匀速圆周运动快慢的描述_教案
- 格式:docx
- 大小:66.99 KB
- 文档页数:6
教案环节二:描述圆周运动快慢的方法PPT5:今天我们首先从运动学的角度研究圆周运动,学习描述圆周运动快慢的物理量,同时了解圆周运动的特点。
PPT6:我们以熟悉的自行车为例来研究圆周运动,把自行车的后轮架起,转动脚踏板,大小齿轮以及后轮上的点都在做圆周运动。
请同学们思考下面两个问题(1)后轮上到转轴距离不同的点,哪个运动得更快些?(2)大、小两个齿轮边缘上的点,哪个运动得更快些?你的答案是什么?你判断的依据又是什么呢?同学们可能会有不同的意见,我们一块儿来探讨一下。
PPT7:我们先来考虑第一个问题,后轮上到转轴距离不同的点,哪个运动得更快些?我们在后轮任意一条半径上,分别取A、B两点,转动脚踏板,A、B两点均做圆周运动,任取一段时间Δt发现A点转过的弧长AA’比B点转过的弧长BB’要长,因此我们可以说A点比B点运动的快,实际上我们是用相同时间内、物体转过的弧长、来比较它们运动的快慢的,那么我们如何描述物体沿着圆弧运动的快慢呢?请同学们回想一下,我们在直线运动中是如何描述物体运动的快慢的?我们用物体运动的位移与对应时间的比值,也就是速度来描述直线运动的快慢的。
那么在圆周运动中,我们也可以用物体转过的的弧长除以对应的时间,来描述物体沿着圆弧运动的快慢,在这里弧长实际上是物体运动轨迹线的长度,也就是物体运动的路程,我们把这样的速度叫做。
PPT8:1、线速度①它是用来描述做圆周运动的物体沿着圆弧运动的快慢的由于圆周运动是曲线运动,运动方向时刻发生变化,所以对于曲线运动我们更关注的是物体在某一时刻或者某一位置运动的快慢。
如图所示,物体沿圆弧由M向N运动,在某时刻t经过A点。
为了描述物体经过A点附近时运动的快慢,可以取一段很短设置问题情景,引导学生思考,建立物理概念。
问题(1)的是希望学生从熟悉的直线运动的速度能够更容易的过渡到线速度的概念,并且结合直线运动描述快慢的方法引导学生定义线速度。
2、小齿轮转一圈所用的时间比大齿轮转一圈所用的时间短,小齿轮转动的快,我们是用物体转动一圈所用的时间来比较转动的快慢的;3、小齿轮转过两圈时,大齿轮才转过一圈多一点儿,同样的时间内,小齿轮转过的圈数多,小齿轮转动的快,我们是用相同时间内转过的圈数去比较它们转动的快慢的。
匀速圆周运动快慢的描述教案一、教学目标1. 让学生理解匀速圆周运动的概念,知道匀速圆周运动的特点。
2. 让学生掌握描述匀速圆周运动快慢的物理量,如速度、角速度、周期等。
3. 让学生能够运用所学的知识分析实际问题,提高解决实际问题的能力。
二、教学重点与难点1. 教学重点:(1)匀速圆周运动的概念及特点;(2)描述匀速圆周运动快慢的物理量;(3)运用匀速圆周运动的知识分析实际问题。
2. 教学难点:(1)匀速圆周运动快慢的描述;(2)实际问题中的运用。
三、教学方法1. 采用问题驱动法,引导学生思考匀速圆周运动的快慢如何描述。
2. 利用实例分析,让学生理解匀速圆周运动在实际中的应用。
3. 采用小组讨论法,培养学生团队合作精神,提高学生分析问题、解决问题的能力。
四、教学内容1. 匀速圆周运动的概念及特点(1)概念:物体在圆周路径上以恒定速度运动的现象;(2)特点:速度大小不变,方向时刻变化;向心力大小不变,方向时刻变化。
2. 描述匀速圆周运动快慢的物理量(1)线速度:物体在圆周路径上的瞬时速度;(2)角速度:物体单位时间内转过的角度;(3)周期:物体完成一次圆周运动所需的时间。
