《数学奥林匹克专题讲座》第04讲 整数的分拆
- 格式:doc
- 大小:130.00 KB
- 文档页数:11
数学奥林匹克专题讲座
数学奥林匹克专题讲座第01讲数论的方法技巧(上)数学奥林匹克专题讲座第02讲数论的方法技巧(下)数学奥林匹克专题讲座第03讲奇偶分析
数学奥林匹克专题讲座第04讲整数的分拆
数学奥林匹克专题讲座第05讲有趣的数字
数学奥林匹克专题讲座第06讲与年号有关的竞赛题
数学奥林匹克专题讲座第07讲图形与面积
数学奥林匹克专题讲座第08讲_立体图形
数学奥林匹克专题讲座第09讲列方程解应用题
数学奥林匹克专题讲座第10讲应用问题选讲
数学奥林匹克专题讲座第11讲计数的方法与原理
数学奥林匹克专题讲座第12讲染色和赋值
数学奥林匹克专题讲座第13讲抽屉原理
数学奥林匹克专题讲座第14讲估计与估算
数学奥林匹克专题讲座第15讲离散最值问题
数学奥林匹克专题讲座第16讲枚举、归纳与猜想数学奥林匹克专题讲座第17讲数学方法选讲(上)数学奥林匹克专题讲座第18讲数学方法选讲(下)。
三年级奥数春季班第10讲整数的分拆之强化篇一、引言随着春季班的推进,我们来到了三年级奥数的第10讲——整数的分拆。
整数分拆是数学中一个有趣且实用的领域,通过学习这一讲,同学们将能够掌握整数分拆的基本概念和方法,并在实际问题中灵活运用。
二、整数分拆的概念与方法1.整数分拆的含义整数分拆,指的是将一个整数拆分成若干个正整数的和。
在数学中,整数分拆有着广泛的应用,如求解最值问题、优化问题等。
2.整数分拆的方法整数分拆的方法主要包括:质因数分解、同余分拆、最简分拆等。
这些方法在解决不同类型的问题时有所侧重,接下来我们将通过实例来了解。
三、整数分拆的强化篇1.强化分拆的定义与特点强化分拆,是指在常规整数分拆的基础上,对拆分后的整数进行进一步的优化。
强化分拆的特点如下:(1)强化分拆追求拆分方式的简洁性;(2)强化分拆注重运用数学原理,如数论、组合数学等;(3)强化分拆强调解题策略的多样性。
2.强化分拆的实例解析以下是一个利用强化分拆求解最值问题的实例:题目:已知正整数n,求n(n+1)(n+2)(n+3)的最小值。
解:通过强化分拆,可以将n(n+1)(n+2)(n+3)转化为(n^2+3n)(n^2+3n+2)。
进一步拆分为(n^2+3n)[(n+1)+(n+2)],然后利用基本不等式,得到最小值为24。
四、整数分拆在奥数中的应用1.题目类型一:利用整数分拆求解问题例题:求解不等式|x-1|+|x-2|+|x-3|+|x-4|≥4。
解:将不等式转化为四个绝对值之和的形式,然后根据整数分拆的原理,讨论x的取值范围,求解得到x∈[-1,4]。
2.题目类型二:利用整数分拆优化问题例题:已知四个数a、b、c、d,求a^2+b^2+c^2+d^2的最小值。
解:利用整数分拆,将a、b、c、d分为两组,使得两组数的和相等。
然后根据平方差公式,将原式转化为一个关于和的形式,进一步求解得到最小值。
3.题目类型三:整数分拆与组合数的联系例题:求解组合数问题C(n,m)=n(n-1)(n-2)...(n-m+1)/m!的性质。
整数分拆之最值与应用一、拆分的基础知识整数的拆分问题常常以计数问题、最值问题等形式出现,因此除了掌握有关的等差数列、数的整除、平均数等基本知识外,还要求掌握加法原理、乘法原理、枚举法、筛选法等基本的记数原理和方法。
二、拆分基本方法1.题目要求拆质数且乘积最大——若可以拆相同的数字就按照“多拆3,少拆2,不拆1——拆分后乘积最大”原则。
2.若题目要求拆成若干个互不相同的自然数之和——要求这些自然数的乘积尽量大应将数列拆分成:a=2+3+4+…的形式,但是实际计算的时候会发现一般不能拆成恰好相同,则:⑴当多0时,将a拆成a=2+3+4+…+ (n-1)+n;⑵当多1时,将a拆成a=3+4+5+…+ (n-1)+( n-1);⑶当多2,3,…,n-1中的数时,就将该数从2,3,…,n-1,n中删除,其余数即为所拆之数。
