形的性质.二、填空题16.【解析】试题分析:先根据平均数的定义确定平均数,再根据方差公式进行计算即可求出答案.由平均数的公式得:(1+2+3+4+5)÷5=3,∴方差=[(1﹣3)2+(2﹣3)2+(3﹣3)2+(4解析:【解析】试题分析:先根据平均数的定义确定平均数,再根据方差公式进行计算即可求出答案.由平均数的公式得:(1+2+3+4+5)÷5=3,∴方差=[(1﹣3)2+(2﹣3)2+(3﹣3)2+(4﹣3)2+(5﹣3)2]÷5=2.考点:方差.17.y=2(x+2)2-3【解析】【分析】根据“上加下减,左加右减”的原则进行解答即可.【详解】解:根据“上加下减,左加右减”的原则可知,二次函数y=2x2的图象向左平移2个单位,再向下平移解析:y=2(x+2)2-3【解析】【分析】根据“上加下减,左加右减”的原则进行解答即可.【详解】解:根据“上加下减,左加右减”的原则可知,二次函数y=2x2的图象向左平移2个单位,再向下平移3个单位后得到的图象表达式为y=2(x+2)2-3【点睛】本题考查的是二次函数的图象与几何变换,熟知“上加下减,左加右减”的原则是解答此题的关键.18.24π【解析】【分析】利用圆锥的母线长和圆锥的高求得圆锥的底面半径,表面积=底面积+侧面积=π×底面半径2+底面周长×母线长÷2.【详解】解:∵圆锥母线长为5cm ,圆锥的高为4cm ,∴底解析:24π【解析】【分析】利用圆锥的母线长和圆锥的高求得圆锥的底面半径,表面积=底面积+侧面积=π×底面半径2+底面周长×母线长÷2.【详解】解:∵圆锥母线长为5cm ,圆锥的高为4cm ,∴底面圆的半径为3,则底面周长=6π, ∴侧面面积=12×6π×5=15π; ∴底面积为=9π,∴全面积为:15π+9π=24π.故答案为24π.【点睛】本题利用了圆的周长公式和扇形面积公式求解.19.200【解析】【分析】要求飞机从滑行到停止的路程就,即求出函数的最大值即可.【详解】解:所以当t=20时,该函数有最大值200.故答案为200.【点睛】本题主要考查了二次函数的应用解析:200【解析】【分析】要求飞机从滑行到停止的路程就,即求出函数的最大值即可.【详解】解:()()222200.50.5404002000.520200s t t t t t =-=--++=--+ 所以当t=20时,该函数有最大值200.故答案为200.【点睛】本题主要考查了二次函数的应用,掌握二次函数求最值的方法,即公式法或配方法是解题关键.20.15π.【解析】【分析】根据圆锥的主视图得到圆锥的底面圆的半径为3,母线长为5,然后根据圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长和扇形的面积公式求解析:15π.【解析】【分析】根据圆锥的主视图得到圆锥的底面圆的半径为3,母线长为5,然后根据圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长和扇形的面积公式求解.【详解】解:根据题意得圆锥的底面圆的半径为3,母线长为5,所以这个圆锥的侧面积=12×5×2π×3=15π.【点睛】本题考查圆锥侧面积的计算,掌握公式,准确计算是本题的解题关键.21.1,,【解析】【分析】分别利用当DP∥AB时,当DP∥AC时,当∠CDP=∠A时,当∠BPD=∠BAC时求出相似三角形,进而得出结果.【详解】BC=6,CD=2,∴BD=4,①如图解析:1,83,32【解析】【分析】分别利用当DP∥AB时,当DP∥AC时,当∠CDP=∠A时,当∠BPD=∠BAC时求出相似三角形,进而得出结果.【详解】BC=6,CD=2,∴BD=4,①如图,当DP∥AB时,△PDC∽△ABC,∴PD CDAB BC=,∴236DP=,∴DP=1;②如图,当DP∥AC时,△PBD∽△ABC.∴PD BDAC BC=,∴446DP=,∴DP=83;③如图,当∠CDP=∠A时,∠DPC∽△ABC,∴DP DCAB AC=,∴234DP=,∴DP=32;④如图,当∠BPD=∠BAC时,过点D的直线l与另一边的交点在其延长线上,,不合题意。
位似一、选择题(每题5分,共40分)1. △ABC 与△'''A B C 是位似图形,且△ABC 与△'''A B C 的位似比是1︰2,已知△ABC 的面积是3,则△'''A B C 的面积是( )A .3B .6C .9D .12【答案】D .【解析】试题分析:利用位似图形的面积比等于位似比的平方,进而得出答案.试题解析:∵△ABC 与△A′B′C′是位似图形,且△ABC 与△A′B′C′的位似比是1:2,△ABC 的面积是3,∴△ABC 与△A′B′C′的面积比为:1:4,则△A′B′C′的面积是:12.故选D .考点:位似变换.2. 如图,D ,E ,F 分别是OA ,OB ,OC 的中点,下面的说法中:①△ABC 与△DEF 是位似图形;②△ABC 与△DEF 的相似比为1:2;③△ABC 与△DEF 的周长之比为2:1;④△ABC 与△DEF 的面积之比为4:1.正确的是( )A .①②③B .①③④C .①②④D .②③④【答案】B【解析】试题分析:根据位似图形的性质,得出①△ABC 与△DEF 是位似图形,进而根据位似图形一定是相似图形得出 ②△ABC 与△DEF 是相似图形,再根据周长比等于位似比,以及根据面积比等于相似比的平方,即可得出答案. 根据位似性质得出①△ABC 与△DEF 是位似图形,②△ABC 与△DEF 是相似图形,且相似比是:AB DE=2, ③△ABC 与△DEF 的周长比等于相似比,即2:1,④根据面积比等于相似比的平方,则△ABC 与△DEF 的面积比为4:1.综上所述,正确的结论是:①③④.故选:B .考点:位似变换.3.如图,在平面直角坐标系中,已知点A (―3,6)、B (―9,一3),以原点O 为位似中心,相似比为13,把△ABO 缩小,则点A 的对应点A′的坐标是( )A .(―1,2)B .(―9,18)C .(―9,18)或(9,―18)D .(―1,2)或(1,―2)第8题图【答案】D【解析】试题分析:根据位似图形的性质可得:点A′的坐标为(-3×31,6×31)或[-3×(-31),6×(-31)],即点A′的坐标为(-1,2)或(1,-2).故选:D考点:位似图形的性质4. 图中两个四边形是位似图形,它们的位似中心是( )A .点MB .点NC .点OD .点P【答案】D【解析】点P 在对应点M 和点N 所在直线上,故选:D.考点:图形的位似.5如图,小“鱼”与大“鱼”是位似图形,已知小“鱼”上一个“顶点”的坐标为(a,b),那么大“鱼”上对应“顶点”的坐标为()A.(-a,-2b)B.(-2a,-b)C.(-2a,-2b)D.(-b,-2a)【答案】C【解析】试题分析:根据位似图形的性质可得(a,b)的对应顶点为(-2a,-2b).故选:C.6.如图,在直角坐标系中,矩形OABC的顶点O在坐标原点,边OA在x轴上,OC在y轴上,如果矩形OA′B′C′与矩形OABC关于点O位似,且矩形OA′B′C′的面积等于矩形OABC面积的14,那么点B′的坐标是()A.(﹣2,3)B.(2,﹣3)C.(3,﹣2)或(﹣2,3)D.(﹣2,3)或(2,﹣3)【答案】D【解析】试题分析:由矩形OA′B′C′与矩形OABC关于点O位似,且矩形OA′B′C′的面积等于矩形OABC面积的14,利用相似三角形的面积比等于相似比的平方,即可求得矩形OA′B′C′与矩形OABC的位似比为1:2,又由点B的坐标为(﹣4,6),即可求得答案.∵矩形OA′B′C′与矩形OABC关于点O位似,∴矩形OA′B′C′∽矩形OABC,∵矩形OA′B′C′的面积等于矩形OABC面积的14,∴位似比为:1:2,∵点B 的坐标为(﹣4,6),∴点B′的坐标是:(﹣2,3)或(2,﹣3).故选:D .考点:位似图形的性质7.在平面直角坐标系中,已知A (6,3),B (6,0)两点,以坐标原点O 为位似中心,位似比为13 ,把线段AB 缩小到线段''A B ,则''A B 的长度等于( )A.1B.2C.3D.6【答案】A【解析】试题分析:∵A (6,3)、B (6,0),∴AB=3,又∵相似比为13,∴A′B′:AB=1:3,∴A′B′=1. 故选A考点:相似变换8. 已知,如图,E (-4,2),F (-1,-1).以O 为位似中心,按比例尺1:2把△EFO 缩小,点E 的对应点)的坐标( )A .(-2,1)B .(2,-1)C .(2,-1)或(-2,-1)D .(-2,1)或(2,-1)【答案】D .【解析】试题分析:由E (-4,2),F (-1,-1).以O 为位似中心,按比例尺1:2把△EFO 缩小,根据位似图形的性质,即可求得点E 的对应点的坐标.试题解析:∵E (-4,2),以O 为位似中心,按比例尺1:2把△EFO 缩小,∴点E 的对应点的坐标为:(-2,1)或(2,-1).故选D .考点:1.位似变换;2.坐标与图形性质.二、填空题(每题6分,共30分)9. 如图是三角尺在灯泡O 的照射下在墙上形成的影子.现测得20OA cm =,'50OA cm =,则这个三角尺的周长与它在墙上形成的影子的周长之比是_________.【答案】25 【解析】 试题分析:由图知,OAB ∆∽''OA B ∆,且ABC ∆∽'''A B C ∆,故2'''5OA AB OA A B ==,根据相似三角形的性质,周长之比等于相似比,故'''25ABC A B C C C ∆∆=. 考点:相似三角形的性质.10. 如图,平行四边形ABCD 中,点E 、F 分别是边AB 、CD 的中点,点O 是AF 、DE 的交点,点P 是BF 、CE 的交点,则除△FOD 外,与△AOE 位似的是________(写出一个即可).【答案】△AFB (或△CPF )【解析】如图,以点O 为位似中心的位似三角形是△FOD ,以点A 为位似中心的位似三角形是△AFB ,以平行四边形ABCD 的中心为位似中心的位似三角形是△CPF ,所以,除△FOD 外,与△AOE 位似的是△AFB 和△CPF .11. (3分)如图,以O 为位似中心,将边长为256的正方形OABC 依次作位似变化,经第一次变化后得正方形OA 1B 1C 1,其边长OA 1缩小为OA 的12,经第二次变化后得正方形OA 2B 2C 2,其边长OA 2缩小为OA 1的12,经第三次变化后得正方形OA 3B 3C 3,其边长OA 3缩小为OA 2的12,......,按此规律,经第n 次变化后,所得正方形OA n B n C n的边长为正方形OABC边长的倒数,则n= .【答案】16.【解析】试题分析:由已知有:OA1=12OA;OA2=12OA1=21()2OA,OA3=12OA2=31()2OA,......,∴OA n=1()2n OA,OA n=1()2n OA=1OA,∴1()2n=1622111()2562OA==,∴n=16.故答案为:16.考点:1.位似变换;2.坐标与图形性质.12. 如图,在平面直角坐标系中,△ABC的顶点坐标分别为(4,0)(8,2),(6,4)。
3广东省深圳市九年级(上)期末数学试卷一、选择题(本题共 12 小题,每小题 3 分,共 36 分,每小题给出 4 个选项,其中只有一个是正确的)1.(3 分)如图,墨水瓶的瓶盖和瓶身都是圆柱形,则它的俯视图是()A .B .C .D .2.(3 分)下列所给各点中,反比例函数 y = 的图象经过的是()A .(﹣2,4)B .(﹣1,﹣8)C .(﹣4,2)D .(3,5)3.(3 分)某时刻,测得身高 1.8 米的人在阳光下的影长是 1.5 米,同一时刻,测得某旗杆的影长为 12 米,则该旗杆的高度是()A .10 米B .12 米C .14.4 米D .15 米4.(3 分)已知 x =1 是一元二次方程 x 2+mx ﹣2=0 的一个解,则 m 的值是()A .1B .﹣1C .2D .﹣25.(3 分)如果两个相似三角形的对应边上的高之比为 1: ,则两三角形的面积比为( )A .2:3B .1:3C .1:9D .1:6.(3 分)甲袋里有红、白两球,乙袋里有红、红、白三球,两袋的球除颜色不同外都相同,分别往两袋里任摸一球,则同时摸到红球的概率是()A .B .C .D .7.(3 分)如图,将△ABC 放在每个小正方形的边长为 1 的网格中,点 A ,B ,C 均在格点上,则 tanC 的值是( )A.2B.C.1D.8.(3分)如图,l1∥l2∥l3,直线a,b与11、l2、l3分别相交于A、B、C和点D、E、F,若=,DE=6,则EF的长是()A.9B.10C.2D.159.(3分)已知关于x的方程ax2+2x﹣2=0有实数根,则实数a的取值范围是()A.a≥﹣B.a≤﹣C.a≥﹣且a≠0D.a>﹣且a≠0 10.(3分)某商品原价为100元,第一次涨价40%,第二次在第一次的基础上又涨价10%,设平均每次增长的百分数为x,那么x应满足的方程是()A.x=B.100(1+40%)(1+10%)=(1+x)2C.(1+40%)(1+10%)=(1+x)2D.(100+40%)(100+10%)=100(1+x)211.(3分)如图是二次函数y=ax2+b x+c(a≠0)的图象,根据图象信息,下列结论错误的是()A.abc<0B.2a+b=0C.4a﹣2b+c>0D.9a+3b+c=0 12.(3分)如图,A、C是反比例函数y=(x>0)图象上的两点,B、D是反比例函数y=(x>0)图象上的两点,已知AB∥CD∥y轴,直线AB、CD分别交x轴于E、F,根据图中信息,下列结论正确的有()①DF=;②=﹣;③;④A.1个B.2个C.3个D.4个二、填空题(本题共4小题,每小题3分,共12分)13.(3分)二次函数y=x2﹣4x+4的顶点坐标是.14.(3分)如图,O是坐标原点,菱形OABC的顶点A的坐标为(3,4),顶点C在x 轴的正半轴上,则∠AOC的角平分线所在直线的函数关系式为.15.(3分)如图,大楼底右侧有一障碍物,在障碍物的旁边有一栋小楼DE,在小楼的顶端D处测得障碍物边缘点C的俯角为30°,测得大楼顶端A的仰角为45°(点B,C,E在同一水平直线上).已知AB=40m,DE=10m,则障碍物B,C两点间的距离为m.(结果保留根号)16.(3分)如图,点E是矩形ABCD的一边AD的中点,BF⊥CE于F,连接AF;若AB =4,AD=6,则sin∠AFE=.三、解答题(本题共7小题,其中第17题5分,第18题6分,第19题7分,第20题8分,第21题8分,第22题9分,第23题9分,共52分)17.(5分)计算:tan45°﹣tan260°+sin30°﹣cos30°.18.(6分)解方程:2(x﹣3)2=x﹣3.19.(7分)如图,四张正面分别写有1、2、3、4的不透明卡片,它们的背面完全相同,现把它们洗匀,背面朝上放置后,开始游戏.游戏规则如下:连摸三次,每次随机摸出一张卡片,并翻开记下卡片上的数字,每次摸出后不放回,如果第三次摸出的卡片上的数字,正好介于第一、二次摸出的卡片上的数字之间,则游戏胜出,否则,游戏失败.问:(1)若已知小明第一次摸出的数字是4,第二次摸出的数字是2,在这种情况下,小明继续游戏,可以获胜的概率为.