3. 实际问题分析(1)例1:汽车在圆形赛道上行驶,如何描述其快慢?分析:运用线速度、角速度、周期等物理量描述汽车在圆形赛道上的运动快慢。
(2)例2:地球自转和公转的快慢如何描述?分析:运用角速度、周期等物理量描述地球自转和公转的快慢。
五、教学评价1. 课堂问答:检查学生对匀速圆周运动概念、特点的理解。
2. 练习题:检验学生对描述匀速圆周运动快慢的物理量的掌握。
3. 小组讨论:评估学生在团队合作中分析问题、解决问题的能力。
六、教学过程1. 引入新课:通过讲解汽车在圆形赛道上行驶的情景,引导学生思考如何描述其快慢。
2. 讲解匀速圆周运动的概念及特点,引导学生理解匀速圆周运动的基本特征。
3. 介绍描述匀速圆周运动快慢的物理量,如线速度、角速度、周期等,并通过实例进行分析。
第1节匀速圆周运动快慢的描述1.匀速圆周运动的特点:任意相等时间内通过的弧长(或角度)相等;线速度方向沿圆周的切线方向。
2.描述匀速圆周运动的物理量有线速度(v)、角速度(ω)、周期(T)[或频率(f)]、转速(n),其关系式是v=错误!,ω=错误!,v=ωr,ω=2πn.3.利用关系式分析线速度、角速度或周期的变化时,要用控制变量的思想,在皮带传动或齿轮传动的情况下,各轮边缘线速度相等,同一轮子上各点角速度相等.一、匀速圆周运动1.定义在任意相等时间内通过的弧长都相等的圆周运动。
2.性质匀速圆周运动速度大小不变,但方向时刻改变,故匀速圆周运动是变速运动,也是最简单的一种圆周运动.二、描述圆周运动的物理量物理量线速度角速度周期(T)频率转速(n)(v)(ω)(f)定义做匀速圆周运动的物体通过的弧长s与所用时间t的比值做匀速圆周运动的物体,半径转过的角度φ与所用时间t的比值做匀速圆周运动的物体运动一周所用的时间单位时间内完成圆周运动的次数单位时间内的转动次数大小v=错误!ω=错误!T=错误!=错误!f=错误!n=f=错误!单位m/s rad/s s Hz r/s方向矢量,沿圆周的切线方向矢量(其方向中学阶段不研究)标量标量标量1.自主思考——判一判(1)匀速圆周运动是速度不变的运动。
(×)(2)匀速圆周运动的加速度等于零。
(×)(3)线速度是位移与发生这段位移所用时间的比值。
(×)(4)角速度是标量,没有方向.(×)(5)匀速圆周运动的周期相同,角速度大小及转速都相同。
(√)2.合作探究—-议一议(1)匀速圆周运动中的“匀速”与以前所学的匀速直线运动中的“匀速"含义相同吗?提示:不相同。
匀速圆周运动中的“匀速”是指“匀速率"。
(2)“由v=ωr可得v∝r,由ω=错误!可得ω∝错误!。
”这样理解对吗?提示:不对,应用控制变量方法讨论。
(3)打篮球的同学可能玩过转篮球,让篮球在指尖旋转,展示自己的球技.如图4。
高中物理圆周运动教案设计(12篇)高一物理圆周运动教案1一、教材分析《匀速圆周运动》为高中物理必修2第五章第5节。
它是学生在充分掌握了曲线运动的规律和曲线运动问题的处理方法后,接触到的又一个美丽的曲线运动,本节内� 人教版教材有一个的特点就是以实验事实为基础,让学生得出感性认识,再通过理论分析总结出规律,从而形成理性认识。
教科书在列举了生活中了一些圆周运动情景后,通过观察自行车大齿轮、小齿轮、后轮的关联转动,提出了描述圆周运动的物体运动快慢的问题。
二、教学目标1.知识与技能①知道什么是圆周运动、什么是匀速圆周运动。
理解线速度的概念;理解角速度和周期的概念,会用它们的公式进行计算。
②理解线速度、角速度、周期之间的关系:v=rω=2πr/T。
③理解匀速圆周运动是变速运动。
④能够用匀速圆周运动的有关公式分析和解决具体情景中的问题。
2.过程与方法①运用极限思维理解线速度的瞬时性和矢量性。