例如:将30拆成若干个互不相同的自然数之和,要求这些自然数的乘积尽量大,应怎样拆?2+3+4+5+6+7+8=35比30大5,故将5去掉30被拆成2+3+4+6+7+8【例1】将15拆分成2个数的和,并且使这2个数的乘积最大,应该怎样拆分?最大值是多少?【巩固1】把11拆分成两个自然数的和,再求出这两个自然数的积,要使这个积最大,应该如何拆分?【巩固2】试把14拆分为两个自然数之和,使它们的乘积最大。
【例2】试把14拆分为3个自然数之和,使它们的乘积最大。
【巩固】试把19拆分为3个自然数之和,使它们的乘积最大。
【例3】试把1999拆分为8个自然数的和,使其乘积最大。
【巩固】试把1553拆分为6个自然数的和,使其乘积最大。
【例4】将一根长144厘米的铁丝,做成长和宽都是整数的长方形,共有种不同的做法,其中面积最大的是哪一种长方形?【巩固】有长方形和正方形三块地。
它们的周长是100米,它们的一条边长分别是30米,28米和25米。
这三块中哪一块地最大?面积是多少?【例5】把14拆分成若干个自然数的和,再求出这些数的积,要使得到的积最大,应该把14如何拆分?这个最大的乘积是多少?【巩固】分别拆分2001、1994、1993三个数,使拆分后的积最大。
六年级下册奥数第七讲整数的分拆整数分拆是数论中一个既古老又活跃的问题.把自然数n分成为不计顺序的若干个自然数之和n=n1+n2+…+nm(n1≥n2≥…≥nm≥1)的一种表示法,叫做n的一种分拆.对被加项及项数m加以一些限制条件,就得到某种特殊类型的分拆.早在中世纪,就有关于特殊的整数分拆问题的研究.1742年德国的哥德巴赫提出“每个不小于6的偶数都可以写成两个奇质数的和”,这就是著名的哥德巴赫猜想,中国数学家陈景润在研究中取得了突出的成果.下面我们通过一些例题,简单介绍有关整数分拆的基本知识.一、整数分拆中的计数问题例1有多少种方法可以把6表示为若干个自然数之和?解:根据分拆的项数分别讨论如下:①把6分拆成一个自然数之和只有1种方式;②把6分拆成两个自然数之和有3种方式6=5+1=4+2=3+3;③把6分拆成3个自然数之和有3种方式6=4+1+1=3+2+1=2+2+2;④把6分拆成4个自然数之和有2种方式6=3+1+1+1=2+2+1+1;⑤把6分拆成5个自然数之和只有1种方式6=2+1+1+1+1;⑥把6分拆成6个自然数之和只有1种方式6=1+1+1+1+1+1.因此,把6分拆成若干个自然数之和共有1+3+3+2+1+1=11种不同的方法.说明:本例是不加限制条件的分拆,称为无限制分拆,它是一类重要的分拆.例2有多少种方法可以把1994表示为两个自然数之和?解法1:采用有限穷举法并考虑到加法交换律:1994=1993+1=1+1993=1992+2=2+1992=…=998+996=996+998=997+997因此,一共有997种方法可以把1994写成两个自然数之和.解法2:构造加法算式:于是,只须考虑从上式右边的1993个加号“+”中每次确定一个,并把其前、后的1分别相加,就可以得到一种分拆方法;再考虑到加法交换律,因此共有997种不同的分拆方式.说明:应用本例的解法,可以得到一般性结论:把自然数n≥2表示为两个自然数之和,一共有k种不同的方式,其中例3有多少种方法可以把100表示为(有顺序的)3个自然数之和?(例如,把3+5+92与5+3+92看作为100的不同的表示法)分析本题仍可运用例1的解法2中的处理办法.解:构造加法算式于是,考虑从上式右边的99个加号“+”中每次选定两个,并把它们所隔开的前、中、后三段的1分别相加,就可以得到一种分拆方法.因此,把100表示为3个自然数之和有种不同的方式.说明:本例可以推广为一般性结论:“把自然数n≥3表示为(有顺序科奥林匹克数学竞赛第10题).例4用1分、2分和5分的硬币凑成一元钱,共有多少种不同的凑法?