(2)若已知小明第一次摸出的数字是3,求在这种情况下,小明继续游戏,可以获胜的概率(要求列表或用树状图求)20.(8分)如图,E、F是正方形ABCD对角线AC上的两点,且AE=EF=FC,连接BE、DE、BF、DF.(1)求证:四边形BEDF是菱形:(2)求tan∠AFD的值.21.(8分)某商场购进一种每件价格为90元的新商品,在商场试销时发现:销售单价x (元/件)与每天销售量y(件)之间满足如图所示的关系.(1)求出y与x之间的函数关系式;(2)写出每天的利润W与销售单价x之间的函数关系式,并求出售价定为多少时,每天获得的利润最大?最大利润是多少?22.(9分)如图,点P是反比例函数y=﹣(x<0)图象上的一动点,P A⊥x轴于点A,在直线y=x上截取OB=P A(点B在第一象限),点C的坐标为(﹣2,2),连接AC、BC、OC.(1)填空:OC=,∠BOC=;(△2)求证:AOC∽△COB;(3)随着点P的运动,∠ACB的大小是否会发生变化?若变化,请说明理由,若不变,则求出它的大小.23.(9分)如图,抛物线交x轴于A、B两点(点A在点B的左边),交y轴于点C,直线y=﹣x+3经过点C与x轴交于点D,抛物线的顶点坐标为(2,4).(1)请你直接写出CD的长及抛物线的函数关系式;(2)求点B到直线CD的距离;(3)若点P是抛物线位于第一象限部分上的一个动点,则当点P运动至何处时,恰好使∠PDC=45°?请你求出此时的P点坐标.参考答案与试题解析一、选择题(本题共12小题,每小题3分,共36分,每小题给出4个选项,其中只有一个是正确的)1.(3分)如图,墨水瓶的瓶盖和瓶身都是圆柱形,则它的俯视图是()A.B.C.D.【分析】直接利用俯视图即从物体的上面往下看,进而得出视图.【解答】解:墨水瓶的瓶盖和瓶身都是圆柱形,则它的俯视图是:.故选:A.【点评】此题主要考查了简单组合体的三视图,注意观察角度是解题关键.2.(3分)下列所给各点中,反比例函数y=的图象经过的是()A.(﹣2,4)B.(﹣1,﹣8)C.(﹣4,2)D.(3,5)【分析】根据反比例函数图象上点的坐标特征进行判断.【解答】解:∵﹣2×4=﹣8,﹣4×2=﹣8,3×5=15,﹣1×(﹣8)=8,∴点(﹣1,﹣8)在反比例函数y=的图象经上.故选:B.【点评】本题考查了反比例函数图象上点的坐标特征:反比例函数y=(k为常数,k ≠0)的图象是双曲线,图象上的点(x,y)的横纵坐标的积是定值k,即xy=k.3.(3分)某时刻,测得身高1.8米的人在阳光下的影长是1.5米,同一时刻,测得某旗杆的影长为12米,则该旗杆的高度是()A.10米B.12米C.14.4米D.15米【分析】在同一时刻,物体的实际高度和影长成比例,据此列方程即可解答.3【解答】解:∵同一时刻物高与影长成正比例.∴1.8:1.5=旗杆的高度:12∴旗杆的高度为 14.4 米故选:C .【点评】本题只要是把实际问题抽象到相似三角形中,利用相似三角形的相似比,列出方程,通过解方程求出旗杆的高度,体现了方程的思想.4.(3 分)已知 x =1 是一元二次方程 x 2+mx ﹣2=0 的一个解,则 m 的值是()A .1B .﹣1C .2D .﹣2【分析】把 x =1 代入方程 x 2+mx ﹣2=0 得到关于 m 的一元一次方程,解之即可.【解答】解:把 x =1 代入方程 x 2+mx ﹣2=0 得:1+m ﹣2=0,解得:m =1,故选:A .【点评】本题考查了一元二次方程的解,正确掌握代入法是解题的关键.5.(3 分)如果两个相似三角形的对应边上的高之比为 1: ,则两三角形的面积比为( )A .2:3B .1:3C .1:9D .1:【分析】根据对应高的比等于相似比,相似三角形的面积比等于相似比的平方解答.【解答】解:∵相似三角形对应高的比等于相似比,∴两三角形的相似比为 1:3,∴两三角形的面积比为 1:9.故选:C .【点评】本题考查对相似三角形性质的理解,相似三角形对应高的比等于相似比.6.(3 分)甲袋里有红、白两球,乙袋里有红、红、白三球,两袋的球除颜色不同外都相同,分别往两袋里任摸一球,则同时摸到红球的概率是()A .B .C .D .【分析】先求出任摸一球的组合情况总数,再求出同时摸到红球的数目,利用概率公式计算即可.【解答】解:分别往两袋里任摸一球的组合有 6 种:红红,红红,红白,白红,白红,白白;其中红红的有 2 种,所以同时摸到红球的概率是=.故选:A.【点评】此题考查的是用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.7.(3分)如图,将△ABC放在每个小正方形的边长为1的网格中,点A,B,C均在格点上,则tanC的值是()A.2B.C.1D.【分析】在直角三角形ACD中,根据正切的意义可求解.【解答】解:如图在RtACD中,tanC=,故选:B.【点评】本题考查锐角三角函数的定义.将角转化到直角三角形中是解答的关键.8.(3分)如图,l1∥l2∥l3,直线a,b与11、l2、l3分别相交于A、B、C和点D、E、F,若=,DE=6,则EF的长是()A.9B.10C.2D.15△b 2 【分析】根据平行线分线段成比例可得 = ,代入计算即可解答.【解答】解:∵l 1∥l 2∥l 3,∴= ,即 = ,解得:DF =15,∴EF =15﹣6=9.故选:A .【点评】本题主要考查平行线分线段成比例,掌握平行线分线段所得线段对应成比例是解题的关键.9.(3 分)已知关于 x 的方程 ax 2+2x ﹣2=0 有实数根,则实数 a 的取值范围是()A .a ≥﹣B .a ≤﹣C .a ≥﹣ 且 a ≠0D .a >﹣ 且 a ≠0 【分析】当 a ≠0 时,是一元二次方程,根据根的判别式的意义得=△22﹣4a ×(﹣2)=4(1+2a )≥0,然后解不等式;当 a =0 时,是一元一次方程有实数根,由此得出答案即可.【解答】解:当 a ≠0 时,是一元二次方程,∵原方程有实数根,∴ =△22﹣4a ×(﹣2)=4(1+2a )≥0,∴a ≥﹣ ;当 a =0 时,2x ﹣2=0 是一元一次方程,有实数根.故选:A .【点评】本题考查了一元二次方程 ax 2+b x +c =0(a ≠0,a ,b ,c 为常数)的根的判别式=﹣4△ac.当 >△0,方程有两个不相等的实数根;当 =0,方程有两个相等的实数 根;当 <△0,方程没有实数根.也考查了一元二次方程的定义.进行分类讨论是解题的关键.10.(3 分)某商品原价为 100 元,第一次涨价 40%,第二次在第一次的基础上又涨价 10%,设平均每次增长的百分数为 x ,那么 x 应满足的方程是()A .x =B .100(1+40%)(1+10%)=(1+x )2C .(1+40%)(1+10%)=(1+x )2D.(100+40%)(100+10%)=100(1+x)2【分析】设平均每次增长的百分数为x,根据“某商品原价为100元,第一次涨价40%,第二次在第一次的基础上又涨价10%”,得到商品现在的价格,根据“某商品原价为100元,经过两次涨价,平均每次增长的百分数为x”,得到商品现在关于x的价格,整理后即可得到答案.【解答】解:设平均每次增长的百分数为x,∵某商品原价为100元,第一次涨价40%,第二次在第一次的基础上又涨价10%,∴商品现在的价格为:100(1+40%)(1+10%),∵某商品原价为100元,经过两次涨价,平均每次增长的百分数为x,∴商品现在的价格为:100(1+x)2,∴100(1+40%)(1+10%)=100(1+x)2,整理得:(1+40%)(1+10%)=(1+x)2,故选:C.【点评】本题考查了由实际问题抽象出一元二次方程和有理数的混合运算,正确找出等量关系,列出一元二次方程是解题的关键.11.(3分)如图是二次函数y=ax2+b x+c(a≠0)的图象,根据图象信息,下列结论错误的是()A.abc<0B.2a+b=0C.4a﹣2b+c>0D.9a+3b+c=0【分析】根据二次函数的图象与性质即可求出答案.【解答】解:(A)由图象可知:a<0,c>0,对称轴x=>0,∴b>0,∴abc<0,故A正确;(B)由对称轴可知:=1,∴2a+b=0,故正确;(C)当x=﹣2时,y<0,∴4a﹣2b+c<0,故C错误;(D)(﹣1,0)与(3,0)关于直线x=1对称,∴9a+3b+c=0,故D正确;故选:C.【点评】本题考查二次函数,解题的关键熟练运用二次函数的图象与性质,本题属于中等题型.12.(3分)如图,A、C是反比例函数y=(x>0)图象上的两点,B、D是反比例函数y=(x>0)图象上的两点,已知AB∥CD∥y轴,直线AB、CD分别交x轴于E、F,根据图中信息,下列结论正确的有()①DF=;②=﹣;③;④A.1个B.2个C.3个D.4个【分析】设E(a,0),F(b,0),由A、B、C纵横坐标积等于k可确定a,b的数量关系,从而说明各个结论的正误.【解答】解:设E(a,0),F(b,0),则3a=b=k1,﹣4a=﹣DF•b=k2,∴DF=,,故①②正确;∵∴③正确;∵∴④正确,,,故选:D.【点评】本题考查反比例函数的图象和性质,理解运用k的几何意义是解答此题的关键.二、填空题(本题共4小题,每小题3分,共12分)13.(3分)二次函数y=x2﹣4x+4的顶点坐标是(2,0).【分析】先把一般式配成顶点式,然后利用二次函数的性质解决问题.【解答】解:∵y=x2﹣4x+4=(x﹣2)2,∴抛物线的顶点坐标为(2,0).故答案为(2,0).【点评】本题考查了二次函数的性质:熟练掌握二次函数的顶点坐标公式,对称轴方程和二次函数的增减性.14.(3分)如图,O是坐标原点,菱形OABC的顶点A的坐标为(3,4),顶点C在x 轴的正半轴上,则∠AOC的角平分线所在直线的函数关系式为y=.【分析】延长BA交y轴于D,则BD⊥y轴,依据点A的坐标为(3,4),即可得出B (8,4),再根据∠AOC的角平分线所在直线经过点B,即可得到函数关系式.【解答】解:如图所示,延长BA交y轴于D,则BD⊥y轴,∵点A的坐标为(3,4),∴AD=3,OD=4,∴AO=AB=5,∴BD=3+5=8,∴B(8,4),设∠AOC的角平分线所在直线的函数关系式为y=kx,∵菱形OABC中,∠AOC的角平分线所在直线经过点B,∴4=8k,即k=,∴∠AOC的角平分线所在直线的函数关系式为y=x,故答案为:y=x.【点评】此题主要考查了一次函数图象上点的坐标特征以及菱形的性质的运用,正确得出B点坐标是解题关键.15.(3分)如图,大楼底右侧有一障碍物,在障碍物的旁边有一栋小楼DE,在小楼的顶端D处测得障碍物边缘点C的俯角为30°,测得大楼顶端A的仰角为45°(点B,C,E在同一水平直线上).已知AB=40m,DE=10m,则障碍物B,C两点间的距离为(30﹣10)m.(结果保留根号)【分析】过点D作DF⊥AB于点F,过点C作CH⊥DF于点H,则DE=BF=CH=10m,根据直角三角形的性质得出DF的长,在△Rt CDE中,利用锐角三角函数的定义得出CE 的长,根据BC=BE﹣CE即可得出结论.【解答】解:过点D作DF⊥AB于点F,过点C作CH⊥DF于点H.则DE=BF=CH=10m,在△Rt ADF中,AF=AB﹣BF=30m,∠ADF=45°,∴DF=AF=30m.在△Rt CDE中,DE=10m,∠DCE=30°,∴CE===10(m),∴BC=BE﹣CE=(30﹣10)m.答:障碍物B,C两点间的距离为(30﹣10)m.【点评】本题考查的是解直角三角形的应用﹣仰角俯角问题,根据题意作出辅助线,构造出直角三角形是解答此题的关键.16.(3分)如图,点E是矩形ABCD的一边AD的中点,BF⊥CE于F,连接AF;若AB =4,AD=6,则sin∠AFE=.【分析】延长CE交BA的延长线于点△G,由题意可证AGE≌△DCE,可得AG=CD=4,根据直角三角形的性质可得∠AFE=∠AGF,由勾股定理可求CG=10,即可求sin∠AFE的值.【解答】解:延长CE交BA的延长线于点G,∵四边形ABCD是矩形,∴AB∥CD,AB=CD=4,AD=BC=6,∴∠G=∠GCD,且AE=DEA,∠AEG=∠DEC∴△AGE≌△DCE(AAS)∴AG=CD=4,∴AG=AB,且BF⊥GF,∴AF=AG=AB=4∴∠AFE=∠AGF,∵BG=AG+AB=8,BC=6∴GC==10∴sin∠AFE=sin∠AGF==故答案为:【点评】本题考查了矩形的性质,全等三角形的判定和性质,直角三角形的性质,锐角三角函数等知识,灵活运用相关的性质定理、综合运用知识是解题的关键.三、解答题(本题共7小题,其中第17题5分,第18题6分,第19题7分,第20题8分,第21题8分,第22题9分,第23题9分,共52分)17.(5分)计算:tan45°﹣tan260°+sin30°﹣cos30°.【分析】利用特殊角的三角函数值求解即可【解答】解:原式=1﹣+﹣•=1﹣3+﹣=﹣3【点评】此题主要考查了特殊角的三角函数值,正确记忆相关数据是解题的关键.18.(6分)解方程:2(x﹣3)2=x﹣3.【分析】方程移项后,利用因式分解法求出解即可.【解答】解:方程移项得:2(x﹣3)2﹣(x﹣3)=0,分解因式得:(x﹣3)(2x﹣7)=0,可得x﹣3=0或2x﹣7=0,解得:x1=3,x2=3.5.【点评】此题考查了解一元二次方程﹣因式分解法,熟练掌握因式分解的方法是解本题的关键.19.(7分)如图,四张正面分别写有1、2、3、4的不透明卡片,它们的背面完全相同,现把它们洗匀,背面朝上放置后,开始游戏.游戏规则如下:连摸三次,每次随机摸出一张卡片,并翻开记下卡片上的数字,每次摸出后不放回,如果第三次摸出的卡片上的数字,正好介于第一、二次摸出的卡片上的数字之间,则游戏胜出,否则,游戏失败.问:(1)若已知小明第一次摸出的数字是4,第二次摸出的数字是2,在这种情况下,小明继续游戏,可以获胜的概率为.(2)若已知小明第一次摸出的数字是3,求在这种情况下,小明继续游戏,可以获胜的概率(要求列表或用树状图求)【分析】(1)依据第三次摸出的卡片上的数字可能是1或3,其中摸到3能获胜,即可得到小明继续游戏可以获胜的概率;(2)依据小明第一次摸出的数字是3,画出树状图,即可得到6种等可能的情况,其中第三次摸到的数介于前两个数之间的只有一种情况,进而得出小明获胜的概率.【解答】解:(1)小明第一次摸出的数字是4,第二次摸出的数字是2,在这种情况下,小明继续游戏,第三次摸出的卡片上的数字可能是1或3,其中摸到3能获胜,∴可以获胜的概率为,故答案为:;(2)画树状图如下:共有6种等可能的情况,其中第三次摸到的数介于前两个数之间的只有一种情况:(3,1,2),则P(小明能获胜)=.【点评】此题主要考查了概率的意义以及树状图法与列表法的运用,当有两个元素时,可用树形图列举,也可以列表列举.利用树状图或者列表法列举出所有可能是解题关键.20.(8分)如图,E、F是正方形ABCD对角线AC上的两点,且AE=EF=FC,连接BE、DE、BF、DF.(1)求证:四边形BEDF是菱形:(2)求tan∠AFD的值.