掌握运用圆周运动的特点去分析有关问题。
②体会有了线速度后,为什么还要引入角速度。
运用数学知识推导角速度的单位。
3.情感、态度与价值观①通过极限思想和数学知识的应用,体会学科知识间的联系,建立普遍联系的观点。
②体会应用知识的乐趣,感受物理就在身边,激发学生学习的兴趣。
③进行爱的教育。
在与学生的交流中,表达关爱和赏识,如微笑着对学生说“非常好!”“你们真棒!”“分析得对!”让学生得到肯定和鼓励,心情愉快地学习。
三、教学重点、难点1.重点①理解线速度、角速度、周期的概念及引入的过程;②掌握它们之间的联系。
2.难点①理解线速度、角速度的物理意义及概念引入的必要性;②理解匀速圆周运动是变速运动。
四、学情分析学生已有的知识:1.瞬时速度的概念2.初步的极限思想3.思考、讨论的习惯4.数学课中对角度大小的表示方法五、教学方法与手段演示实验、展示图片、观看视频、动画;讨论、讲授、推理、概括师生互动,生生互动,六、教学设计(一)导入新课(认识圆周运动)●通过演示实验、展示图片、观看视频、动画,让学生认识圆周运动的特点,演示小球在水平面内圆周运动展示自行车、钟表、电风扇等图片观看地球绕太阳运动的动画观看花样滑冰视频提出问题:它们的运动有什么共同点?答:它们的轨迹是一个圆。
第四章第1节《匀速圆周运动快慢的描述》高一()班姓名号数一.导读提纲:1、什么是圆周运动?如何去定义匀速圆周运动?2、如何去描述物体做圆周运动的运动快慢和转动快慢?3、能对描述匀速圆周运动的各个物理量进行联系,写出它们的关联式;二.知识梳理:知识链接:(1)曲线运动概念:运动轨迹为曲线的运动;(2)曲线运动的物体,速度沿曲线的切线方向,速度方向在改变,是变速运动;1、圆周运动:把运动轨迹为或的运动称为圆周运动;2、匀速圆周运动:在任意时间内通过的的都相等的圆周运动;3、线速度:(1)描述物体做圆周运动的快慢;(2)线速度公式:单位:;(3)是否为矢量?若为矢量,方向如何?;4、角速度(1)描述物体做圆周运动时绕圆心的快慢;(2)角速度公式:,单位:;5、周期(1)周期性运动:物体每隔一段的时间就原来的运动;(2)周期:把周期性运动每所需要的时间叫周期;(3)周期(物理量)的符号,常用单位:;(4)秒针匀速转动的周期记为;6、频率(1)在内周期性重复的叫频率;(2)频率(物理量)的符号,单位;(3)频率与周期的关系:;7、转速(1)转速是内转动的圈数(round);(2)转速常用单位有和;赤道R1ϕ2ϕA Bw地轴皮带传动摩擦传动∙2o ∙1o A ∙∙B∙1o ∙2oA ∙∙B 三、问题探究1、匀速圆周运动是速度不变的运动吗?2、探究线速度v 、角速度w 和转动半径r 的关系,请说明过程;3、如图,A 、B 是某个匀速转动圆盘上的两点,且到转轴(圆心o )的距离B A r r >,比较A 、B 两点的角速度A w 、B w 的大小和线速度A v 、B v 的大小;4、如图,地球视为半径为R 的球体,自转角速度设为w , A 、B 为地面上的两点,纬度分别为1ϕ、2ϕ(1)画出A 、B 随地球自转的运动轨迹和该圆周的圆心; (2)确定A 、B 做圆周运动的轨道半径A r 、B r ; (3)比较A 、B 两点的角速度、线速度的大小关系;5、认识传动方式:(相互间均没有打滑) (1)1o 轮为主动轮,标明从动轮2o 的转动方向; (2)A 、B 是主、从动轮轮缘上的点,且A 点距 圆心的距离比B 大,比较A 、B 两点的线速度大小和角速度大小:A v B v ,A w B w(3)你了解的传动方式还有哪些? 