分析用1分、2分和5分硬币凑成一元钱与用2分和5分硬币凑成不超过一元钱的凑法数是一样的.于是,本题转化为:“有2分硬币50个,5分硬币20个,凑成不超过一元钱的不同凑法有多少种?解:按5分硬币的个数分21类计数;假若5分硬币有20个,显然只有一种凑法;假若5分硬币有19个,则2分硬币的币值不超过100-5×19=5(分),于是2分硬币可取0个、1个、或 2个,即有3种不同的凑法;假若5分硬币有18个,则2分硬币的币值不超过100-5×18=10(分),于是2分硬币可取0个、1个、2个、3个、4个、或5个,即有6种不同的凑法;…如此继续下去,可以得到不同的凑法共有:1+3+6+8+11+13+16+18+21+…+48+51=5×(1+3+6+8)+4×(10+20+30+40)+51=90+400+51=541(种).说明:本例实际上是求三元一次不定方程x+2y+5z=100的非负整数解的组数.上述例2、例3、例4都是有限制条件的特殊的整数分拆问题. 二、整数分拆中的最值问题在国内外的数学竞赛试题中经常出现与整数分拆有关的最大值或最小值的问题.例5试把14分拆为两个自然数之和,使它们的乘积最大.解:由例2可知,把14分拆成两个自然数之和,共有7种不同的方式.对每一种分拆计算相应的乘积:14=1+13,1×13=13;14=2+12,2×12=24;14=3+11,3×11=33;14=4+10,4×10=40;14=5+9,5×9=45;14=6+8,6×8=48;14=7+7,7×7=49.因此,当把14分拆为两个7之和的时候,乘积(7×7=49)最大.说明:本例可以推广为一般性结论:“把自然数n≥2分拆为两个自然数a与b(a≥b)之和,使其积a×b取最大值的条件是a=b或a-b=1(a>b)”.事实上,假设a-b=1+m(其中m是一个自然数),显然n=a +b=(a-1)+(b+1),而有(a-1)×(b+1)=a×b+a-b-1=a×b +m>a×b.换句话说,假设n=a+b且a-b>1,那么乘积a×b不是最大的.这样,例6试把14分拆为3个自然数之和,使它们的乘积最大.分析由例5的说明可知,假设n=a+b+c(a≥b≥c)且a-c>1时,乘积a×b×c不是最大的.换句话说,若n=a+b+c(a≥b≥c),当a、b、c中的任意两数相等或差为1时,乘积a×b×c取最大值.解:因为14=3×4+2,由分析可知:当a=b=5且c=4时,乘积a×b ×c=5×5×4=100为最大值.说明:本题可以推广为一般结论:把自然数n≥3分拆为3个自然数a、下面我们再研究一个难度更大的拆数问题.问题:给定一个自然数N,把它拆成若干个自然数的和,使它们的积最大.这个问题与前面研究的两个拆数问题的不同点是:问题中没有规定把N拆成几个自然数的和.这也正是这题的难点,使分拆的种类要增加许多.我们仍旧走实验-观察-归纳结论这条路.先选择较小的自然数5开始实验.并把数据列表以便比较.实验表1:结果:5拆成2+3时,其积6最大.你注意到了吗?我们的实验结果是按把5拆分数的个数多少,由多到少的次序进行的.再注意,当被拆数n>3时(这里n=5),为了使拆分数的乘积最大,拆分数中不能有1.因为当n>3,n=1+(n-1)=2+(n-2),且2×(n-2)>1×(n-1).结果:7拆分成2+2+3时.其积12最大.注意,分拆数中有4时,总可把4再分拆成2与2之和而不改变分拆的乘积.实验结果4:8拆分成2+3+3时,其积最大.实验结果5:9拆分成3+3+3时,其积最大.实验结果6:10拆分成3+3+2+2时,其积最大.观察分析实验结果,要使拆分数的乘积最大,拆分数都由2与3组成,其形式有三种:①自然数=(若干个3的和);②自然数=(若干个3的和)+2;③自然数=(若干个3的和)+2+2.因此,我们得到结论:把一个自然数N拆分成若干个自然数的和,只有当这些分拆数由2或3组成,其中2最多为2个时,这些分拆数的乘积最大.