【分析】(1)连接BD交AC于点O,根据正方形的性质得到OA=OC,OB=OD,AC ⊥BD,证明OE=OF,得到四边形BEDF是平行四边形,根据菱形的判定定理证明;(2)根据正方形的性质得到OD=3OF,根据正切的定义计算,得到答案.【解答】(1)证明:连接BD交AC于点O,∵四边形ABCD是正方形,∴OA=OC,OB=OD,且AC⊥BD,∵AE=CF,∴OA﹣AE=OC﹣CF,即OE=OF,又∵OB=OD,∴四边形BEDF是平行四边形,又∵AC⊥BD,∴平行四边形BEDF是菱形;(2)解:∵EF=2OF,EF=CF,∴CF=2OF,∴OC=3OF,又OD=OC,∴OD=3OF,在正方形ABCD中,AC⊥BD,∴∠DOF=90°,在△Rt DOF中,tan∠AFD==3.【点评】本题考查的是正方形的性质、菱形的判定、正切的定义,掌握正方形的四条边相等、四个角相等是解题的关键.21.(8分)某商场购进一种每件价格为90元的新商品,在商场试销时发现:销售单价x (元/件)与每天销售量y(件)之间满足如图所示的关系.(1)求出y与x之间的函数关系式;(2)写出每天的利润W与销售单价x之间的函数关系式,并求出售价定为多少时,每天获得的利润最大?最大利润是多少?【分析】(1)先利用待定系数法求一次函数解析式;(2)用每件的利润乘以销售量得到每天的利润W,即W=(x﹣90)(﹣x+170),然后根据二次函数的性质解决问题.【解答】解:(1)设y与x之间的函数关系式为y=kx+b,根据题意得,解得,∴y与x之间的函数关系式为y=﹣x+170;(2)W=(x﹣90)(﹣x+170)=﹣x2+260x﹣15300,∵W=﹣x2+260x﹣15300=﹣(x﹣130)2+1600,而a=﹣1<0,∴当x=130时,W有最大值1600.答:售价定为130元时,每天获得的利润最大,最大利润是1600元.【点评】本题考查了二次函数的应用:利用二次函数解决利润问题,先利用利润=没件的利润乘以销售量构建二次函数关系式,然后根据二次函数的性质求二次函数的最值,一定要注意自变量x的取值范围.22.(9分)如图,点P是反比例函数y=﹣(x<0)图象上的一动点,P A⊥x轴于点A,在直线y=x上截取OB=P A(点B在第一象限),点C的坐标为(﹣2,2),连接AC、BC、OC.(1)填空:OC=4,∠BOC=60°;(△2)求证:AOC∽△COB;(3)随着点P的运动,∠ACB的大小是否会发生变化?若变化,请说明理由,若不变,则求出它的大小.【分析】(1)过点C作CE⊥x轴于点E,过点B作BF⊥x轴于点F,由点C的坐标可得出OE,CE的长度,进而可求出OC的长度及∠AOC的度数,由直线OB的解析式可得出∠BOF的度数,再利用∠BOC=180°﹣∠AOC﹣∠BOF即可求出∠BOC的度数;(2)由(1)可知∠AOC=∠BOC,由点P是反比例函数y=﹣(x<0)图象上的一动点,利用反比例函数图象上点的坐标特征可得出P A•OA=16,结合OB=P A及OC=4,可得出=,结合∠AOC=∠BOC即可证出△AOC∽△COB;(△3)由AOC∽△COB利用相似三角形的性质可得出∠CAO=∠BCO,在△AOC中,利用三角形内角和定理可求出∠CAO+∠OCA=120°,进而可得出∠BCO+∠OCA=120°,即∠ACB=120°.【解答】(1)解:过点C作CE⊥x轴于点E,过点B作BF⊥x轴于点F,如图所示.∵点C的坐标为(﹣2,2),∴OE=2,CE=2∴OC=,=4.∵tan∠AOC==,∴∠AOC=60°.∵直线OB的解析式为y=x,∴∠BOF=60°,∴∠BOC=180°﹣∠AOC﹣∠BOF=60°.故答案为:4;60°.(2)证明:∵∠AOC=60°,∠BOC=60°,∴∠AOC=∠BOC.∵点P是反比例函数y=﹣(x<0)图象上的一动点,∴P A•OA=16.∵P A=OB,∴OB•OA=16=OC2,即=,∴△AOC∽△COB.(3)解:∠ACB的大小不会发生变化,理由如下:∵△AOC∽△COB,∴∠CAO=∠BCO.在△AOC中,∠AOC=60°,∴∠CAO+∠OCA=120°,∴∠BCO+∠OCA=120°,即∠ACB=120°.【点评】本题考查了特殊角的三角函数值、勾股定理、反比例函数图象上点的坐标特征、相似三角形的判定与性质以及三角形内角和定理,解题的关键是:(1)利用勾股定理及角的计算,找出OC的长及∠BOC的度数;(2)利用反比例函数图象上点的坐标特征、OC=4及OB=P A,找出=;(3)利用相似三角形的性质及三角形内角和定理,找出∠BCO+∠OCA=120°.23.(9分)如图,抛物线交x轴于A、B两点(点A在点B的左边),交y轴于点C,直线y=﹣x+3经过点C与x轴交于点D,抛物线的顶点坐标为(2,4).(1)请你直接写出CD的长及抛物线的函数关系式;(2)求点B到直线CD的距离;(3)若点P是抛物线位于第一象限部分上的一个动点,则当点P运动至何处时,恰好使∠PDC=45°?请你求出此时的P点坐标.【分析】(1)求出点C,D的坐标,再用勾股定理求得CD的长;设抛物线为y=a(x ﹣2)2+4,将点C坐标代入求得a,即可得出抛物线的函数表达式;(2)过点B直线CD的垂线,垂足为H,在Rt△BDH中,利用锐角三角函数即可求得点B到直线CD的距离;(3)把点C(0,3)向上平移4个单位,向右平移3个单位得到点E(3,△7),可得OCD≌△FEC,则△DEC为等腰直角三角形,且∠EDC═45°,所以直线ED与抛物线的交点即为所求的点P.【解答】解:(1)∵,∴C(0,3),D(4,0),∵∠COD=90°,∴CD=.设抛物线为y=a(x﹣2)2+4,将点C(0,3)代入抛物线,得3=4a+4,∴,∴抛物线的函数关系式为;(2)解:过点B作BH⊥CD于H,由,可得x1=﹣2,x2=6,∴点B的坐标为(6,0),∵OC=3,OD=4,CD=5,∴OB=6,从而BD=2,在△Rt DHB中,∵BH=BD•sin∠BDH=BD•sin∠CDO=2×,∴点B到直线CD的距离为.(3)把点C(0,3)向上平移4个单位,向右平移3个单位得到点E(3,7),∵CF=OD=4,EF=OC=3,∠CFE=∠DOC=90°,∴△OCD≌△FEC,∴∠FCE=∠ODC,EC=DC,∴∠ECD=180°﹣(∠FCE+∠OCD)=180°﹣(∠ODC+∠OCD)=180°﹣90°=90°,∴△DEC为等腰直角三角形,且∠EDC═45°,因而,ED与抛物线的交点即为所求的点P.由E(3,7),D(4,0),可得直线ED的解析式为:y=﹣7x+28,由得(另一组解不合题意,已舍去.)所以,此时P点坐标为(,).【点评】本题考查学生将二次函数的图象与解析式相结合处理问题、解决问题的能力。
2017-2018学年度深圳学校第一学期期末九年级数学试卷班级: 姓名:(考试时间:90 分钟满分:100 分) 2018.01.23注意:本试卷分选择题和非选择题两部分,共100分,考试时间90分钟。
1.答卷前,考生填、涂好学校,班级,姓名及座位号。
2.选择题用 2B 铅笔作答,非选择题必须用黑色签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上,并将答题卡交回。
一、选择题(每小题 3 分,共 36分)1.在一个不透明的袋子中,装有红球,黄球,蓝球,白球各 1 个,这些球除了颜色外无其他区别,从袋中随机取出一个球,取出红球的概率为() A .21 B.31 C.41 D . 12.如图,若 AB 是圆O 的直径, CD 是圆0的弦,∠ABD =58°,则∠C 的度数为()第2题第3题A.116°B.58°C.42°D.32°3.在一仓库里堆放着若干个相同的正方体货箱,仓库管理员将这堆货箱的三视图画了出,如图所示,则这堆正方体货箱共有()A.9 箱B.10 箱C.11 箱D.12 箱4.已知关于 x 的一元二次方程()02-m -x 2x 2=+有实数根,则 m 的取值范围是() A.m >1 B.m <1 C.m ≥1 D.m ≤1 5.下列各说法中:①圆的每一条直径都是它的对称轴;②长度相等的两条弧是等弧; ③相等的弦所对的弧也相等;④同弧所对的圆周角相等;⑤ 90的圆周角所对的弦是直径;⑥任何一个三角形都有唯一的外接圆;其中正确的有()A.3 个B.4 个C.5 个D.6 个6.如果01-x x 2=+,那么代数式7-x 2x 23+的值为() A.6 B.8 C.-6 D.-8 7.若双曲线xky =与直线y=2x+1的一个交点的横坐标为-1,则 k 的值为() A.-1 B.1 C.-2 D.28.当-2<x <2时,下列函数中,①y=2x ;②y=2-x ;③x2-y =;④8x 6x y 2++=,函数值 y 随自变量 x 增大而增大的是()A.①②B.①③C.②③D.①④9.现有矩形纸片 ABCD ,已知AB =10,BC =5,在AB 上取一点G ,以 DG 为折痕折叠,使 DA 落在 DB 上,则 AG 的长是() A.2555+ B.21055+ C.2555- D.21055- 10.已知二次函数()c 1-x a y 2+=,当x=x 1时,函数值为y 1;当x=x 2时,函数值为y 2,若2-x 2-x 21>,则下列表达式正确的是()A.0y y 21>+B.0y -y 21>C.()0y -y a 21>D.a ()0y y 21>+11.设 A 是以 BC 为直径的圆上的一点, AD ⊥BC 于 D 点,点 E 在线段 DC 上,点 F 在 CB 的延长线上,满足∠BAF=∠CAE ,已知BC =15,BF=6, BD =3,则AE=( )第11题第12题A. 34B.213C.142D.712.如图,抛物线1m x 2-x y 2+++=交 x 轴于点A(a,0),和B(b,0),交 y 轴于点 C ,抛物线的顶点为 D ,下列四个命题:①当x >0时,y >0;②若a=-1,b=3;③抛物线上有两点()(),<<,若,和,212211x 1x y x y x Q P 且2111y y 2x x >,则>+;④点 C 关于抛物线对称轴的对称点 E ,点 G 、 F 分别在 x 轴和 y 轴上,当m=2时,四边形 EDFG 周长的最小值为258+,其中真命题的个数是()A.1 个B.2 个C.3 个D.4 个 二、填空题(每小题 3 分,共 12 分)13.若关于 x 的方程0c x 5x -2=++的一个根为 3,则 c =__________。
深圳市罗湖区九年级上册期末数学试卷一、选择题(每题3分,共36分)1.实数2sin45°、4cos60°、﹣2、四个数中,最大的数是()A .2sin45°B .4cos60°C .﹣2D .2.如图是一个零件的示意图,它的俯视图是()A .B .C .D .3.若2b =3a ,则=()A .6B .2C .D .4.菱形具有而矩形不一定具有的性质是()A .对角线互相垂直B .对角线相等C .对角线互相平分D .对角互补5.关于x 的一元二次方程ax 2+3x ﹣2=0有两个不相等的实数根,则a 的值可以是()A .﹣3B .﹣2C .﹣1D .06.在一个不透明的袋子里装有若干个白球和15个黄球,这些球除颜色不同外其余均相同,每次从袋子中摸出一个球记录下颜色后再放回,经过很多次重复试验,发现摸到黄球的频率稳定在0.75,则袋中白球有()A .5个B .15个C .20个D .35个7.河堤横断面如图所示,堤高BC =3m ,迎水坡AB 的坡比为,则斜坡AB 的长为()A .3mB .mC .6mD .12m8.如图,EF过平行四边形ABCD的对角线的交点O,交AD于点E,交BC于点F,已知AB=4,BC=6,OE=3,那么四边形EFCD的周长是()A.16B.13C.11D.109.关于二次函数y=﹣x2+6x﹣11的图象与性质,下列结论错误的是()A.抛物线开口方向向下B.当x=3时,函数有最大值﹣2C.当x>3时,y随x的增大而减小D.抛物线可由y=x2经过平移得到10.如图,Rt△ABC,∠BAC=90°,AB=2,AC=3,斜边BC绕点B逆时针方向旋转90°至BD的位置,连接AD,则AD的长是()A.B.C.D.11.如图,在△ABC中,BC∥x轴,点A在x轴上,AB=AC=5,点M、N分别是线段BC 与BA上两点(与三角形顶点不重合),当△BMN≌△ACO,时,反比例函数(k>0,x>0)的图象经过点M,则k的值是()A.2B.3C.4D.612.如图,已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,对称轴为直线x=1.分析下列5个结论:①2c<3b;②若0<x<3,则ax2+bx+c>0;③(a+c)2<b2;④a (k2+1)2+b(k2+1)<a(k2+2)2+b(k2+2)(k为实数);⑤a2m2+abm≤a2+ab(m为实数).其中正确的结论个数有()A.1个B.2个C.3个D.4个二、填空题(每题3分,共12分)13.方程2x﹣4=0的解也是关于x的方程x2+mx+2=0的一个解,则m的值为.14.若抛物线y=(m+2)x2+(m2﹣4)x+m﹣1的顶点在y轴上,则m=.15.如图,在边长为4的正方形ABCD中,E,F分别为BC、CD的中点,连接AE,BF交于点G,将△BCF沿BF对折,得到△BPF,延长FP交BA延长线于点Q,分析下列四个结论:①QB=QF;②BG=;③tan∠BQP=;④S四边形ECFG=2S△BGE,其中正确的是.16.如图,矩形ABCD中,AB=20,AD=30,点E,F分别是AB,BC边上的两个动点,且EF=10,点G为EF的中点,点H为AD边上一动点,连接CH、GH,则GH+CH的最小值为.三、解答题(共52分)17.(5分)计算:18.(6分)在一个不透明的布袋里装有4个标有﹣1,2,3,4的小球,它们的形状、大小、质地完全相同,小李从布袋里随机取出一个小球,记下数字为x,小张在剩下的3个小球中随机取出一个小球,记下数字为y,这样确定了点Q的坐标(x,y).(1)画树状图或列表,写出点Q所有可能的坐标;(2)求点Q(x,y)落在第二象限的概率.19.(7分)为庆祝中华人民共和国成立70周年,深圳举办了灯光秀,某数学兴趣小组为测量“平安金融中心”AB的高度,他们在地面C处测得另一幢大厦DE的顶部E处的仰角为32°,测得“平安中心”AB的顶部A处的仰角为44°.登上大厦DE的顶部E处后,测得“平安中心”AB的顶部A处的仰角为60°,(如图).已知C、D、B三点在同一水平直线上,且CD=400米,求平安金融中心AB的高度.(参考数据:sin32°≈0.53,cos32°≈0.85,tan32°≈0.62,tan44°≈0.99,≈1.41,)20.(8分)如图,在四边形ABCD中,AB=AD,AC与BD交于点E,∠ADB=∠ACB.(1)求证:=;(2)若AB⊥AC,AE:EC=1:2,F是BC中点,求证:四边形ABFD是菱形.21.(8分)某种商品的标价为600元/件,经过两次降价后的价格为486元/件,并且两次降价的百分率相同.(1)求该种商品每次降价的百分率;(2)若该种商品进价为460元/件,两次降价共售出此种商品100件,为使两次降价销售的总利润不少于3788元.