6、本节所涉及物理量有线速度v 、角速度w 、弧长s 、圆心角ϕ(以弧度为单位)、半径r 、周期T 、频率f ,转速n (以s r /为单位);请作出小结并写出各物理量间的关联式;∙o ∙A∙Bw第四章第1节《匀速圆周运动快慢的描述》课堂检测1、对于做匀速圆周运动的物体,下列说法错误的是( ) A 、线速度不变 B 、线速度大小不变 C 、转速不变 D 、周期不变2、做匀速圆周运动的物体质点,处于( ) A 、平衡状态 B 、不平衡状态 C 、速度不变的状态 D 、变加速不变的状态3、小明和小亮晨练,小明沿半径为R 的圆形花坛跑道匀速跑步,小亮沿半径为2R 的圆形旱冰场匀速跑步,在相同时间内各自跑了一圈,则( )A 、小明的线速度和角速度都大B 、小亮的线速度和角速度都大C 、两人的角速度相等,小亮的线速度大D 、两人的线速度和角速度都相等4、某质点以m r 10=为半径做匀速圆周运动,在s t 10=运动了5圈,求其周期T 、频率f 、线速度v 和角速度w 的大小;5、如图所示的传动装置中,B 、C 两轮固定在一起绕同一轴转动,A 、B 两轮用皮带传动且无打滑,三轮半径关系是B C A r r r 2==,a 、b 、c 为A 、B 、C 三个轮子轮缘上的点,求这三点的角速度之比(c b a w w w ::)和线速度之比(c b a v v v ::);∙∙AB C∙∙∙a bc5、如图,轮子与皮带间均无打滑,写出a 、b 、c 、d 四点 的线速度和角速度比例;rr r 2r4dcbd。
匀速圆周运动教学设计一、教材分析《匀速圆周运动》选自粤教版高中物理必修2第二章第1节。
学生在充分掌握了曲线运动和平抛运动后学习圆周运动的规律、向心力的来源和生活中的应用,为后面学习万有引力、带电粒子在磁场中运动打下基础,所以它起到了承前启后的作用.二、学情分析1.瞬时速度的概念有一定的认识,但理解还有难度2.初步的极限思想已有,可以进行简单应用3.对直线运动的描述有较深的理解4.生活中的圆周运动有较多的感性认识三、三维教学目标1.知识与技能1) 能举例说明生活中的匀速圆周运动,能用线速度、角速度概念描述匀速圆周运动2)能说明线速度、角速度和周期的物理意义,正确的表述其定义式和关系式。
3) 能够使用匀速圆周运动的有关公式分析和计算两类转动问题。
2.过程与方法1)通过观察、体验各种匀速圆周运动,提出比较圆周运动快慢问题进为解决问题而建立物理概念的过程中,培养对新知识的探索能力,从研究方法的高度提高创新意识。
2)能够应用匀速圆周运动的公式分析和解决有关问题。
3.情感、态度与价值观1)在解决描述匀速圆周运动快慢问题的过程中,体会对于同一个问题可以从不同的侧面进行研究的思路,领略事物的多面性,复杂性,初步体会事物是普遍联系的思想。
2)在用圆周运动公式分析解决两种生活中的传动问题的过程中,逐步养成关注生活的习惯,培养对科学研究的兴趣.四、教学重点、难点1.重点1)线速度、角速度、周期的概念以及它们之间的联系。
2)匀速圆周运动的特点.2.难点1)线速度、角速度及周期之间的关系.2)对匀速圆周运动是变速曲线运动的理解。
五、教法与学法教法:探索发现法--通过教师引导使学生主动探究,最大限度的调动学生的主动性和学习兴趣,充分体现“教师主导,学生主体”的教学原则学法:结合高中学生认识和思维发展水平,根据新课程理念的要求,创设情境,提出问题,学生们讨论,并在老师的引导下集思广益,总结归纳出描述圆周运动快慢的各物理量的定义及相互关系;通过对实际圆周运动的观察和对实际情境的讨论,得出概念和描述匀速圆周运动快慢的三个量及关系,符合学生由感性认识上升到理性思维的认知规律.主动探究获得结论比被动接受更容易让学生体验学习的乐趣.六、教学过程1。