(因为2+2+2=3+3,2×2×2<3×3,所以分拆数中2的个数不能多于2个.)例分别拆分1993、1994、2001三个数,使分拆后的积最大.解:∵1993=664×3+1.∵1994=664×3+2∴1994分拆成(664个3的和)+2时,其积最大.∵2001=667×3∴2001分拆成(667个3的和)时,其积最大.我们以上采用的“实验-观察-归纳总结”方法,在数学上叫做不完全归纳法.我国著名数学家华罗庚讲过:难处不在于有了公式去证明,而在于没有公式之前怎么去找出公式.不完全归纳法正是人们寻找公式的重要方法之一.但是这种方法得出的结论有时会不正确,所以所得结论还需要严格证明.这一步工作要等到学习了中学的课程才能进行.习题七1.两个十位数1111111111和9999999999的乘积中有几个数字是奇数?2.计算:3.计算:9999×2222+3333×3334.4.在周长为18,边长为整数的长方形中,面积最大的长方形的长和宽各是多少?5.用6米长的篱笆材料在围墙角修建如下图所示的鸡圈.问鸡圈的长与宽分别是多少时,鸡圈的面积最大?6.把17、18两个自然数拆成若干个自然数的和,并分别求这些分拆的自然数的乘积的最大值.。
《数学奥林匹克专题讲座》第04讲整数4讲整数的分拆整数的分拆,就是把一个自然数表示成为若干个自然数的和的形式,每一种表示方法,就是自然数的一个分拆。
整数的分拆是古老而又有趣的问题,其中最著名的是哥德巴赫猜想。
在国内外数学竞赛中,整数分拆的问题常常以各种形式出现,如,存在性问题、计数问题、最优化问题等。
例1 电视台要播放一部30集电视连续剧,若要求每天安排播出的集数互不相等,则该电视连续剧最多可以播几天?分析与解:由于希望播出的天数尽可能地多,所以,在每天播出的集数互不相等的条件下,每天播放的集数应尽可能地少。
我们知道,1+2+3+4+5+6+7=28。
如果各天播出的集数分别为1,2,3,4,5,6,7时,那么七天共可播出28集,还剩2集未播出。
由于已有过一天播出2集的情形,因此,这余下的2集不能再单独于一天播出,而只好把它们分到以前的日子,通过改动某一天或某二天播出的集数,来解决这个问题。
例如,各天播出的集数安排为1,2,3,4,5,7,8或1,2,3,4,5,6,9都可以。
所以最多可以播7天。
说明:本题实际上是问,把正整数30分拆成互不相等的正整数之和时,最多能写成几项之和?也可以问,把一个正整数拆成若干个整数之和时,有多少种分拆的办法?例如:5=1+1+1+1+1=1+1+1+2, =1+2+2 =1+1+3=2+3 =1+4,共有6种分拆法(不计分成的整数相加的顺序)。
例2 有面值为1分、2分、5分的硬币各4枚,用它们去支付2角3分。
问:有多少种不同的支付方法?分析与解:要付2角3分钱,最多只能使用4枚5分币。
因为全部1分和2分币都用上时,共值12分,所以最少要用3枚5分币。
当使用3枚5分币时,5×3=15,23-15=8,所以使用2分币最多4枚,最少2枚,可有23=15+(2+2+2+2), 23=15+(2+2+2+1+1),23=15+(2+2+1+1+1+1),共3种支付方法。
三年级奥数春季班第10讲整数的分拆
摘要:
1.整数分拆的定义和概念
2.整数分拆的方法和技巧
3.整数分拆的实际应用和例题
4.整数分拆的注意事项和易错点
5.整数分拆的练习和提高
正文:
【整数分拆的定义和概念】
整数分拆,是指将一个整数拆分成若干个整数的和,这些整数可以是任意整数,包括正整数、负整数和零。
整数分拆是数学中的一个基本概念,也是奥数比赛中经常出现的题型。
【整数分拆的方法和技巧】
整数分拆的方法和技巧主要有以下几点:
1.拆分前的分析:观察题目,了解题目要求,找出有用的条件和信息。
2.拆分原则:尽量拆分成小的整数,以便计算和求解。
3.拆分步骤:先从最大的整数开始拆分,逐步减小,直到得到满足题目要求的整数和。
4.拆分方法:可以使用数学方法,如因数分解、质因数分解等,也可以使用试错法,逐步尝试,直到找到满足条件的整数和。