问第一次降价后至少要售出该种商品多少件?22.(9分)如图,直线y =ax +b (a ≠0)与双曲线(k ≠0)交于一、三象限内的A ,B两点与x 轴交于点C ,点A 的坐标为(2,m ),点B 的坐标为(﹣1,n ),cos ∠AOC =(1)求该反比例函数和一次函数的解析式;(2)点Q 为y 轴上一点,△ABQ 是以AB 为直角边的直角三角形,求点Q 的坐标;(3)点P (s ,t )(s >2)在直线AB 上运动,PM ∥x 轴交双曲线于M ,PN ∥y 轴交双曲线于N ,直线MN 分别交x 轴,y 轴于E ,D ,求的值.23.(9分)在平面直角坐标系中,抛物线y =ax 2+bx +3与x 轴的两个交点分别为A 、B (1,0),与y 轴交于点D ,直线AD :y =x +3,抛物线顶点为C ,作CH ⊥x 轴于点H .(1)求抛物线的解析式;(2)抛物线上是否存在点M ,使得S △ACD =S △MAB ?若存在,求出点M 的坐标;若不存在,说明理由;(3)若点P 为x 轴上方的抛物线上一动点(点P 与顶点C 不重合),PQ ⊥AC 于点Q ,当△PCQ 与△ACH 相似时,求点P 的坐标.深圳市罗湖区九年级上册期末数学试卷答案1.解:2sin45°=2×=,4cos60°=4×=2,∵2>>>﹣2,∴4cos60°>2sin45°>>﹣2,∴实数2sin45°、4cos60°、﹣2、四个数中,最大的数是4cos60°.故选:B.2.解:从上面看该零件的示意图是一个大矩形,且中间有2条实线段,故选:C.3.解:∵2b=3a,∴=,故选:D.4.解:A、菱形对角线相互垂直,而矩形的对角线则不垂直;故本选项符合要求;B、矩形的对角线相等,而菱形的不具备这一性质;故本选项不符合要求;C、菱形和矩形的对角线都互相平分;故本选项不符合要求;D、菱形对角相等;但菱形不具备对角互补,故本选项不符合要求;故选:A.5.解:根据题意得a≠0且Δ=32﹣4a×(﹣2)>0,解得a>﹣且a≠0,所以a可以取﹣1.故选:C.6.解:设袋中白球有x个,根据题意得:=0.75,解得:x=5,经检验:x=5是分式方程的解,故袋中白球有5个.故选:A.7.解:∵迎水坡AB的坡比为,∴BC:AC=,即3:AC=,解得,AC=3,由勾股定理得,AB===6,故选:C.8.解:∵四边形ABCD为平行四边形,∴OB=OD,AD∥BC,AB=CD=4,∴∠OBF=∠ODE,在△BOF和△DOE中∴△BOF≌△DOE(ASA),∴BF=DE,OE=OF=3,∴CF+DE=CF+BF=BC=6,∴DE+EF+FC+CD=BC+OE+OF+CD=6+3+3+4=16,故选:A.9.解:A、∵a=﹣1<0,∴抛物线开口方向向下,故此选项正确,不合题意;B、∵y=﹣(x﹣3)2﹣2的顶点坐标为:(3,﹣2),故当x=3时,函数有最大值﹣2,故此选项正确,不合题意;C、当x>3时,y随x的增大而减小,此选项正确,不合题意;D、抛物线y=﹣(x﹣3)2﹣2可由y=﹣x2经过平移得到,不是由y=x2经过平移得到,故此选项错误,符合题意.故选:D.10.解:过D作DE⊥AB交AB的延长线于E,∴∠E=∠CAB=90°,∵斜边BC绕点B逆时针方向旋转90°至BD的位置,∴BD=BC,∠CBD=90°,∴∠DBE+∠CBA=∠CBA+∠C=90°,∴∠DBE=∠C,∴△ABC≌△EDB(AAS),∴DE=AB=2,BE=AC=3,∴AE=2+3=5,∴AD===,故选:B.11.解:当△BMN≌△ACO时,可得BM=AC=5,过A作AD⊥BC于点D,如图,∵AB=AC,∴BC=2CD=2OA=6,∴CM=BC﹣BM=6﹣5=1,∵sin∠ACO=,∴OC=4,∴M点坐标为(1,4),∴k=1×4=4.故选:C.12.解:∵对称轴x=1,∴b=﹣2a,∴y=﹣bx2+bx+c;①当x=3时,﹣b+3b+c<0,∴2c<3b;②当x=1时,图象上可知y>0,当x=3时,y<0,∴0<x<3,函数值有小于零的部分;③当x=1时,a+b+c>0,当x=﹣1时,a﹣b+c<0,∴(a+b+c)(a﹣b+c)<0,∴(a+c)2<b2;④∵k是实数,∴k+1<k+2,当k+2<1时,(k2+1)2+b(k2+1)<a(k2+2)2+b(k2+2);⑤当m≥1时,am<a,a2m2+abm+c≤a2+ab+c;当m≤1时,am>a,a2m2+abm+c≥a2+ab+c;∴①③正确,故选:B.13.解:2x﹣4=0,解得:x=2,把x=2代入方程x2+mx+2=0得:4+2m+2=0,解得:m=﹣3.故答案为:﹣3.14.解:根据题意知,对称轴x=0,即﹣=0且m+2≠0,解得m=2.故答案为:2.15.解:①根据题意得,FP=FC,∠PFB=∠BFC,∠FPB=90°∵CD∥AB,∴∠CFB=∠ABF,∴∠ABF=∠PFB,∴QF=QB,故正确;②∵E,F分别是正方形ABCD边BC,CD的中点,∴CF=BE,在△ABE和△BCF中,,∴△ABE≌△BCF(SAS),∴∠BAE=∠CBF,又∵∠BAE+∠BEA=90°,∴∠CBF+∠BEA=90°,∴∠BGE=90°,∴AE⊥BF;∵△ABE≌△BCF,则AE=BF==2,∵AE⊥BF∴AB•BE=AE•BG,故BG===.故错误;③由①知,QF=QB,令PF=k(k>0),则PB=2k在Rt△BPQ中,设QB=x,∴x2=(x﹣k)2+4k2,∴x=,∴PQ=,∴tan∠BQP==,故正确;④∵∠BGE=∠BCF,∠GBE=∠CBF,∴△BGE∽△BCF,∵BE=BC,BF=BC,∴BE:BF=1:,∴△BGE的面积:△BCF的面积=1:5,=4S△BGE,故错误.∴S四边形ECFG综上所述,其中正确的是①③.故答案为:①③.16.解:由已知,点G在以B圆心,5为半径的圆在与长方形重合的弧上运动.作C关于AD的对称点C′,连接C′B,交AD于H,交以B为圆心,以5为半径的圆于G由两点之间线段最短,此时C′B的值最小最小值为==50,则GH+CH的最小值=50﹣5=45,故答案为:45.17.解:=﹣4+×+3﹣1=﹣4+3+2=118.解:(1)列表得:点Q所有可能的坐标有:(﹣1,2),(﹣1,3),(﹣1,4),(2,﹣1),(2,3),(2,4),(3,﹣1),(3,2),(3,4),(4,﹣1),(4,2),(4,3)共12种;(2)∵共有12种等可能的结果,其中点Q(x,y)落在第二象限的结果有3个,即:(﹣1,2),(﹣1,3),(﹣1,4),∴点Q(x,y)落在第二象限的概率==.19.解:如图,作EF⊥AB于F.∵在Rt△DCE中,∠CDE=90°,∠ECD=32°,CD=400米,∴DE=CD•tan∠ECD≈400×0.62=248(米).设EF=DB=x米,BF=DE=248米,∠AEF=60°.∵在Rt△ABC中,∠ABC=90°,AB=BC•tan∠ACB≈0.99(400+x)(米),∵在Rt△AFE中,∠AFE=90°,∴AF=EF•tan∠AEF=x(米),∴AB=BF+AF=248+x=0.99(400+x),解得x=200,AB=0.99(400+x)=0.99×(400+200)=594.故平安金融中心AB的高度约为594米.20.证明:(1)∵AB=AD,∴∠ADB=∠ABE,又∵∠ADB=∠ACB,∴∠ABE=∠ACB,又∵∠BAE=∠CAB,∴△ABE∽△ACB,∴=,又∵AB=AD,∴=;(2)设AE=x,∵AE:EC=1:2,∴EC=2x,由(1)得:AB2=AE•AC,即AB2=x•3x∴AB=x,又∵BA⊥AC,∴BC=2x,∴∠ACB=30°,∵F是BC中点,∴BF=x,∴BF=AB=AD,连接AF,则AF=BF=CF,∠ACB=30°,∠ABC=60°,又∵∠ABD=∠ADB=30°,∴∠CBD=30°,∴∠ADB=∠CBD=∠ACB=30°,∴AD∥BF,∴四边形ABFD是平行四边形,又∵AD=AB,∴四边形ABFD是菱形.21.解:(1)设该种商品每次降价的百分率为x%,依题意得:600×(1﹣x%)2=486,解得:x=10,或x=190(舍去).答:该种商品每次降价的百分率为10%.(2)设第一次降价后售出该种商品m件,则第二次降价后售出该种商品(100﹣m)件,第一次降价后的单件利润为:600×(1﹣10%)﹣460=80(元/件);第二次降价后的单件利润为:486﹣460=26(元/件).依题意得:80m+26×(100﹣m)≥3788,解得:m≥22.答:为使两次降价销售的总利润不少于3788元,第一次降价后至少要售出该种商品22件.22.解:(1)如图,连接OA,作AH⊥OE于H.∵cos∠AOC===,∴OA=,∴AH==3,∴A(2,3),∵点A在y=上,∴k=6,∴,∴B(﹣1,﹣6),设直线AB的解析式为y=ax+b,则有,解得∴直线AB的解析式为:y=3x﹣3(2)如图,过点A作AQ⊥AB交OD于Q,连接BQ,设PB交y轴于T.由题意T(0,﹣3),C(1,0),CT==,AT==2,∵∠OTC=∠ATQ,∠TOC=∠TAQ=90°,∴△TOC∽△TAQ,∴=,∴=,∴TQ=,∴OQ=QT﹣OT=﹣3=,∴Q(0,),当BQ′⊥AB时,同法可得Q′(0,﹣)综上所述,满足条件的点Q坐标为(0,)或(0,).(3)∵P(s,t),PM∥x轴,PN∥y轴,∴M(,t),N(s,),∴PM=s﹣.PN=t﹣,∵PN∥OD,∴∠MNP=∠ODE,∴tan∠ODE=tan∠MNP,∴===,∵点P在直线y=3x﹣3上,∴t=3s﹣3,∴=﹣===1.23.解:(1)直线AD:y=x+3,则点A(﹣3,0),则抛物线的表达式为:y=a(x+3)(x﹣1)=a(x2+2x﹣3),故﹣3a=3,解得:a=﹣1,故抛物线的表达式为:y=﹣x2﹣2x+3…①;(2)设直线AD与CH交于点R(﹣1,2),S△ACD=CR×OA=2×3=S△MAB,=8=×AB×|y M|,解得:y M=±4,则S△MAB将y M=±4代入①并解得:x=﹣1±2或﹣1,故点M的坐标为:(﹣1+2,﹣4)或(﹣1﹣2,﹣4)或(﹣1,4);(3)①若点P在对称轴右侧(如图2),只能是△PCQ∽△CAH,得∠QCP=∠CAH,延长CP交x轴于M,∴AM=CM,∴AM2=CM2.设M(m,0),则(m+3)2=42+(m+1)2,∴m=2,即M(2,0),设直线CM的解析式为y=k1x+b1,∴直线CM的解析式y=﹣x+…②,联立①②并解得:x=或﹣1(舍去﹣1)故点P(,);②若点P在对称轴左侧(如图3),只能是△PCQ∽△ACH,得∠PCQ=∠ACH.过A作CA的垂线交PC于点F,作FN⊥x轴于点N,由△CFA∽△CAH得:=2,由△FNA∽△AHC得:,∴AN=2,FN=1,CH=4,HO=1,则AH=2,∴点F坐标为(﹣5,1).设直线CF的解析式为:y=x+…③,联立①③并解得:x=﹣或﹣1(舍去﹣1)∴P(﹣,),∴满足条件的点P坐标为(,)或(,).。
2017-2018学年广东省深圳市罗湖区九年级(上)期末数学试卷一、选择题(本题有12小题,每小题3分,共36分,在每小题给出的四个选项中,其中只有一项是符合题目要求的,请将正确的选项用铅笔涂在答题卷上)1.袋中有5 个白球,3 个黑球,除颜色外均相同,从中一次任摸出一个球,则摸到黑球的概率是()A.B.C.D.2.一位小朋友拿一个等边三角形木框在阳光下玩,等边三角形木框在地面上的影子不可能是()A.B.C. D.3.下列图形中,既是轴对称图形又是中心对称图形的有()A.4个B.3个C.2个D.1个4.在Rt△ABC中,∠C=90°,若sinA=,则∠A的度数是()A.60°B.45°C.30°D.无法确定5.若关于x 的一元二次方程x2﹣x﹣3m=0有两个不相等的实数根,则m 的取值范围是()A.m B.m C.m>﹣ D.m6.下列命题中,属于假命题的是()A.有一个锐角相等的两个直角三角形一定相似B.对角线相等的菱形是正方形C.抛物线y=x2﹣20x+17的开口向上D.在一次抛掷图钉的试验中,若钉尖朝上的频率为,则钉尖朝下的概率为2)C.1.2<x<1.3 D.14.41<x<15.848.如图,位似图形由三角尺与其在灯光照射下的中心投影组成,相似比为1:2,且三角尺一边长为5cm,则投影三角形的对应边长为()A.8cm B.20cm C.3.2cm D.10cm9.如图是二次函数y=ax2+bx+c的部分图象,由图象可知,满足不等式ax2+bx+c>0的x的取值范围是()A.﹣1<x<5 B.x>5 C.x<﹣1且x>5 D.x<﹣1或x>510.如图,已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,给出以下四个结论:①abc=0;②a+b+c>0;③b=3a;④4ac﹣b2<0;其中正确的结论有()A.1个B.2个C.3个D.4个11.如图,△AOB是直角三角形,∠AOB=90°,OB=2OA,点A在反比例函数y=的图象上.若点B在反比例函数y=的图象上,则k的值为()A.﹣4 B.4 C.﹣2 D.212.在边长为3的正方形ABCD中,点E、F、G、H分别在AB、BC、CD、DA边上,且满足EB=FC=GD=HA=1,BD分别与HG、HF、EF相交于M、O、N给出以下结论:①HO=OF;②OF2=ON•OB;③HM=2MG;④S△HOM=,其中正确的个数有()A.1 B.2 C.3 D.4二、填空题(本题有4小题,每小题3分,共1分,把答案填在答题卷上)13.有两双完全相同的鞋,从中任取两只,恰好成为一双的概率为.14.如图,是一个长方体的主视图、左视图与俯视图(单位:cm),根据图中数据计算这个长方体的体积是.15.随着数系不断扩大,我们引进新数i,新i满足交换率、结合律,并规定:i2=﹣1,那么(2+i)(2﹣i)=(结果用数字表示).16.如图,Rt△ABC中,∠BAC=90°,AB=6,sinC=,以点A为圆心,AB长为半径作弧交AC于M,分别以B、M为圆心,以大于BM长为半径作弧,两弧相交于点N,射线AN与BC相交于D,则AD的长为.三、解答题(本题共7小题,其中第17题6分,第18题6分,第19题7分,第20题7分,第21题8分,第22题8分,第23题10分,满52分)17.(6分)解方程:x2﹣2x﹣3=0.18.(6分)小明和小亮玩一个游戏:取三张大小、质地都相同的卡片,上面分别标有数字2、3、4(背面完全相同),现将标有数字的一面朝下.小明从中任意抽取一张,记下数字后放回洗匀,然后小亮从中任意抽取一张,计算小明和小亮抽得的两个数字之和.(1)请你用画树状图或列表的方法,求出这两数和为6的概率.(2)如果和为奇数,则小明胜;若和为偶数,则小亮胜.你认为这个游戏规则对双方公平吗?做出判断,并说明理由.19.(7分)如图,一次函数y=kx+b与反比例函数y=(x>0)的图象相交于A(2,3)、B(a,1)两点.(1)求这两个函数的表达式;(2)求证:AB=2BC.20.(7分)某商场将每件进价为80元的某种商品按每件100元出售,一天可售出100件.后来经过市场调查,发现这种商品单价每降低1元,其销量可增加10件.