匀速圆周运动教案匀速圆周运动教案3篇匀速圆周运动教案1一、教学目标1.知识目标(1)知道什么是匀速圆周运动(2)理解什么是线速度、角速度和周期(3)理解线速度、角速度和周期之间的关系2.能力目标能够用匀速圆周运动的有关公式分析和解决有关问题3.德育目标通过描述匀速圆周运动快慢的教学,使学生了解对于同一个问题可以从不同的侧面进行研究。
二、教学重点、难点分析1.重点:匀速圆周运动及其描述2.难点:对匀速圆周运动是变速运动的理解三、教学方法讲授、推理、归纳法四、教具投影仪、投影片、多媒体、能够转动的圆盘五、教学过程(一)引入新课在曲线运动中,轨迹是圆周的物体的运动是很常见的,如转动的电风扇上各点的运动,地球和各个行星绕太阳的运动等,今天我们就来学习最简单的圆周运动──匀速圆周运动。
(二)进行新课1.速圆周运动(1)圆周运动【观察、举例】一个电风扇转动时,其上各点所做的运动,轨迹都是圆;开门或关门时门上各点的运动,轨迹都是一段圆弧。
地球和各个行匀速圆周运动匀速圆周运动教案2教学目标知识目标1、认识匀速圆周运动的概念.2、理解线速度、角速度和周期的概念,掌握这几个物理量之间的关系并会进行计算.能力目标培养学生建立模型的能力及分析综合能力.情感目标激发学生学习兴趣,培养学生积极参与的意识.教材分析教材首先明确要研究圆周运动中的最简单的情况,匀速圆周运动,接着从描述匀速圆周运动的快慢的角度引入线速度、角速度的概念及周期、频率、转速等概念,最后推导出线速度、角速度、周期间的关系,中间有一个思考与讨论做为铺垫.教法建议关于线速度、角速度、周期等概念的教学建议是:通过生活实例(齿轮转动或皮带传动装置)或多媒体资料,让学生切实感受到做圆周运动的物体有运动快慢与转动快慢及周期之别,有必要引入相关的物理量加以描述.学习线速度的概念,可以根据匀速圆周运动的概念(结合课件)引导学生认识弧长与时间比值保持不变的特点,进而引出线速度的大小与方向.同时应向学生指出线速度就是物体做匀速圆周运动的瞬时速度.学习角速度和周期的概念时,应向学生说明这两个概念是根据匀速圆周运动的特点和描述运动的需要而引入的.即物体做匀速圆周运动时,每通过一段弧长都与转过一定的圆心角相对应,因而物体沿圆周转动的快慢也可以用转过的圆心角与时间t比值来描述,由此引入角速度的概念.又根据匀速圆周运动具有周期性的特点,物体沿圆周转动的快慢还可以用转动一圈所用时间的长短来描述,为此引入了周期的概念.讲述角速度的概念时,不要求向学生强调角速度的矢量性.在讲述概念的同时,要让学生体会到匀速圆周运动的特点:线速度的大小、角速度、周期和频率保持不变的圆周运动.关于“线速度、角速度和周期间的关系”的教学建议是:结合课件引导学生认识到这几个物理量在对圆周运动的描述上虽有所不同,但它们之间是有联系的,并引导学生从如下思路理解它们之间的关系:教学重点:线速度、角速度、周期的概念教学难点:各量之间的关系及其应用主要设计:一、描述匀速圆周运动的有关物理量.(一)让学生举一些物体做圆周运动的实例.(二)展示课件1、齿轮传动装置课件2、皮带传动装置为引入概念提供感性认识,引起思考和讨论(三)展示课件3:质点做匀速圆周运动可暂停.可读出运行的时间,对应的弧长,转过的圆心角,进而给出线速度、角速度、周期、频率、转速等概念.二、线速度、角速度、周期间的关系:(一)重新展示课件1、齿轮传动装置.让学生体会到有些不同的点线速度大小相同,但角速度、周期不同,有些不同的点角速度、周期相同,但线速度大小不同;进而此导同学去分析它们之间的关系圆周运动是一种特殊的曲线运动,也是牛顿定律在曲线运动中的综合应用。