【整数分拆的实际应用和例题】
例如,将整数10 拆分成若干个整数的和,可以是1+2+3+4,也可以是5+5,或者是-1+-1+-1+-1+-1+-1+-1+-1。
不同的拆分方法,对应不同的拆分结果。
【整数分拆的注意事项和易错点】
1.拆分结果不唯一,需要根据题目要求进行判断。
2.拆分过程中,需要注意整数的正负性,避免出现错误。
3.在使用试错法时,需要有耐心,逐步尝试,直到找到满足条件的整数和。
【整数分拆的练习和提高】
通过大量的练习,可以提高整数分拆的能力,增强解题技巧。
六年级奥数不定方程与整数分拆讲座不定方程与整数分拆求二元一次方程与多元一次方程组的自然数解的方法,与此相关或涉及整数分拆的数论问题.补充说明:对于不定方程的解法,本讲主要利用同余的性质来求解,对于同余性质读者可参考《思维导引详解》五年级[第15讲余数问题].解不定方程的4个步骤:①判断是否有解;②化简方程;③求特解;④求通解.本讲讲解顺序:③包括1、2、3题④②①包括4、5题③包括6、7题,其中③④步骤中加入百鸡问题.复杂不定方程:⑧、⑨、⑩依次为三元不定方程、较复杂不定方程、复杂不定方程.整数分拆问题:11、12、13、14、15..在两位数中,能被其各位数字之和整除,而且除得的商恰好是4的数有多少个?【分析与解】设这个两位数为,则数字和为,这个数可以表达为有即,亦即.,因此只能为0的整数,且不能为9到0注意到和都是1、2、3或4,相应地的取值为2、4、6、8.综上分析,满足题目条件的两位数共有4个,它们是12、24、36和48..设A和B都是自然数,并且满足,那么A+B等于多少?【分析与解】将等式两边通分,有3A+llB=17,显然有B=l,A=2时满足,此时A+B=2+1=3..甲级铅笔7分钱一支,乙级铅笔3分钱一支.张明用5角钱恰好可以买这两种不同的铅笔共多少支?【分析与解】设购买甲级铅笔支,乙级铅笔支.有7+3=50,这个不定方程的解法有多种,在这里我们推荐下面这种利用余数的性质来求解的方法:将系数与常数对3取模:得=2,所以可以取2,此时取12;还可以取2+3=5,此时取5;即、,对应为14、10所以张明用5角钱恰好可以买这两种不同的铅笔共14支或10支..有纸币60张,其中1分、l角、1元和10元各有若干张.问这些纸币的总面值是否能够恰好是100元?【分析与解】设1分、1角、1元和10元纸币分别有a张、b张、c张和d张,列方程如下:由得③注意到③式左边是9的倍数,而右边不是9的倍数,因此无整数解,即这些纸币的总面值不能恰好为100元.将一根长为374厘米的合金铝管截成若干根36厘米和24厘米两种型号的短管,加工损耗忽略不计.问:剩余部分的管子最少是多少厘米?【分析与解】24厘米与36厘米都是12的倍数,所以截成若干根这两种型号的短管,截去的总长度必是12的倍数,但374被12除余2,所以截完以后必有剩余.剩余管料长不小于2厘米.另一方面,374=27×12+4×12+2,而36÷12=3,24÷12=2,有3×9+2×2=31.即可截成9根36厘米的短管与2根24厘米的短管,剩余2厘米.因此剩余部分的管子最少是2厘米..某单位的职工到郊外植树,其中有男职工,也有女职工,并且有寺的职工各带一个孩子参加.男职工每人种13棵树,女职工每人种10棵树,每个孩子种6棵树,他们一共种了216棵树.那么其中有多少名男职工?【分析与解】设男职工人,孩子人,则女职工3-人,那么有=216,化简为=216,即=72.有.但是,女职工人数为必须是自然数,所以只有时,满足.那么男职工数只能为12名.一居民要装修房屋,买来长0.7米和o.8米的两种木条各若干根.如果从这些木条中取出一些接起来,可以得到许多种长度的木条,例如:o.7+o.7=1.4米,0.7+0.8=1.5米.那么在3.6米、3.8米、3.4米、3.9米、3.7米这5种长度中,哪种是不可能通过这些木条的恰当拼接而实现的?