(1)若商场经营该商品一天要获利润2160元,则每件商品应降价多少元?(2)设后来该商品每件降价x元,商场一天可获利润y元.求出y与x之间的函数关系式,并求当x取何值时,商场获利润最大?21.(8分)随着科技进步,无人机的应用越来越广,如图1,在某一时刻,无人机上的探测器显示,从无人机A处看一栋楼顶部B点的仰角和看与顶部B在同一铅垂线上高楼的底部C 的俯角.(1)如果上述仰角与俯角分别为30°与60°,且该楼的高度为30米,求该时刻无人机的竖直高度CD;(2)如图2,如果上述仰角与俯角分别为α与β,且该楼的高度为m米.求用α、β、m表示该时刻无人机的竖直高度CD.22.(8分)如图1,点P是菱形ABCD的对角线BD上的一动点,连接CP并延长交AD于E,交BA的延长线于点F.(1)求证:△APD≌△CPD;(2)如图2,当菱形ABCD变为正方形,且PC=2,tan∠PFA=时,求正方形ABCD的边长.23.(10分)如图1已知抛物线y=ax2+bx﹣3与x轴相交于A(﹣1,0)、B(3,0),P为抛物线上第四象限上的点.(1)求该抛物线的函数关系式;(2)如图1,过点P作PD⊥x轴于点D,PD交BC于点E,当线段PE的长度最大时,求点P的坐标.(3)如图2,当线段PE的长度最大时,作PF⊥BC于点F,连结DF.在射线PD上有一点Q,满足∠PQB=∠DFB,问在坐标轴上是否存在一点R,使得S△RBE=S△QBE?如果存在,直接写出R点的坐标;如果不存在,请说明理由.2017-2018学年广东省深圳市罗湖区九年级(上)期末数学试卷参考答案与试题解析一、选择题(本题有12小题,每小题3分,共36分,在每小题给出的四个选项中,其中只有一项是符合题目要求的,请将正确的选项用铅笔涂在答题卷上)1.袋中有5 个白球,3 个黑球,除颜色外均相同,从中一次任摸出一个球,则摸到黑球的概率是()A.B.C.D.【解答】解:因为白球5个,黑球3个一共是8个球,所以从中随机摸出1个球,则摸出黑球的概率是,故选:B.2.一位小朋友拿一个等边三角形木框在阳光下玩,等边三角形木框在地面上的影子不可能是()A.B.C. D.【解答】解:竖直向下看可得到线段,沿与平面平行的方向看可得到C,沿与平面不平行的方向看可得到D,不论如何看都得不到一点.故选:B.3.下列图形中,既是轴对称图形又是中心对称图形的有()A.4个B.3个C.2个D.1个【解答】解:第一个图形既是轴对称图形,又是中心对称图形;第二个图形是轴对称图形,不是中心对称图形;第三个图形既是轴对称图形,又是中心对称图形;第四个图形既是轴对称图形,又是中心对称图形.故选:B.4.在Rt△ABC中,∠C=90°,若sinA=,则∠A的度数是()A.60°B.45°C.30°D.无法确定【解答】解:∵Rt△ABC中,∠C=90°,sinA=,∴∠A=30°.故选:C.5.若关于x 的一元二次方程x2﹣x﹣3m=0有两个不相等的实数根,则m 的取值范围是()A.m B.m C.m>﹣ D.m【解答】解:∵关于x 的一元二次方程x2﹣x﹣3m=0有两个不相等的实数根,∴△>0,即(﹣1)2﹣4×(﹣3m)>0,解得m>﹣,故选:C.6.下列命题中,属于假命题的是()A.有一个锐角相等的两个直角三角形一定相似B.对角线相等的菱形是正方形C.抛物线y=x2﹣20x+17的开口向上D.在一次抛掷图钉的试验中,若钉尖朝上的频率为,则钉尖朝下的概率为【解答】解:有一个锐角相等的两个直角三角形一定相似,A是真命题;对角线相等的菱形是正方形,B是真命题;∵a=1>0,∴抛物线y=x2﹣20x+17的开口向上,C是真命题;∵在抛掷图钉的试验中,不只是钉尖朝上和钉尖朝下两种情况,∴在一次抛掷图钉的试验中,若钉尖朝上的频率为,钉尖朝下的概率不确定,D是假命题;故选:D.2)C.1.2<x<1.3 D.14.41<x<15.84【解答】解:∵14.41<15<15.84,∴一元二次方程x2+12x=15的一个根的范围为1.1<x<1.2.故选:B.8.如图,位似图形由三角尺与其在灯光照射下的中心投影组成,相似比为1:2,且三角尺一边长为5cm,则投影三角形的对应边长为()A.8cm B.20cm C.3.2cm D.10cm【解答】解:∵位似图形由三角尺与其灯光照射下的中心投影组成,相似比为1:2,三角尺的一边长为5cm,∴投影三角形的对应边长为:5÷=10cm.故选:D.9.如图是二次函数y=ax2+bx+c的部分图象,由图象可知,满足不等式ax2+bx+c>0的x的取值范围是()A.﹣1<x<5 B.x>5 C.x<﹣1且x>5 D.x<﹣1或x>5【解答】解:由图可知,二次函数图象为直线x=2,所以,函数图象与x轴的另一交点为(﹣1,0),所以,ax2+bx+c>0时x的取值范围是﹣1<x<5.故选:A.10.如图,已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,给出以下四个结论:①abc=0;②a+b+c>0;③b=3a;④4ac﹣b2<0;其中正确的结论有()A.1个B.2个C.3个D.4个【解答】解:∵抛物线开口向下,∴a<0,∵抛物线经过原点,∴c=0,则abc=0,所以①正确;当x=1时,函数值是a+b+c<0,则②错误;∵抛物线的对称轴为直线x=﹣=﹣<0,∴b=3a,则③正确;∵抛物线与x轴有2个交点,∴△=b2﹣4ac>0,4ac﹣b2<0,所以④正确.故选:C.11.如图,△AOB是直角三角形,∠AOB=90°,OB=2OA,点A在反比例函数y=的图象上.若点B在反比例函数y=的图象上,则k的值为()A.﹣4 B.4 C.﹣2 D.2【解答】解:过点A,B作AC⊥x轴,BD⊥x轴,分别于C,D.设点A的坐标是(m,n),则AC=n,OC=m,∵∠AOB=90°,∴∠AOC+∠BOD=90°,∵∠DBO+∠BOD=90°,∴∠DBO=∠AOC,∵∠BDO=∠ACO=90°,∴△BDO∽△OCA,∴==,∵OB=2OA,∴BD=2m,OD=2n,因为点A在反比例函数y=的图象上,则mn=1,∵点B在反比例函数y=的图象上,B点的坐标是(﹣2n,2m),∴k=﹣2n•2m=﹣4mn=﹣4.故选:A.12.在边长为3的正方形ABCD中,点E、F、G、H分别在AB、BC、CD、DA边上,且满足EB=FC=GD=HA=1,BD分别与HG、HF、EF相交于M、O、N给出以下结论:①HO=OF;②OF2=ON•OB;③HM=2MG;④S△HOM=,其中正确的个数有()A.1 B.2 C.3 D.4【解答】解:作MP⊥AD于P,MQ⊥CD于Q.∵四边形ABCD是正方形,∴AD∥BC,AD=BC,∵AH=CF,∴DH=BF,∠ODH=∠OBF,∵∠DOH=∠BOF,∴△DOH≌△BOF,∴OH=OF,故①正确,∵∠FON=∠FOB,∠OFN=∠OBF=45°,∴△OFN∽△OBF,∴OF2=ON•OB,故②正确,∵∠MDH=∠MDG,MP⊥AD于P,MQ⊥CD于Q,∴MP=MQ,∵====2,∴HM=2MG,故③正确,∵正方形EFGH的面积=5,∴S△OHG的面积=,∴S△OMH=×=,故④正确,故选:D.二、填空题(本题有4小题,每小题3分,共1分,把答案填在答题卷上)13.有两双完全相同的鞋,从中任取两只,恰好成为一双的概率为.【解答】解:设其中一双鞋分别为a,a′;画树状图得:∵共有12种情况,能配成一双的有8种情况,∴取出两只刚好配一双鞋的概率是:=.14.如图,是一个长方体的主视图、左视图与俯视图(单位:cm),根据图中数据计算这个长方体的体积是24cm3.【解答】解:该几何体的主视图以及左视图都是相同的矩形,俯视图也为一个矩形,可确定这个几何体是一个长方体,依题意可求出该几何体的体积为3×2×4=24cm3.答:这个长方体的体积是24cm3.故答案为:24cm3.15.随着数系不断扩大,我们引进新数i,新i满足交换率、结合律,并规定:i2=﹣1,那么(2+i)(2﹣i)=5(结果用数字表示).【解答】解:根据题中的新定义得:原式=4﹣i2=4+1=5.故答案为:516.如图,Rt△ABC中,∠BAC=90°,AB=6,sinC=,以点A为圆心,AB长为半径作弧交AC于M,分别以B、M为圆心,以大于BM长为半径作弧,两弧相交于点N,射线AN与BC相交于D,则AD的长为.【解答】解:如图,过D作DE⊥AB于E,DF⊥AC于F,由题可得,AD平分∠BAC,∠BAC=90°,∴四边形AEDF是正方形,∴DE=DF,∠BAD=45°=∠ADE,∴AE=DE=AF=DF,∵∠BAC=90°,AB=6,sinC=,∴BC=10,AC=8,设AE=DE=AF=DF=x,则BE=6﹣x,CF=8﹣x,∵∠B=∠FDC,∠BDE=∠C,∴△BDE∽△DCF,∴,即,解得x=,∴AE=,∴Rt△ADE中,AD=AE=,故答案为:.三、解答题(本题共7小题,其中第17题6分,第18题6分,第19题7分,第20题7分,第21题8分,第22题8分,第23题10分,满52分)17.(6分)解方程:x2﹣2x﹣3=0.【解答】解:原方程可以变形为(x﹣3)(x+1)=0x﹣3=0,x+1=0∴x1=3,x2=﹣1.18.(6分)小明和小亮玩一个游戏:取三张大小、质地都相同的卡片,上面分别标有数字2、3、4(背面完全相同),现将标有数字的一面朝下.小明从中任意抽取一张,记下数字后放回洗匀,然后小亮从中任意抽取一张,计算小明和小亮抽得的两个数字之和.(1)请你用画树状图或列表的方法,求出这两数和为6的概率.(2)如果和为奇数,则小明胜;若和为偶数,则小亮胜.你认为这个游戏规则对双方公平吗?做出判断,并说明理由.6的有3种,则这两数和为6的概率=;(2)这个游戏规则对双方不公平.理由:因为P(和为奇数)=,P(和为偶数)=,而≠,所以这个游戏规则对双方是不公平的.19.(7分)如图,一次函数y=kx+b与反比例函数y=(x>0)的图象相交于A(2,3)、B(a,1)两点.(1)求这两个函数的表达式;(2)求证:AB=2BC.【解答】(1)解:∵一次函数y=kx+b与反比例函数y=(x>0)的图象相交于A(2,3)、B(a,1)两点.∴m=6,a=6,把A(2,3),B(6,1)代入y=kx+b得到,解得,∴直线是解析式为y=﹣x+4,反比例函数的解析式为y=.(2)证明:对于直线y=﹣x+4,利益能够y=0,得到x=8,∴C(8,0),∵A(2,3),B(6,1),∴AB==2,BC==,∴AB=2BC.20.(7分)某商场将每件进价为80元的某种商品按每件100元出售,一天可售出100件.后来经过市场调查,发现这种商品单价每降低1元,其销量可增加10件.(1)若商场经营该商品一天要获利润2160元,则每件商品应降价多少元?(2)设后来该商品每件降价x元,商场一天可获利润y元.求出y与x之间的函数关系式,并求当x取何值时,商场获利润最大?【解答】解:(1)依题意得:(100﹣80﹣x)(100+10x)=2160,即x2﹣10x+16=0,解得:x1=2,x2=8,经检验:x1=2,x2=8,答:商店经营该商品一天要获利润2160元,则每件商品应降价2元或8元;(2)依题意得:y=(100﹣80﹣x)(100+10x)=﹣10x2+100x+2000=﹣10(x﹣5)2+2250,∵﹣10<0,∴当x=5时,y取得最大值为2250元.答:y=﹣10x2+100x+2000,当x=5时,商场获取最大利润为2250元.21.(8分)随着科技进步,无人机的应用越来越广,如图1,在某一时刻,无人机上的探测器显示,从无人机A处看一栋楼顶部B点的仰角和看与顶部B在同一铅垂线上高楼的底部C 的俯角.(1)如果上述仰角与俯角分别为30°与60°,且该楼的高度为30米,求该时刻无人机的竖直高度CD;(2)如图2,如果上述仰角与俯角分别为α与β,且该楼的高度为m米.求用α、β、m表示该时刻无人机的竖直高度CD.【解答】解:(1)∵图1中仰角与俯角分别为30°与60°,该楼的高度为30米,∴∠BAC=90°,∠ACD=30°,∴AB=15米,∴AD=15×sin60°=米,∴CD=AD•tan60°=米,即该时刻无人机的竖直高度CD是米;(2)∵图2中仰角与俯角分别为α与β,且该楼的高度为m米,∴BD=AD•tanα,CD=AD•tanβ,∴AD=,∴CD=BC﹣BD=m﹣AD•tanα=m﹣,解得,CD=,即该时刻无人机的竖直高度CD是.22.(8分)如图1,点P是菱形ABCD的对角线BD上的一动点,连接CP并延长交AD于E,交BA的延长线于点F.(1)求证:△APD≌△CPD;(2)如图2,当菱形ABCD变为正方形,且PC=2,tan∠PFA=时,求正方形ABCD的边长.【解答】证明:(1)如图1,∵四边形ABCD是菱形,∴AD=CD,∠ADP=∠CDP,在△APD和△CPD中,∵,∴△APD≌△CPD(SAS);(2)如图2,∵四边形ABCD是正方形,∴∠ABC=90°,CD=BC,∵tan∠PFA==,设BC=a,则BF=2a,∵DC=BC=a,DC∥BF,∴∠DCP=∠PFB,∠CDP=∠PBF,∴△DPC∽△BPF,∴==,∵PC=2,∴PF=4,∴FC=PC+PF=6,在Rt△FCB中,FC2=BC2+FB2,∴62=a2+(2a)2,a=或﹣(舍),∴正方形ABCD的边长为.23.(10分)如图1已知抛物线y=ax2+bx﹣3与x轴相交于A(﹣1,0)、B(3,0),P为抛物线上第四象限上的点.(1)求该抛物线的函数关系式;(2)如图1,过点P作PD⊥x轴于点D,PD交BC于点E,当线段PE的长度最大时,求点P的坐标.(3)如图2,当线段PE的长度最大时,作PF⊥BC于点F,连结DF.在射线PD上有一点Q,满足∠PQB=∠DFB,问在坐标轴上是否存在一点R,使得S△RBE=S△QBE?如果存在,直接写出R点的坐标;如果不存在,请说明理由.【解答】解:(1)将A(﹣1,0)、B(3,0)分别代入y=ax2+bx﹣3得,解得,所以该抛物线解析式为y=x2﹣2x﹣3;(2)如图1,把x=0代入y=x2﹣2x﹣3,得y=﹣3.∴C(0,﹣3).设直线BC的解析式为:y=kx+b,将C(0,﹣3)与B(3,0),分别代入得,,解得,∴直线BC的解析式为y=x﹣3.设P(m,m2﹣2m﹣3),则E(m,m﹣3),∴PE=(m﹣3)﹣(m2﹣2m﹣3)=﹣m2+3m=﹣(m﹣)2+,故当m=时,PE最大,此时P(,﹣);(3)如图2,当线段PE的长度最大时,P(,﹣),E(,﹣),PE=,∴D(,0),∴BD=.∵(3,0),C(0,﹣3),∴OB=OC=3,∴△OBC是等腰直角三角形,∴∠OBC=45°.在直角△DBE中,∠ABC=45°,BD=,∴BE=,∠DEB=45°,∴∠PEF=45°.在直角△PEF中,∠PEF=45°,PE=,∴EF=,∴BF=.∵∠PQB=∠DFB,∠DBE=∠DEB=45°,∴△QBE∽△FDB,∴=,即=,∴QE=.∵S△BQE=QE•DB=××=.当点R在x轴上时,设R(n,0),BR=|3﹣n|,∴S△RBE=BR•DE,即=•|3﹣n|•,则|3﹣n|=,解得n1=﹣,n2=.∴R(﹣,0)或(,0)当R在y轴上时,设R(0,z),由S△BER=S△BRC﹣S△REC得到:=×3×|z﹣3|﹣××|z﹣3|解得z1=,z2=﹣,∴R(0,﹣)或(0,).综上所述,符合条件的点R的坐标为:(﹣,0)或(,0)或(0,﹣)或(0,).。