1.圆周运动1.知道什么是匀速圆周运动,知道匀速圆周运动是变速运动。
2.理解线速度、角速度、转速、周期等概念,会对它们进行定量计算。
3.理解掌握v=ωr和ω=2πn等公式。
4.熟悉同轴转动和皮带传动的特点。
5.理解匀速圆周运动的多解问题。
1.线速度(1)定义:物体做圆周运动通过的□01弧长与所用时间之比,v=□02ΔsΔt。
(2)意义:描述做圆周运动的物体□03运动的快慢。
(3)方向:线速度是矢量,方向为物体做圆周运动时该点的□04切线方向,与半径□05垂直。
(4)匀速圆周运动①定义:沿着圆周运动,并且线速度大小□06处处相等的运动。
②性质:线速度的方向是时刻□07变化的,所以是一种□08变速运动,“匀速”是指□09速率不变。
2.角速度(1)定义:物体做圆周运动转过的□10角度与所用时间之比,ω=□11ΔθΔt。
(2)意义:描述做圆周运动的物体绕圆心□12转动的快慢。
(3)单位①角的单位:弧度,符号是□13rad。
②角速度的单位:弧度每秒,符号是□14rad/s或□15s-。
(4)匀速圆周运动是角速度□16不变的圆周运动。
3.周期(1)周期T:做匀速圆周运动的物体,运动一周所用的□17时间,单位:□18秒(s)。
(2)转速n:物体转动的□19圈数与所用时间之比,单位:□20转每秒(r/s)或□21转每分(r/min)。
(3)周期和转速的关系:□22T=1n(n单位是r/s)。
(4)周期和角速度的关系:□23T=2πω。
4.线速度与角速度的关系(1)在圆周运动中,线速度的大小等于□24角速度的大小与□25半径的乘积。
(2)公式:v=□26ωr。
判一判(1)做匀速圆周运动的物体相等时间内通过的弧长相等。
()(2)做匀速圆周运动的物体相等时间内通过的位移相同。
()(3)匀速圆周运动是一种匀速运动。
()提示:(1)√做匀速圆周运动的物体,线速度大小处处相等,根据Δs=vΔt,相等时间内通过的弧长相等。
(2)×做匀速圆周运动的物体相等时间内通过的位移大小相等,但方向可能不同。
第4单元:匀速圆周运动教学目标:一、知识目标:1、知道什么是匀速圆周运动2、理解什么是线速度、角速度和周期3、理解线速度、角速度和周期之间的关系二、能力目标:能够匀速圆周运动的有关公式分析和解决有关问题。
三、德育目标:通过描述匀速圆周运动快慢的教学,使学生了解对于同一个问题可以从不同的侧面进行研究。
教学重点:1、理解线速度、角速度和周期2、什么是匀速圆周运动3、线速度、角速度及周期之间的关系教学难点:对匀速圆周运动是变速运动的理解教学方法:讲授、推理归纳法教学用具:投影仪、投影片、多媒体教学步骤:一、导入新课(1)物体的运动轨迹是圆周,这样的运动是很常见的,同学们能举几个例子吗?(例:转动的电风扇上各点的运动,地球和各个行星绕太阳的运动等)(2)今天我们就来学习最简单的圆周运动——匀速圆周运动二、新课教学(一)用投影片出示本节课的学习目标1、理解线速度、角速度的概念2、理解线速度、角速度和周期之间的关系3、理解匀速圆周运动是变速运动(二)学习目标完成过程1、匀速圆周运动(1)用多媒体投影一个质点做圆周运动,在相等的时间里通过相等的弧长。
(2)并出示定义:质点沿圆周运动,如果在相等的时间里通过的圆弧长度相同——这种运动就叫匀速圆周运动。
(3)举例:通过放录像让学生感知:一个电风扇转动时,其上各点所做的运动,地球和各个行星绕太阳的运动,都认为是匀速圆周运动。