【分析与解】设0.7米,0.8米两种木条分别,根,则0.7+0.8=3.46,…即7+8=34,36,37,38,39将系数,常数对7取模,有≡6,l,2,3,4,于是最小分别取6,1,3,4.但是当取6时,8×6=48超过34,无法取值.所以3.4米是不可能通过这些木条的恰当拼接而实现的.小萌在邮局寄了3种信,平信每封8分,航空信每封1角,挂号信每封角,她共用了1元2角2分.那么小萌寄的这3种信的总和最少是多少封?【分析与解】显然,为了使3种信的总和最少,那么小萌应该尽量寄最贵的挂号信,然后是航空信,最后才是平.信.但是挂号信、航空信的邮费都是整数角不会产生几分.所以,2分,10+2分应该为平信的邮费,最小取3,才是8的倍数,所以平信至少要寄4封,此时剩下的邮费为122-32=90,所以再寄4封挂号信,航空信1封即可.于是,小萌寄的这3种信的总和最少是4+1+4=9封.有三堆砝码,堆中每个砝码重3克,第二堆中每个砝码重5克,第三堆中每个砝码重7克.现在要取出最少个数的砝码,使它们的总重量为130克.那么共需要多少个砝码?其中3克、5克和7克的砝码各有几个?【分析与解】为了使选取的砝码最少,应尽可能的取7克的砝码.130÷7:18……4,所以3克、5克的砝码应组合为4克,或4+7克重.设3克的砝码个,5克的砝码个,则.当=0时,有,无自然数解;当=1时,有,有=2,=1,此时7克的砝码取17个,所以共需2+1+17=21个砝码,有3克、5克和7克的砝码各2、1、17个.当>1时,7克的砝码取得较少,而3、5克的砝码却取得较多,不是最少的取砝码情形.所以共需2+1+17=20个砝码,有3克、5克和7克的砝码各2、1、17个.0.5种商品的价格如表8—1,其中的单位是元.现用60元钱恰好买了10件商品,那么有多少种不同的选购方式?【分析与解】设B、c、D、E、A商品依次买了b、c、d、e、则有=60.=310,显然只能取0,1,2.Ⅰ有=310,其中d可取0,1,2,3,4.当d=0时,有=310,将系数,常数对6取模得:≡4,于是最小取4,那么有18b=310-43×4=138,b不为自然数.所以d=0时。
2019-2020年二年级数学奥数讲座整数的分拆例1 小兵和小军用玩具枪做打靶游戏,见下图所示。
他们每人打了两发子弹。
小兵共打中6环,小军共打中5环。
又知没有哪两发子弹打到同一环带内,并且弹无虚发。
你知道他俩打中的都是哪几环吗?解:已知小兵两发子弹打中6环,要求每次打中的环数,可将6分拆6=1+5=2+4;同理,要求小军每次打中的环数,可将5分拆5=1+4=2+3。
由题意:没有哪两发子弹打到同一环带内并且弹无虚发,只可能是:小兵打中的是1环和5环,小军打中的是2环和3环。
例2 某个外星人来到地球上,随身带有本星球上的硬币1分、2分、4分、8分各一枚,如果他想买7分钱的一件商品,他应如何付款?买9分、10分、13分、14分和15分的商品呢?他又将如何付款?解:这道题目的实质是要求把7、9、10、13、14、15各数按1、2、4、8进行分拆。
7=1+2+49=1+810=2+813=1+4+814=2+4+815=1+2+4+8外星人可按以上方式付款。
例3 有人以为8是个吉利数字,他们得到的东西的数量都能要够用“8”表示才好。
现有200块糖要分发给一些人,请你帮助想一个吉利的分糖方案。
解:可以这样想:因为200的个位数是0,又知只有5个8相加才能使和的个位数字为0,这就是说,可以把200分成5个数,每个数的个位数字都应是8。
这样由8×5=40及200-40=160,可知再由两个8作十位数字可得80×2=160即可。
最后得到下式:88+88+8+8+8=200。
例4 试将100以内的完全平方数分拆成从1开始的一串奇数之和。