2017~2018学年度上学期期末考试九年级数学试卷一、选择题(每小题3分,共30分)1.下列方程中,关于x 的一元二次方程是( ) A .20ax bx c ++= B .212x x += C .2221x x x +=+ D .220x +=2.若α、β为方程22510x x --=的两个实数根,则2235ααββ++的值为( ) A .﹣13B .12C .14D .153.袋内装有标号分别为1、2、3、4的4个小球,从袋内随机取出一个小球,让其标号为一个两位数的十位数字,放回搅匀后,再随机取出一个小球,让其标号为这个两位数的个位数字,则组成的两位数是3的倍数的概率为( ) A .14B .516C .716 D .124.由所有到已知点O 的距离大于或等于3,并且小于或等于5的点组成的图形的面积为( )A .4πB .9πC .16πD .25π 5.已知函数2(3)21y k x x =-++的图象与x 轴有交点,则k 的取值范围是( ) A .k ≤4且k ≠3B .k <4且k ≠3C .k <4D .k ≤46.如图,矩形OABC 中,A(1,0),C (0,2),双曲线(02)ky k x=<<的图象分别交AB,CB 于点E ,F,连接OE ,OF,EF,S △OEF =2S △BEF ,则k 值为( )A .23B .1C .43 D .27.如图,在Rt △ABC 中,∠C=90°,AC=6 cm ,BC=2 cm,点P 在边AC 上,从点A 向点C 移动,点Q 在边CB 上,从点C 向点B 移动.若点P ,Q 均以1 cm/s 的速度同时出发,且当一点移动到终点时,另一点也随之停止,连接PQ,则线段PQ 的最小值是( ) A .20 cm B .18 cm C .25cm D .32cm8.如图,抛物线2(0)y ax bx c a =++≠的对称轴为直线2x =-,与x 轴的一个交点在(﹣3,0)和(﹣4,0)之间,其部分图象如图所示.则下列结论:①40a b -=;②0c <;③30a c -+>;④242a b at bt ->+(t 为实数);⑤点19)2y -(,,25)2y -(,,31)2y -(,是该抛物线上的点,则y 1<y 2<y 3,正确的个数有( )A .4个B .3个C .2个D .1个第6题图 第7题图 第8题图9.如图,在平面直角坐标系中,⊙A的圆心A的坐标为(﹣1,0),半径为1,点P是直线3=-+y x 上的一个动点,点P作⊙A的切线,切点为Q,则切线长PQ的最小值是()A.3B.5C.7D.310.如图,在正方形ABCD中,△BPC是等边三角形,BP、CP的延长线分别交AD于点E、F,连接BD、DP,BD与CF相交于点H,给出下列结论:①BE=2AE;②△DFP∽△BPH;③△PFD∽△PDB;④DP2=PH•PC,其中正确的是()A.①②③④ B.②③C.①②④D.①③④第9题图第10题图二、填空题(每小题3分,共18分)11.经过两次连续降价,某药品销售单价由原来的50元降到32元,设该药品平均每次降价的百分率为x,根据题意可列方程是____.12.若抛物线2=-++中不管p取何值时都通过定点,则定点坐标为.241y x px p13.如图,在△ABC中,∠C=90°,AC=8,BC=6,D是边AB的中点,现有一点P位于边AC上,使得△ADP与△ABC相似,则线段AP的长为.14.如图,在平面直角坐标系中,△OCB的外接圆与y轴交于A(0,2),∠OCB=60°,∠COB=45°,则OC=.15.如图.在等边△ABC中,AC=8,点D、E、F分别在三边AB、BC、AC上,且AF=2,FD⊥DE,∠DFE=60°,则AD的长为.第13题图第14题图第15题图16.在平面直角坐标系中,点C沿着某条路径运动,以点C为旋转中心,将点A(0,4)逆时针旋转90°到点B(m,1),若﹣5≤m≤5,则点C运动的路径长为.三、解答题(17-20题每题8分,21、22题每题9分,23题10分,24题12分)17.解方程:(1)5x(x+1)=2(x+1);(2)x2﹣3x﹣1=0.18.关于x的方程22(21)230x k x k k--+-+=有两个不相等的实数根.(1)求实数k的取值范围;(2)设方程的两个实数根分别为x1、x2,存不存在这样的实数k,使得125x x-=?若存在,求出这样的k值;若不存在,说明理由.19.阅读材料,回答问题:材料:题1:经过某十字路口的汽车,可能直行,也可能向左转或向右转.如果这三种可能性的大小相同,求三辆汽车经过这个十字路口时,至少有两辆车向左转的概率.题2:有两把不同的锁和三把钥匙,其中两把钥匙分别能打开这两把锁(一把钥匙只能开一把锁),第三把钥匙不能打开这两把锁.随机取出一把钥匙开任意一把锁,一次打开锁的概率是多少?我们可以用“袋中摸球”的试验来模拟题1:在口袋中放三个不同颜色的小球,红球表示直行,绿球表示向左转,黑球表示向右转,三辆汽车经过路口,相当于从三个这样的口袋中各随机摸出一球.问题:(1)事件“至少有两辆车向左转"相当于“袋中摸球"的试验中的什么事件?(2)设计一个“袋中摸球”的试验模拟题2,请简要说明你的方案.(3)请直接写出题2的结果.20.如图,M、N为山两侧的两个村庄,为了两村交通方便,根据国家的惠民政策,政府决定打一直线涵洞.工程人员为了计算工程量,必须计算M、N两点之间的直线距离,选择测量点A、B、C,点B、C分别在AM、AN上,现测得AM=1千米、AN=1.8千米,AB=54米、BC=45米、AC=30米,求M、N两点之间的直线距离.21.如图,△ABD是⊙O的内接三角形,E是弦BD的中点,点C是⊙O外一点且∠DBC=∠A,连接OE延长与圆相交于点F,与BC相交于点C.(1)求证:BC是⊙O的切线;(2)若⊙O的半径为6,BC=8,求弦BD的长.22.一块三角形废料如图所示,∠A=30°,∠C=90°,AB=12.用这块废料剪出一个矩形CDEF,其中,点D、E、F分别在AC、AB、BC上.要使剪出的矩形CDEF面积最大,点E应选在何处?23.某公司产销一种产品,为保证质量,每个周期产销商品件数控制在100以内,产销成本C是商品件数x的二次函数,调查数据如表:产销商品件数(x/件)10 20 30产销成本(C/元) 120 180 260商品的销售价格(单位:元)为13510P x=-(每个周期的产销利润=P•x﹣C)(1)直接写出产销成本C与商品件数x的函数关系式(不要求写出自变量的取值范围)(2)该公司每个周期产销多少件商品时,利润达到220元?(3)求该公司每个周期的产销利润的最大值.24.如图,在平面直角坐标系中,△ABC是直角三角形,∠ACB=90°,AC=BC,OA=1,OC=4,抛物线2y x bx c=++经过A,B两点.(1)求抛物线的解析式;(2)点E是直角△ABC斜边AB上一动点(点A、B除外),过点E作x轴的垂线交抛物线于点F,当线段EF的长度最大时,求点E、F的坐标;(3)在(2)的条件下:在抛物线上是否存在一点P,使△EFP是以EF为直角边的直角三角形?若存在,请求出所有点P的坐标;若不存在,请说明理由.2017~2018学年度上学期期末考试九年级数学试卷参考答案与试题解析一、选择题(共10小题)1.下列方程中,关于x 的一元二次方程是( )A .20ax bx c ++=B .212x x+= C .2221x x x +=+ D .220x += 【分析】只含有1个未知数,并且未知数的最高次数为2的整式方程就是一元二次方程,依据定义即可判断.【解答】解:A 、当a =0时,边上一元二次方程,不符合题意; B 、为分式方程,不符合题意;C 、不是关于x 的一元二次方程,不符合题意;D 、只含有一个未知数,未知数的最高次数是2,二次项系数不为0,是一元二次方程,符合题意; 故选D【点评】本题考查了一元二次方程的定义,一元二次方程只含有一个未知数,未知数的最高次数是2,为整式方程;特别注意二次项系数不为0.2.若α、β为方程22510x x --=的两个实数根,则2235ααββ++的值为( )A .﹣13B .12C .14D .15【分析】根据一元二次方程解的定义得到22510αα--=,即22=51αα+,则2235ααββ++可表示为531αβαβ+++(),再根据根与系数的关系得到5=2αβ+,1=2αβ-,然后利用整体代入的方法计算.【解答】解:∵α为22510x x --=的实数根, ∴22510αα--=,即22=51αα+,∴2235=5135=531ααββααββαβαβ++++++++(), ∵α、β为方程22510x x --=的两个实数根,∴5=2αβ+,1=2αβ-,∴251235=531=1222ααββ++⨯+⨯-+(). 故选B .【点评】本题考查了根与系数的关系:若x 1,x 2是一元二次方程200ax bx c a ++=≠()的两根时,12=b x x a +-,12=cx x a .也考查了一元二次方程解的定义.3.袋内装有标号分别为1、2、3、4的4个小球,从袋内随机取出一个小球,让其标号为一个两位数的十位数字,放回搅匀后,再随机取出一个小球,让其标号为这个两位数的个位数字,则组成的两位数是3的倍数的概率为( )A .14B .516C .716D .12【分析】画树状图展示所有16种等可能的结果数,再找出所成的两位数是3的倍数的结果数,然后根据概率公式求解.【解答】解:画树状图为:共有16种等可能的结果数,其中所成的两位数是3的倍数的结果数为5,所以成的两位数是3的倍数的概率=516.故选B .【点评】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n ,再从中选出符合事件A 或B 的结果数目m ,然后利用概率公式求事件A 或B 的概率.4.由所有到已知点O 的距离大于或等于3,并且小于或等于5的点组成的图形的面积为( ) A .4π B .9π C .16π D .25π【分析】根据题意、利用圆的面积公式计算即可.【解答】解:由所有到已知点O 的距离大于或等于3,并且小于或等于5的点组成的图形的面积是以5为半径的圆与以3为半径的圆组成的圆环的面积,即π×52﹣π×32=16π, 故选:C .【点评】本题考查的是圆的认识、圆的面积的计算,掌握圆的面积公式是解题的关键.5.已知函数2(3)21y k x x =-++的图象与x 轴有交点,则k 的取值范围是( )A .k ≤4且k ≠3B .k <4且k ≠3C .k <4D .k ≤4【分析】由于不知道函数是一次函数还是二次函数,需对k 进行讨论.当k =3时,函数=21y x +是一次函数,它的图象与x 轴有一个交点;当k ≠3,函数2(3)21y k x x =-++是二次函数,当Δ≥0时,二次函数与x 轴都有交点,解Δ≥0,求出k 的范围.【解答】解:当k =3时,函数=21y x +是一次函数,它的图象与x 轴有一个交点;当k ≠3,函数2(3)21y k x x =-++是二次函数,当△=22﹣4(k ﹣3)≥0,即k ≤4时,函数的图象与x 轴有交点. 综上k 的取值范围是k ≤4. 故选D .【点评】本题考察了二次函数、一次函数的图象与x 轴的交点、一次不等式的解法.解决本题的关键是对k 的值分类讨论.6.如图,矩形OABC 中,A (1,0),C (0,2),双曲线(02)ky k x=<<的图象分别交AB ,CB于点E ,F,连接OE,OF ,EF ,S △OEF =2S △BEF ,则k 值为( )A .23B .1C .43D .2【分析】设E 点坐标为(1,m ),则F 点坐标为(2m,2),根据三角形面积公式得到S △BEF =(1﹣2m )(2﹣m ),根据反比例函数k 的几何意义得到S △OFC =S △OAE =12m ,由于S △OEF =S 矩形ABCO ﹣S △OCF﹣S △OEA ﹣S △BEF ,列方程即可得到结论.【解答】解:∵四边形OABC 是矩形,BA ⊥OA ,A (1,0),∴设E 点坐标为(1,m ),则F 点坐标为(2m,2), 则S △BEF =(1﹣2m)(2﹣m ),S △OFC =S △OAE =m , ∴S △OEF =S 矩形ABCO ﹣S △OCF ﹣S △OEA ﹣S △BEF =2﹣12m ﹣12m ﹣(1﹣2m)(2﹣m ),∵S △OEF =2S △BEF ,∴2﹣12m ﹣12m ﹣(1﹣2m )(2﹣m)=2×(1﹣2m )(2﹣m ),整理得232204m m -+-=(),解得m 1=2(舍去),m 2=23,∴E 点坐标为(1,23),∴k =23. 故选A .【点评】本题考查了反比例函数k 的几何意义和矩形的性质;会利用面积的和差计算不规则图形的面积.7.如图,在Rt △ABC 中,∠C=90°,AC=6 cm ,BC=2 cm ,点P 在边AC 上,从点A 向点C 移动,点Q 在边CB 上,从点C 向点B 移动.若点P ,Q 均以1 cm/s 的速度同时出发,且当一点移动到终点时,另一点也随之停止,连接PQ ,则线段PQ 的最小值是( )A .20 cmB .18 cmC .25cmD .32cm【分析】根据已知条件得到CP=6﹣t ,得到22222(6)2(3)18PQ PC CQ t t t +-+++于是得到结论.【解答】解:∵AP=CQ=t , ∴CP=6﹣t ,∴22222(6)2(3)18PQ PC CQ t t t =+-+++ ∵0≤t ≤2,∴当t =2时,PQ 的值最小, ∴线段PQ 的最小值是25故选C .【点评】本题考查了二次函数的最值,勾股定理,正确的理解题意是解题的关键.8.如图,抛物线2(0)y ax bx c a =++≠的对称轴为直线2x =-,与x 轴的一个交点在(﹣3,0)和(﹣4,0)之间,其部分图象如图所示.则下列结论:①40a b -=;②0c <;③30a c -+>;④242a b at bt ->+(t 为实数);⑤点19)2y -(,,25)2y -(,,31)2y -(,是该抛物线上的点,则y 1<y 2<y 3,正确的个数有( )A .4个B .3个C .2个D .1个【分析】根据抛物线的对称轴可判断①,由抛物线与x 轴的交点及抛物线的对称性可判断②,由1x =-时y >0可判断③,由2x =-时函数取得最大值可判断④,根据抛物线的开口向下且对称轴为直线2x =-知图象上离对称轴水平距离越小函数值越大,可判断⑤.【解答】解:∵抛物线的对称轴为直线22bx a=-=-,∴40a b -=,所以①正确;∵与x 轴的一个交点在(﹣3,0)和(﹣4,0)之间,∴由抛物线的对称性知,另一个交点在(﹣1,0)和(0,0)之间, ∴抛物线与y 轴的交点在y 轴的负半轴,即c <0,故②正确; ∵由②知,1x =-时y >0,且4b a =,∴430a b c a a c a c -+=-+=-+>,所以③正确; 由函数图象知当2x =-时,函数取得最大值,∴242a b c at bt c -+≥++,即242a b at bt -≥+(t 为实数),故④错误;∵抛物线的开口向下,且对称轴为直线x =﹣2, ∴抛物线上离对称轴水平距离越小,函数值越大, ∴y 1<y 3<y 2,故⑤错误; 故选:B .