(4)通过电脑模拟:两个物体都做圆周运动,但快慢不同,过渡引入下一问题。
2、描述匀速圆周运动快慢的物理量(1)线速度a :分析:物体在做匀速圆周运动时,运动的时间t 增大几倍,通过的弧长也增大几倍,所以对于某一匀速圆周运动而言,s 与t 的比值越大,物体运动得越快。
b :线速度1)线速度是物体做匀速圆周运动的瞬时速度。
2)线速度是矢量,它既有大小,也有方向。
3)线速度的大小ts v =s m v /−−→−−−→−单位表示线速度s t ms −→−−→−−→−−→−时间弧长4)线速度的方向−→−在圆周各点的切线方向上 5)讨论:匀速圆周运动的线速度是不变的吗?6)得到:匀速圆周运动是一种非匀速运动,因为线速度的方向在时刻改变。
匀速圆周运动快慢的描述
【教学目标】
一、知识与技能
1.知道圆周运动,理解匀速圆周运动。
2.理解线速度和角速度。
3.知道T、f、n之间的关系。
4.理解v、ω、T之间的关系。
5.会用圆周运动知识解决实际问题。
二、过程与方法
1.通过类比直线运动中速度的概念,来建立线速度、角速度。
2.学习用比值定义法来定义线速度、角速度。
3.用控制变量法来分析两个变量间的关系。
三、情感、态度与价值观
1.从生活实例认识圆周运动的普遍性和研究圆周运动的必要性,激发学生学习兴趣和求知欲。
2.通过分组讨论过程,懂得合作与交流,尊重同学的见解,勇于发表自己的观点,培养团队合作精神。
【教学重点】
1.通过类比法理解线速度和角速度。
2.学习用比值定义法来定义线速度、角速度。
3.用控制变量法来分析两个变量间的关系。
【教学难点】
1.理解线速度的定义式表达的是各点的瞬时速度。
2.理解线速度的方向是圆弧上各点的切线方向。
【教学过程】
一、新课导入
播放“飞机转椅的转动”和“过山车”两视频。
提问:仔细观察两个视频中物体运动有什么共同点?
引出“圆周运动”。
提问:什么是圆周运动呢?
得出物体的运动轨迹是一个圆周的特征。
提问:日常生活中还见过那些圆周运动呢?(在教室中找)
列举墙上的挂钟、天花板的吊扇、讲台上的自行车车模等。
提问:什么是匀速圆周运动呢?
通过课件动画模拟情景,得出物体沿圆周运动,如果在任意相等的时间内通过的弧长相等,这种运动叫做匀速圆周运动。
接着引导学生通过动画观察物体做匀速圆周运动的运动特点:
(1)运动的轨迹是圆周(或圆弧);
(2)半径有转过角度;
(3)运动有周期性。
二、新课教学
1.引出猜想
提问:物体运动有快有慢,那如何描述匀速圆周运动的快慢呢?
引导针对匀速圆周运动的运动特点,类比直线运动中速度快慢的描述,进行探究猜想。
学生分组讨论
引导学生提出以下四种猜想:
(1)比较物体在一段时间内通过的圆弧的长短。
(2)比较物体在一段时间内半径转过的角度。
(3)比较物体转过一圈所用的时间。
(4)比较物体在一段时间内转过的圈数。
2.线速度
针对猜想一,通过课件动画模拟情景,引出线速度是描述匀速圆周运动的质点运动快慢的物理量,再通过比值定义法得出线速度的定义、定义式、单位,通过观看视频,归纳现象,理解线速度的方向是圆弧上各点的切线方向,最后点出匀速圆周运动性质是变速运动,强调匀速指的是速度大小不变。
在讲到定义式时,引导学生运用极限思维理解线速度的定义式表达的是各点的瞬时速度。
(1)定义:质点做圆周运动通过的弧长△s和所用时间△t的比值叫做线速度。
(比值定义法,这里是弧长,而直线运动中是位移。
)
(2)线速度的大小:v=s
t
(3)线速度的单位:m/s
s→弧长→m
t→时间→s
(4)线速度的方向:在圆周各点的切线方向上。
讨论:匀速圆周运动的线速度是不变的吗?