解:1=1×1=12=1(特例)4=2×2=22=1+39=3×3=32=1+3+516=4×4=42=1+3+5+725=5×5=52=1+3+5+7+936=6×6=62=1+3+5+7+9+1149=7×7=72=1+3+5+7+9+11+1364=8×8=82=1+3+5+7+9+11+13+1581=9×9=92=1+3+5+7+9+11+13+15+17100=10×10=102=1+3+5+7+9+11+13+15+17+19。
整数的分拆
有多少种方法可以把6表示为若干个自然数之和?解:根据分拆的项数分别讨论如下:
①把6分拆成一个自然数之和只有1种方式;
②把6分拆成两个自然数之和有3种方式
6=5+1=4+2=3+3;
③把6分拆成3个自然数之和有3种方式
6=4+1+1=3+2+1=2+2+2;
④把6分拆成4个自然数之和有2种方式
6=3+1+1+1=2+2+1+1;
⑤把6分拆成5个自然数之和只有1种方式
6=2+1+1+1+1;
⑥把6分拆成6个自然数之和只有1种方式
6=1+1+1+1+1+1.因此,把6分拆成若干个自然数之和共有1+3+3+2+1+1=11种不同的方法.
学而思老师提示:本题是不加限制条件的分拆,称为无限制分拆,它是一类重要的分拆.。
4讲整数的分拆整数的分拆,就是把一个自然数表示成为若干个自然数的和的形式,每一种表示方法,就是自然数的一个分拆。
整数的分拆是古老而又有趣的问题,其中最著名的是哥德巴赫猜想。
在国内外数学竞赛中,整数分拆的问题常常以各种形式出现,如,存在性问题、计数问题、最优化问题等。
例1 电视台要播放一部30集电视连续剧,若要求每天安排播出的集数互不相等,则该电视连续剧最多可以播几天?分析与解:由于希望播出的天数尽可能地多,所以,在每天播出的集数互不相等的条件下,每天播放的集数应尽可能地少。
我们知道,1+2+3+4+5+6+7=28。
如果各天播出的集数分别为1,2,3,4,5,6,7时,那么七天共可播出28集,还剩2集未播出。
由于已有过一天播出2集的情形,因此,这余下的2集不能再单独于一天播出,而只好把它们分到以前的日子,通过改动某一天或某二天播出的集数,来解决这个问题。
例如,各天播出的集数安排为1,2,3,4,5,7,8或1,2,3,4,5,6,9都可以。
所以最多可以播7天。
说明:本题实际上是问,把正整数30分拆成互不相等的正整数之和时,最多能写成几项之和?也可以问,把一个正整数拆成若干个整数之和时,有多少种分拆的办法?例如:5=1+1+1+1+1=1+1+1+2,=1+2+2 =1+1+3=2+3 =1+4,共有6种分拆法(不计分成的整数相加的顺序)。
例2 有面值为1分、2分、5分的硬币各4枚,用它们去支付2角3分。
问:有多少种不同的支付方法?分析与解:要付2角3分钱,最多只能使用4枚5分币。
因为全部1分和2分币都用上时,共值12分,所以最少要用3枚5分币。
当使用3枚5分币时,5×3=15,23-15=8,所以使用2分币最多4枚,最少2枚,可有23=15+(2+2+2+2),23=15+(2+2+2+1+1),23=15+(2+2+1+1+1+1),共3种支付方法。
当使用4枚5分币时,5×4=20,23-20=3,所以最多使用1枚2分币,或不使用,从而可有23=20+(2+1),23=20+(1+1+1),共2种支付方法。
总共有5种不同的支付方法。
说明:本题是组合学中有限条件的整数分拆问题的一个特例。
例3 把37拆成若干个不同的质数之和,有多少种不同的拆法?将每一种拆法中所拆出的那些质数相乘,得到的乘积中,哪个最小?解:37=3+5+29=2+5+7+23=3+11+23,=2+3+13+19=5+13+19=7+11+19=2+5+11+19=7+13+17=2+5+13+17=2+7+11+17,共10种不同拆法,其中3×5×29=435最小。
说明:本题属于迄今尚无普遍处理办法的问题,只是硬凑。
比37小的最大质数是31,但37-31=6,6不能分拆为不同的质数之和,故不取;再下去比37小的质数是29,37-29=8,而8=3+5。