【点评】本题考查了二次函数与系数的关系:对于二次函数2(0)y ax bx c a =++≠,二次项系数a 决定抛物线的开口方向和大小.当a >0时,抛物线向上开口;当a <0时,抛物线向下开口;一次项系数b 和二次项系数a 共同决定对称轴的位置:当a 与b 同号时(即ab >0),对称轴在y 轴左; 当a 与b 异号时(即ab <0),对称轴在y 轴右.常数项c 决定抛物线与y 轴交点:抛物线与y 轴交于(0,c );抛物线与x 轴交点个数由△决定:△=b 2﹣4ac >0时,抛物线与x 轴有2个交点;△=b 2﹣4ac =0时,抛物线与x 轴有1个交点;△=b 2﹣4ac <0时,抛物线与x 轴没有交点.9.如图,在平面直角坐标系中,⊙A 的圆心A 的坐标为(﹣1,0),半径为1,点P 是直线3y x =-+上的一个动点,点P 作⊙A 的切线,切点为Q ,则切线长PQ 的最小值是( ) A .3 B .5 C .7 D .3【分析】连接AP,PQ,当AP 最小时,PQ 最小,当AP ⊥直线3y x =-+时,PQ 最小,根据相似三角形的性质得到AP ,根据勾股定理即可得到结论.【解答】解:如图,作AP ⊥直线3y x =-+,垂足为P ,作⊙A 的切线PQ ,切点为Q ,当AP ⊥BC 时,此时切线长PQ 最小,∵A 的坐标为(﹣1,0),设直线与x 轴,y 轴分别交于B ,C , ∴B (0,3),C (3,0), ∴OB=3,AC=4,∴BC=32,在△APC 与△BOC 中, ∵∠APC=∠BOC=90°,∠ACP=∠OCB , ∴△APC ∽△OBC , ∴AP AC OB BC =, ∴AP=22,∴227PQ AP AQ =-=,故选C .【点评】本题主要考查切线的性质,掌握过切点的半径与切线垂直是解题的关键,用切线的性质来进行计算或论证,常通过作辅助线连接圆心和切点,利用垂直构造直角三角形解决有关问题.10.如图,在正方形ABCD 中,△BPC 是等边三角形,BP 、CP 的延长线分别交AD 于点E 、F,连接BD 、DP ,BD 与CF 相交于点H ,给出下列结论:①BE=2AE ;②△DFP ∽△BPH ;③△PFD ∽△PDB ;④DP 2=PH•PC ,其中正确的是( )A .①②③④B .②③C .①②④D .①③④【分析】由正方形的性质和相似三角形的判定与性质,即可得出结论. 【解答】解:∵△BPC 是等边三角形, ∴BP=PC=BC,∠PBC=∠PCB=∠BPC=60°, 在正方形ABCD 中,∵AB=BC=CD ,∠A=∠ADC=∠BCD=90° ∴∠ABE=∠DCF=30°, ∴BE=2AE ;故①正确; ∵PC=CD ,∠PCD=30°, ∴∠PDC=75°, ∴∠FDP=15°, ∵∠DBA=45°, ∴∠PBD=15°, ∴∠FDP=∠PBD ,∵∠DFP=∠BPC=60°,∴△DFP ∽△BPH ;故②正确; ∵∠FDP=∠PBD=15°,∠ADB=45°, ∴∠PDB=30°,而∠DFP=60°, ∴∠PFD ≠∠PDB ,∴△PFD 与△PDB 不会相似;故③错误; ∵∠PDH=∠PCD=30°,∠DPH=∠DPC , ∴△DPH ∽△CPD ,∴DP PHPC DP=, ∴DP 2=PH•PC,故④正确; 故选C .【点评】本题考查的正方形的性质,等边三角形的性质以及相似三角形的判定和性质,解答此题的关键是熟练掌握性质和定理.二.填空题(共6小题) 11.经过两次连续降价,某药品销售单价由原来的50元降到32元,设该药品平均每次降价的百分率为x,根据题意可列方程是 50(1﹣x )2=32 .【分析】根据某药品经过连续两次降价,销售单价由原来50元降到32元,平均每次降价的百分率为x ,可以列出相应的方程即可.【解答】解:由题意可得, 50(1﹣x )2=32,故答案为:50(1﹣x )2=32.【点评】本题考查由实际问题抽象出一元二次方程,解题的关键是明确题意,找出题目中的等量关系,列出相应的方程.12.若抛物线2241y x px p =-++中不管p 取何值时都通过定点,则定点坐标为(4,33).【分析】把含p 的项合并,只有当p 的系数为0时,不管p 取何值抛物线都通过定点,可求x 、y 的对应值,确定定点坐标.【解答】解:2241y x px p =-++可化为22(4)1y x p x =--+, 分析可得:当x =4时,y =33;且与p 的取值无关; 故不管p 取何值时都通过定点(4,33).【点评】本题考查二次函数图象过定点问题,解决此类问题:首先根据题意,化简函数式,提出未知的常数,化简后再根据具体情况判断.13.如图,在△ABC 中,∠C=90°,AC=8,BC=6,D 是边AB 的中点,现有一点P 位于边AC 上,使得△ADP 与△ABC 相似,则线段AP 的长为4或254.【分析】先根据勾股定理求出AB 的长,再分△ADP ∽△ABC 与△ADP ∽△ACB 两种情况进行讨论即可.【解答】解:∵在△ABC 中,∠C=90°,AC=8,BC=6,∴2286=10AB =+. ∵D 是边AB 的中点, ∴AD=5.当△ADP ∽△ABC 时,AD AP AB AC =,即5108AP=,解得AP=4; 当△ADP ∽△ACB 时,AD AP AC AB =,即5810AP =,解得AP=254. 故答案为:4或254.【点评】本题考查的是相似三角形的判定,在解答此题时要注意进行分类讨论,不要漏解. 14.如图,在平面直角坐标系中,△OCB 的外接圆与y 轴交于A(0,2),∠OCB=60°,∠COB=45°,则OC= 13+.【分析】连接AB ,由圆周角定理知AB 必过圆心M ,Rt △ABO 中,易知∠BAO=∠OCB=60°,已知OA=2,即可求得OB 的长;过B 作BD ⊥OC ,通过解直角三角形即可求得OD 、BD 、CD 的长,进而由OC=OD+CD 求出OC 的长.【解答】解:连接AB,则AB 为⊙M 的直径. Rt △ABO 中,∠BAO=∠OCB=60°,∴332=6OB OA ==⨯. 过B 作BD ⊥OC 于D . Rt △OBD 中,∠COB=45°, 则2=32OD BD OB ==. Rt △BCD 中,∠OCB=60°,则3=13CD BD =. ∴OC=CD+OD=13+.故答案为:13+.【点评】此题主要考查了圆周角定理及解直角三角形的综合应用能力,能够正确的构建出与已知和所求相关的直角三角形是解答此题的关键.15.如图.在等边△ABC 中,AC=8,点D 、E 、F 分别在三边AB 、BC 、AC 上,且AF=2,FD ⊥DE ,∠DFE=60°,则AD 的长为 3 .【分析】根据三角形的内角和定理列式求出∠2=∠3,再根据等边三角形的三个角都是60°求出∠A=∠C,然后根据两组角对应相等的两个三角形相似求出△ADF和△CFE相似,根据相似三角形对应边成比例可得AD DFCF EF=,再根据直角三角形30°角所对的直角边等于斜边的一半可得12DF EF=,然后代入数据进行计算即可得解.【解答】解:∵∠DFE=60°,∴∠1+∠2+60°=180°,∴∠2=120°﹣∠1,在等边△ABC中,∠A=∠C=60°,∴∠A+∠1+∠3=180°,∴∠3=180°﹣∠A﹣∠1=120°﹣∠1,∴∠2=∠3,又∵∠A=∠C,∴△ADF∽△CFE,∴AD DF CF EF=,∵FD⊥DE,∠DFE=60°,∴∠DEF=90°﹣60°=30°,∴12DF EF=,又∵AF=2,AC=8,∴CF=8﹣2=6,∴1 62 AD=,解得AD=3.故答案为:3.【点评】本题考查了相似三角形的判定与性质,等边三角形的性质,直角三角形30°角所对的直角边等于斜边的一半,根据平角等于180°和三角形的内角和定理求出∠2=∠3是解题的关键,也是本题的难点.16.在平面直角坐标系中,点C沿着某条路径运动,以点C为旋转中心,将点A(0,4)逆时针旋转90°到点B(m,1),若﹣5≤m≤5,则点C运动的路径长为52.【分析】在平面直角坐标系中,在y轴上取点P(0,1),过P作直线l∥x轴,作CM⊥OA于M,作CN⊥l于N,构造Rt△BCN≌Rt△ACM,得出CN=CM,若连接CP,则点C在∠BPO的平分线上,进而得出动点C在直线CP上运动;再分两种情况讨论C的路径端点坐标:①当m=﹣5时,②当m=5时,分别求得C(﹣1,0)和C1(4,5),而C的运动路径长就是CC1的长,最后由勾股定理可得CC1的长度.【解答】解:如图1所示,在y 轴上取点P (0,1),过P 作直线l ∥x 轴, ∵B (m ,1), ∴B 在直线l 上,∵C 为旋转中心,旋转角为90°, ∴BC=AC ,∠ACB=90°, ∵∠APB=90°,∴∠1=∠2,作CM ⊥OA 于M ,作CN ⊥l 于N,则Rt △BCN ≌Rt △ACM ,∴CN=CM ,若连接CP ,则点C 在∠BPO 的平分线上, ∴动点C 在直线CP 上运动;如图2所示,∵B(m ,1)且﹣5≤m ≤5, ∴分两种情况讨论C 的路径端点坐标, ①当m=﹣5时,B (﹣5,1),PB=5, 作CM ⊥y 轴于M ,作CN ⊥l 于N , 同理可得△BCN ≌△ACM , ∴CM=CN,BN=AM , 可设PN=PM=CN=CM=a , ∵P (0,1),A (0,4), ∴AP=3,AM=BN=3+a , ∴PB=a +3+a =5,∴a =1, ∴C (﹣1,0);②当m =5时,B (5,1),如图2中的B 1,此时的动点C 是图2中的C 1, 同理可得C 1(4,5),∴C 的运动路径长就是CC 1的长,由勾股定理可得,221[4(1)]55052CC =--+==.【点评】本题主要考查了旋转图形的坐标、全等三角形的判定与性质以及轨迹的运用,解题时注意:图形或点旋转之后要结合旋转的角度和图形的特殊性质,求出旋转后的点的坐标.三、解答题(共8小题) 17.解方程:(1)5x (x +1)=2(x +1);(2)x 2﹣3x ﹣1=0. 【分析】(1)先移项得到5x (x +1)﹣2(x +1)=0,然后利用因式分解法解方程; (2)利用求根公式法解方程. 【解答】解:(1)5x (x +1)﹣2(x +1)=0, (x +1)(5x ﹣2)=0 x +1=0或5x ﹣2=0,所以x 1=﹣1,x 2=25;(2)△=(﹣3)2﹣4×(﹣1)=13,31321x ±=⨯, 所以13132x +=,23132x -=.【点评】本题考查了解一元二次方程﹣因式分解法:就是先把方程的右边化为0,再把左边通过因式分解化为两个一次因式的积的形式,那么这两个因式的值就都有可能为0,这就能得到两个一元一次方程的解,这样也就把原方程进行了降次,把解一元二次方程转化为解一元一次方程的问题了(数学转化思想).也考查了公式法解一元二次方程.18.关于x 的方程22(21)230x k x k k --+-+=有两个不相等的实数根. (1)求实数k 的取值范围;(2)设方程的两个实数根分别为x 1、x 2,存不存在这样的实数k ,使得12x x -=?若存在,求出这样的k 值;若不存在,说明理由.【分析】(1)由方程有两个不相等的实数根知△>0,列出关于k 的不等式求解可得;(2)由韦达定理知1221x x k +=-,221223(1)20x x k k k =-+=-+>,将原式两边平方后把12x x +,12x x 代入得到关于k 的方程,求解可得.【解答】解:(1)∵方程有两个不相等的实数根, ∴22=[(21)]4(23)4110k k k k ∆----+=->,解得:114k >;(2)存在,1221x x k +=-,221223(1)20x x k k k =-+=-+>∴将12x x -=两边平方可得22112225x x x x -+=,即21212()45x x x x +-=, 代入得:22(21)4(23)5k k k ---+=,4k ﹣11=5, 解得:k =4.【点评】本题主要考查根与系数的关系及根的判别式,熟练掌握判别式的值与方程的根之间的关系及韦达定理是解题的关键.19.阅读材料,回答问题:材料:题1:经过某十字路口的汽车,可能直行,也可能向左转或向右转.如果这三种可能性的大小相同,求三辆汽车经过这个十字路口时,至少要两辆车向左转的概率.题2:有两把不同的锁和三把钥匙,其中两把钥匙分别能打开这两把锁(一把钥匙只能开一把锁),第三把钥匙不能打开这两把锁.随机取出一把钥匙开任意一把锁,一次打开锁的概率是多少?我们可以用“袋中摸球”的试验来模拟题1:在口袋中放三个不同颜色的小球,红球表示直行,绿球表示向左转,黑球表示向右转,三辆汽车经过路口,相当于从三个这样的口袋中各随机摸出一球.问题:(1)事件“至少有两辆车向左转”相当于“袋中摸球”的试验中的什么事件? (2)设计一个“袋中摸球”的试验模拟题2,请简要说明你的方案. (3)请直接写出题2的结果.【分析】题1:因为此题需要三步完成,所以画出树状图求解即可,注意要做到不重不漏;题2:根据题意列出表格,得出所有等可能的情况数,找出随机取出一把钥匙开任意一把锁,一次打开锁的情况数,即可求出所求的概率;问题:(1)绿球代表左转,所以为:至少摸出两个绿球; (2)写出方案;(3)直接写结果即可.【解答】解:题1:画树状图得:∴一共有27种等可能的情况;至少有两辆车向左转的有7种:直左左,右左左,左直左,左右左,左左直,左左右,左左左,则至少有两辆车向左转的概率为:727.题2:列表得:锁1 锁2钥匙1 (锁1,钥匙1)(锁2,钥匙1)钥匙2 (锁1,钥匙2) (锁2,钥匙2)钥匙3 (锁1,钥匙3)(锁2,钥匙3)所有等可能的情况有6种,其中随机取出一把钥匙开任意一把锁,一次打开锁的2种,则2163P==.问题:(1)至少摸出两个绿球;(2)一口袋中放红色和黑色的小球各一个,分别表示不同的锁;另一口袋中放红色、黑色和绿色的小球各一个,分别表示不同的钥匙;其中同颜色的球表示一套锁和钥匙.“随机取出一把钥匙开任意一把锁,一次打开锁的概率”,相当于“从两个口袋中各随机摸出一个球,两球颜色一样的概率”;(3)13.【点评】此题考查了树状图法或列表法求概率以及利用类比法解决问题,解题的关键是根据题意画出树状图或表格,再由概率=所求情况数与总情况数之比求解.20.如图,M、N为山两侧的两个村庄,为了两村交通方便,根据国家的惠民政策,政府决定打一直线涵洞.工程人员为了计算工程量,必须计算M、N两点之间的直线距离,选择测量点A、B、C,点B、C分别在AM、AN上,现测得AM=1千米、AN=1.8千米,AB=54米、BC=45米、AC=30米,求M、N两点之间的直线距离.【分析】先根据相似三角形的判定得出△ABC∽△ANM,再利用相似三角形的性质解答即可.