结论:匀速圆周运动是一种非匀速运动,因为线速度的方向在时刻改变。
(5)物理意义:描述质点沿圆周运动的快慢。
3.角速度
针对猜想二,通过课件动画模拟情景,引出角速度是描述匀速圆周运动的半径转动快慢的物理量,再通过比值定义法得出线速度的定义、定义式、单位,点出匀速圆周运动是角速度不变的运动,强调角度φ用的是幅度制单位。
接着强调线速度、角速度两物理量描述匀速圆周运动快慢的区别:线速度描述的是质点运动快慢,角速度描述的是半径转动快慢。
(1)定义:在匀速圆周运动中。
连接运动质点和圆心的半径转过∆φ的角度跟所用时间△t的比值,就是质点运动的角速度。
(2)角速度的大小:ω=φ
t
(3)角速度的单位:rad/s
φ→弧度→rad
t→时间→s
说明:对某一确定的匀速圆周运动而言,角速度ω是恒定的。
4.周期T、频率f、转速n关系
针对猜想三、猜想四,课件动画比较直观的反应运动快慢的对比,因此在课堂上就简单的讲解
周期T、频率f、转速n。
并确认三者之间的关系:n=f=1
T
5.线速度v、角速度ω、周期T之间的关系
提问:三个物理量之间有什么关系?
通过动画演示讲解,得:v=s
t =2πr
T
,ω=φ
t
=2π
T
,v=ωr
6.实战演练——典型的传动问题
推出v=ωr关系后,通过生活中常见的自行车大齿轮、小齿轮、后轮相关联的问题,采用控制
变量法,来确定三轮轮缘各点的线速度、角速度的关系。
讨论v=ωr
①当v一定时,ω与r成反比;
②当ω一定时,v与r成正比;
③当r一定时,v与ω成正比。
【例题剖析1】分析下图中,A、B两点的线速度有什么关系?
【教师精讲】主动轮通过皮带、链条、齿轮等带动从动轮的过程中,皮带(链条)上各点以及两轮边缘上各点的线速度大小相等。
【例题剖析2】分析下列情况下,轮上各点的角速度有什么关系?
【教师精讲】同一轮上各点的角速度相同。
【例题剖析3】如下图所示为皮带传动装置,主动轴O1上有两个半径分别为R和r的轮,O2上
r′,设皮带不打滑,问:ωA∶ωB=?ωB∶ωC=?v A∶v B=?v A∶的轮半径为r′,已知R=2r,R=3
2
v C=?
【教师精讲】A、B同轴,故ωA∶ωB=1∶1
因B与C用皮带传动,所以v B∶v C=1∶1
v B=ωB R v C=ωC r′
ωB∶ωC=2∶3;v A∶v B=1∶2;v A∶v C=1∶2
【例题剖析4】一汽车发动机的曲柄每分钟转2400周,求:
(1)曲柄转动的周期与角速度;
(2)距转轴r=0.2m点的线速度。
s;而每转一周为2πrad,因此曲柄转动的角速解析:(1)由于曲柄每秒钟转40周,周期T为1
40
度
ω=2π
rad/s=251rad/s;
1/40
(2)已知r=0.2m,因此这一点的线速度
v=ωr=251×0.2m/s=50.2m/s。
【巩固练习】
1.做匀速圆周运动的物体线速度的___________不变,___________时刻在变,所以线速度是___________(填“恒量”或“变量”),所以在匀速圆周运动中,匀速的含义是___________。
2.对于做匀速圆周运动的物体,哪些物理量是一定的?
3.某电钟上秒针、分针、时针的长度比为d1∶d2∶d3=3∶2∶1,求:
(1)秒针、分针、时针尖端的线速度之比;
(2)秒针、分针、时针转动的角速度之比。
4.一个圆环,以竖直直径AB为轴匀速转动,如图所示,则环上M、N两点的线速度的大小之比v M∶v N=___________;角速度之比ωM∶ωN=___________;周期之比T M∶T N=___________。
5.如图所示,转轴O1上固定有两个半径分别为R和r的轮,用皮带传动O2轮,O2的轮半径是r′,若O1每秒钟转了5圈,R=1m,r=r′=0.5m,则:
(1)大轮转动的角速度ω=___________rad/s;
(2)图中A、C两点的线速度分别是v A=___________m/s,v C=___________m/s。
参考答案:
1.大小方向变量速率不变
2.角速度周期
3.(1)2160∶24∶1
(2)720∶12∶1
4.√3∶1 1∶1 1∶1 5.(1)31.4
(2)15.7 31.4。