【解答】解:在△ABC与△AMN中,305549AC AB ==,1000518009AM AN ==,∴AC AMAB AN =,又∵∠A=∠A , ∴△ABC ∽△ANM ,∴BC AC MN AM =,即45301000MN =, 解得:MN=1500米,答:M 、N 两点之间的直线距离是1500米;【点评】此题考查了相似三角形的判定与性质;熟记相似三角形的判定方法是解决问题的关键.21.如图,△ABD 是⊙O 的内接三角形,E 是弦BD 的中点,点C 是⊙O 外一点且∠DBC=∠A,连接OE 延长与圆相交于点F ,与BC 相交于点C .(1)求证:BC 是⊙O 的切线;(2)若⊙O 的半径为6,BC=8,求弦BD 的长.【分析】(1)连接OB,由垂径定理的推论得出BE=DE,OE ⊥BD ,=12,由圆周角定理得出∠BOE=∠A ,证出∠OBE+∠DBC=90°,得出∠OBC=90°即可;(2)由勾股定理求出OC ,由△OBC 的面积求出BE,即可得出弦BD 的长. 【解答】(1)证明:连接OB,如图所示: ∵E 是弦BD 的中点,∴BE=DE,OE ⊥BD,=12,∴∠BOE=∠A ,∠OBE+∠BOE=90°, ∵∠DBC=∠A , ∴∠BOE=∠DBC, ∴∠OBE+∠DBC=90°, ∴∠OBC=90°, 即BC ⊥OB ,∴BC 是⊙O 的切线;(2)解:∵OB=6,BC=8,BC ⊥OB ,∴2210OC OB BC =+=,∵△OBC 的面积=12OC•BE=12OB•BC , ∴684.810OB BC BE OC ⨯===,∴BD=2BE=9.6,即弦BD 的长为9.6.【点评】本题考查了切线的判定、垂径定理的推论、圆周角定理、勾股定理、三角形面积的计算;熟练掌握垂径定理的推论和圆周角定理是解决问题的关键.22.一块三角形废料如图所示,∠A=30°,∠C=90°,AB=12.用这块废料剪出一个矩形CDEF ,其中,点D 、E 、F 分别在AC 、AB 、BC 上.要使剪出的矩形CDEF 面积最大,点E 应选在何处?【分析】首先在Rt △ABC 中利用∠A=30°、AB=12,求得BC=6、AC 的长,然后根据四边形CDEF 是矩形得到EF ∥AC 从而得到△BEF ∽△BAC ,设AE=x ,则BE=12﹣x .利用相似三角形成比例表示出EF 、DE ,然后表示出有关x 的二次函数,然后求二次函数的最值即可.【解答】解:在Rt △ABC 中,∠A=30°,AB=12,∴BC=6,AC=AB•cos30°=31263= ∵四边形CDEF 是矩形, ∴EF ∥AC .∴△BEF ∽△BAC .∴EF BEAC BA=. 设AE=x ,则BE=12﹣x . ∴63(12)3)x EF x --.在Rt △ADE 中,1122DE AE x ==.矩形CDEF 的面积S=DE•EF=2133(12)=33(012)22x x x x -+<<.当336232()bx a=-==⨯-时,S 有最大值.∴点E 应选在AB 的中点处.【点评】本题考查了相似三角形的应用及二次函数的应用,解题的关键是从几何问题中整理出二次函数模型,并利用二次函数的知识求最值.23.某公司产销一种产品,为保证质量,每个周期产销商品件数控制在100以内,产销成本C 是商品件数x 的二次函数,调查数据如表:产销商品件数(x /件) 10 20 30 产销成本(C/元) 120 180 260商品的销售价格(单位:元)为13510P x =-(每个周期的产销利润=P•x ﹣C ) (1)直接写出产销成本C 与商品件数x 的函数关系式(不要求写出自变量的取值范围) (2)该公司每个周期产销多少件商品时,利润达到220元? (3)求该公司每个周期的产销利润的最大值.【分析】(1)根据题意设出C 与x 的函数关系式,然后根据表格中的数据即可解答本题;(2)根据题意可以列出相应的方程,从而可以解答本题;(3)根据题意可以得到利润与销售价格的关系式,然后化为顶点式即可解答本题. 【解答】解:(1)设2C ax bx c =++,则 2221010=1202020=1803030=260a b c a b c a b c ⎧⨯+⨯+⎪⨯+⨯+⎨⎪⨯+⨯+⎩,解得,=0.1=3=80a b c ⎧⎪⎨⎪⎩,即产销成本C 与商品件数x 的函数关系式是:2138010C x x =++; (2)依题意,得211(35)(380)2201010x x x x --++=; 解得,x 1=10,x 2=150,∵每个周期产销商品件数控制在100以内, ∴x =10.即该公司每个周期产销10件商品时,利润达到220元; (3)设每个周期的产销利润为y 元,∵2221111(35)(380)3280(80)1200101055y x x x x x x x =--++=-+-=--+, ∴当x =80时,函数有最大值,此时y =1200,即当每个周期产销80件商品时,产销利润最大,最大值为1200 元.【点评】本题考查二次函数的应用、一元二次方程的应用,解题的关键是明确题意,找出所求问题需要的条件.24.如图,在平面直角坐标系中,△ABC 是直角三角形,∠ACB=90°,AC=BC,OA=1,OC=4,抛物线2y x bx c =++经过A ,B 两点.(1)求抛物线的解析式;(2)点E 是直角△ABC 斜边AB 上一动点(点A 、B 除外),过点E 作x 轴的垂线交抛物线于点F ,当线段EF 的长度最大时,求点E 、F 的坐标;(3)在(2)的条件下:在抛物线上是否存在一点P,使△EFP 是以EF 为直角边的直角三角形?若存在,请求出所有点P 的坐标;若不存在,请说明理由.【分析】(1)根据AC=BC ,求出BC 的长,进而得到点A ,B 的坐标,利用待定系数法即可求得抛物线的解析式;(2)利用待定系数法求出直线AB 的解析式,用含m 的式表示出E,F 的坐标,求出EF 的长度最大时m 的值,即可求得E ,F 的坐标;(3)分两种情况:∠E=90°和∠F=90°,分别得到点P 的纵坐标,将纵坐标代入抛物线解析式,即可求得点P 的值.【解答】解:(1)∵OA=1,OC=4,AC=BC,。
九年级上数学综合模拟卷一、选择题1.下列各数中,负数是( ) A .﹣(1﹣2)B .﹣1﹣1C .(﹣1)0D .1﹣22.下列运算正确的是( )A .﹣3(x ﹣1)=﹣3x ﹣1B .﹣3(x ﹣1)=﹣3x+1C .﹣3(x ﹣1)=﹣3x ﹣3D .﹣3(x ﹣1)=﹣3x+3 2. 二次函数3)1(2+-=x y 的最小值是( )A. 1B. 1-C. 3-D. 3 3. 在△ABC 中,∠A =120°,∠B =45°,∠C =15°,则B cos 等于 ( ) A.23 B. 21C.3D. 22 5.众志成城,抗旱救灾.某小组7名同学积极捐出自己的零花钱支援灾区,他们捐款的数额(单位:元)分别是:50、35、35、40、35、25、105.这组数据的众数是()A .30B .32.5C .35D .45 6.下列各式中,运算正确的是()A .437()x x = B .(a -b)2=a 2-b 2 C. = D .628a a a =÷7.如图,现分别旋转两个标准的转盘,则转盘所转到的两个数字之积为奇数的概率是()A .B .C .D .8.对于一组数据:75,73,75,71,76,下列说法正确的是()A . 这组数据的平均数是75B .这组数据的中位数是74C .这组数据的方差是3.2D .这组数据的众数是76 9.如图,在Rt △ABC 中,∠ACB=90°,∠A=30°,BC=2.将△ABC 绕点C 按顺时针方向旋转n 度后得到△EDC ,此时点D 在AB 边上,斜边DE 交AC 边于点F ,则n 的大小和图中阴影部分的面积分别为( )A .30,2B .60,2C .60,D .60,10.如图,在直角坐标系中,直线y=6﹣x与函数(x>0)的图象相交于点A、B,设A点的坐标为(x1,y1),那么长为x1,宽为y1的矩形面积和周长分别是()A.4,12 B.4,6 C.8,12 D.8,611.如图,矩形ABCD,BC=6cm,将矩形沿直线EF折叠,使B点落在AD边中点B′位置.如果∠DB′E=60°,则矩形的周长为()A.18cm B.6+12cm C.+6cm D.3+6cm12.如图,一次函数y=x+3的图象与x轴,y轴交于A,B两点,与反比例函数的图象相交于C,D两点,分别过C,D两点作y轴,x轴的垂线,垂足为E,F,连接CF,DE.有下列四个结论:①△CEF与△DEF的面积相等;②△AOB∽△FOE;③△DCE≌△CDF;④AC=BD.其中正确的结论是()A.①② B.①②③C.①②③④ D.②③④二、填空题13.分解因式:m2n﹣n=.14.如图,在△ABC中,∠C=90°,AC=8cm,AB的垂直平分线MN交AC于D,连接BD,若sin∠DBC=,则BC的长是cm.15.如图,△P 1OA 1,△P 2A 1A 2是等腰直角三角形,点P 1,P 2在函数y=(x >0)的图象上,斜边OA 1,A 1A 2都在x 轴上,则点A 2的坐标是 .16.正方形A 1B 1C 1O ,A 2B 2C 2C 1,A 3B 3C 3C 2,…,按如图所示的方式放置.点A 1,A 2,A 3,…,和点C 1,C 2,C 3,…,分别在直线y=kx+b (k >0)和x 轴上,已知点B 1、B 2的坐标分别为B 1(1,1),B 2(3,2),则B 8的坐标是 .三、解答题17. 计算:102)21()2(60cos 245tan ----+︒-︒π18、先化简分式:23224⎛⎫-÷⎪-+-⎝⎭x x x x x x ,然后选取一个合适..的x 值,代入求值。
2017-2018学年广东省深圳市罗湖区九年级(上)期末数学模拟试
卷
一、选择题(每小题只有一个选项符合题意,每小题3分,共36分)
1.若反比例函数
1
y
x
=-的图象经过点A(2,m),则m的值是()
A.1
2
B.2 C.
1
2
-D.﹣2
2.一个几何体如图,则它的左视图是()
3.已知x=2是一元二次方程x2+mx﹣2=0的一个解,则m的值是()
A.1 B.﹣1 C.﹣3 D.0或﹣1
4.下列命题中,真命题是()
A.两条对角线相等的四边形是矩形B.两条对角线互相垂直的四边形是菱形
C.两条对角线互相垂直且相等的四边形是正方形D.两条对角线互相平分的四边形是平行四边形
5.如图,小明从路灯下A处向前走了5米,发现自己在地面上的影子长DE是2米,如果小明的身高为1.6米,那么路灯离地面的高度AB是()
A.4米B.5.6米C.2.2米D.12.5米
6.如图,在菱形ABCD中,对角线AC=4,∠BAD=120°,则菱形ABCD的周长为()
A.20 B.18 C.16 D.15
7.如图,菱形ABCD的边长为4,对角线交于点O,∠ABC=60°,点E、F分别为AB、AO的中点,则EF的长度为()
A B.3 C.D.4
8.在同一平面坐标系中,函数y=mx+m和y=﹣mx2+2x+2(m是常数,且m≠0)的图象可能是()
9.若菱形的周长为52cm,面积为120cm2,则它的对角线之和为()
A.14cm B.17cm C.28cm D.34cm
10.如图是二次函数y=ax2+bx+c图象的一部分,图象过点A(﹣3,0),对称轴为x=﹣1.给出四个结论:①b2>4ac;②2a+b=0;③a﹣b+c=0;④5a<b.其中正确结论是()
A.②④ B.①④ C.②③ D.①③
11.如图为二次函数y=ax2+bx+c的图象,则下列说法中错误的是()
A.ac<0 B.2a+b=0 C.对于任意x均有ax2+bx≥a+b D.4a+2b+c>0
12.如图,在矩形ABCD中,E是AD边的中点,BE⊥AC,垂足为点F,连接DF,下面四个结论:①△AEF∽△
CAB;②CF=2AF;③DF=DC;④tan∠CAD=
,其中正确的结论有()
2
A.1个B.2个C.3个D.4个
二、填空题(每小题3分,共12分)
13.若
a b =3,则a a b
+= . 14.某地区为估计该地区黄羊的只数,先捕捉20只黄羊给它们分别作上标志,然后放回,待有标志的黄羊完全混合于黄羊群后,第二次捕捉60只黄羊,发现其中2只有标志.从而估计该地区有黄羊 只.
15.如图,矩形BCDE 的各边分别平行于x 轴或y 轴,物体甲和物体乙分别由点A (2,0)同时出发,沿矩形BCDE 的边作环绕运动,物体甲按逆时针方向以1个单位/秒匀速运动,物体乙按顺时针方向以2个单位/秒匀速运动,则两个物体运动后的第2016次相遇地点的坐标是 .
16.如图,Rt △ABC 中,∠C=90°,以斜边AB 为边向外作正方形ABDE ,且正方形对角线交于点O ,连接OC ,已
知AC=5,BC 的长为 .
三、解答题(共52分)
17.计算0
123tan30452018⎛⎫-- ⎪⎝⎭
18.在一个不透明的纸箱里装有红、黄、蓝三种颜色的小球,它们除颜色外完全相同,其中红球有2个,黄球有1个,蓝球有1个.现有一张电影票,小明和小亮决定通过摸球游戏定输赢(赢的一方得电影票).游戏规则是:两人各摸1次球,先由小明从纸箱里随机摸出1个球,记录颜色后放回,将小球摇匀,再由小亮随机摸出1个球.若两人摸到的球颜色相同,则小明赢,否则小亮赢.这个游戏规则对双方公平吗?请你利用树状图或列表法说明理由.
19.如图.矩形ABCD的对角线相交于点O.DE∥AC,CE∥BD.
(1)求证:四边形OCED是菱形;
(2)若∠ACB=30°,菱形OCED的面积为,求AC的长.
20.在“文博会”期间,某公司展销如图所示的长方形工艺品,该工艺品长60cm,宽40cm,中间镶有宽度相同的三条丝绸花边.
(1)若丝绸花边的面积为650cm2,求丝绸花边的宽度;
(2)已知该工艺品的成本是40元/件,如果以单价100元/件销售,那么每天可售出200件,另每天除工艺品的成本外所需支付的各种费用是2000元,根据销售经验,如果将销售单价降低1元,每天可多售出20件,请问该公司每天所获利润能否达到22500元,如果能应该把销售单价定为多少元?如果不能,请说明理由.
21.如图1,△ABC中,点P在AB边上自点A向终点B运动,运动速度为每秒1个单位长度,过点P作PD∥AC,交BC于点D,过D点作DE∥AB,交AC于点E,且AB=10,AC=5,设点P运动的时间为t秒(0<t<10).(1)填空:当t=秒时,△PBD≌△EDC;
(2)当四边形APDE是菱形时.试求t的值?
(3)如图2,若△ABC的面积为20,四边形APDE的面积为S,试问S是否有最大值?如果有最大值,请求出最大值,如果没有请说明理由.
22.在矩形ABCD中,CF⊥BD分别交BD、AD于点E、F,连接BF.
(1)求证:△DEC∽△FDC;
(2)当F为AD的中点时,求BC的长度.
23.如图1,抛物线y=ax2+bx+c(a≠0)与x轴交于点A、B,与y轴交于点C,且A(﹣1,0),OB=OC=3OA.(1)试求抛物线的解析式;
(2)如图2,点P是第一象限抛物线上的一点,连接AC、PB、PC.且S四边形OBPC=5S△AOC,试求点P的坐标?(3)如图3,定长为1的线段MN在抛物线的对称轴上上下滑动,连接CM、AN.记m=CM+MN+AN,试问:m 是否有最小值?如果有,请求m的最小值;如果没有,请说明理由.。