其余的分拆考虑与此类似。
例4 求满足下列条件的最小自然数:它既可以表示为9个连续自然数之和,又可以表示为10个连续自然数之和,还可以表示为11个连续自然数之和。
解:9个连续自然数之和是其中第5个数的9倍,10个连续自然数之和是其中第5个数和第6个数之和的5倍,11个连续自然数之和是其中6个数的11倍。
这样,可以表示为9个、10个、11个连续自然数之和的数必是5,9和11的倍数,故最小的这样的数是[5,9,11]=495。
对495进行分拆可利用平均数,采取“以平均数为中心,向两边推进的方法”。
例如,495÷10=49.5,则10个连续的自然数为45,46,47,48,49,(49.5),50,51,52,53,54。
于是495=45+46+ (54)同理可得495=51+52+...+59=40+41+ (50)例5 若干只同样的盒子排成一列,小聪把42个同样的小球放在这些盒子里然后外出,小明从每只盒子里取出一个小球,然后把这些小球再放到小球数最少的盒子里去,再把盒子重排了一下。
小聪回来,仔细查看,没有发现有人动过小球和盒子。
问:一共有多少只盒子?分析与解:设原来小球数最少的盒子里装有a只小球,现在增加到了b只,由于小明没有发现有人动过小球和盒子,这说明现在又有了一只装有a个小球的盒子,这只盒子里原来装有(a+1)个小球。
同理,现在另有一个盒子里装有(a+1)个小球,这只盒子里原来装有(a+2)个小球。
依此类推,原来还有一只盒子装有(a+3)个小球,(a+4)个小球等等,故原来那些盒子中装有的小球数是一些连续整数。
现在这个问题就变成了:将42分拆成若干个连续整数的和,一共有多少种分法,每一种分法有多少个加数?因为42=6×7,故可将42看成7个6的和,又(7+5)+(8+4)+(9+3)是6个6,从而42=3+4+5+6+7+8+9,一共有7个加数。
又因42=14×3,故可将42写成13+14+15,一共有3个加数。
又因42=21×2,故可将42写成9+10+11+12,一共有4个加数。
于是原题有三个解:一共有7只盒子、4只盒子或3只盒子。
例6 机器人从自然数1开始由小到大按如下规则进行染色:凡能表示为两个不同合数之和的自然数都染成红色,不符合上述要求的自然数染成黄色(比如23可表示为两个不同合数15和8之和,23要染红色;1不能表示为两个不同合数之和,1染黄色)。
问:被染成红色的数由小到大数下去,第2000个数是多少?请说明理由。
解:显然1要染黄色,2=1+1也要染黄色,3=1+2,4=1+3=2+2,5=1+4=2+3,6=1+5=2+4=3+3,7=1+6=2+5=3+4,8=1+7=2+6=3+5=4+4,9=1+8=2+7=3+6=4+5,11=1+10=2+9=3+8=4+7=5+6。
可见,1,2,3,4,5,6,7,8,9,11均应染黄色。
下面说明其它自然数n都要染红色。
(1)当n为大于等于10的偶数时,n=2k=4+2(k-2)。
由于n≥10,所以k≥5,k-2≥3,2(k-2)与4均为合数,且不相等。
也就是说,大于等于10的偶数均能表示为两个不同的合数之和,应染红色。
(1)当n为大于等于13的奇数时,n=2k+1=9+2(k-4)。
由于n≥13,所以k≥6,k-4≥2,2(k-4)与9均为合数,且不相等。
也就是说,大于等于13的奇数均能表示为两个不同的合数之和,应染红色。
综上所述,除了1,2,3,4,5,6,7,8,9,11这10个数染黄色外,其余自然数均染红色,第k个染为红色的数是第(k+10)个自然数(k ≥2)。
所以第2000个染为红色的数是2000+10=2010。
下面看一类有规律的最优化问题。
例7 把12分拆成两个自然数的和,再求出这两个自然数的积,要使这个积最大,应该如何分拆?分析与解:把12分拆成两个自然数的和,当不考虑加数的顺序时,有1+11,2+10,3+9,4+8,5+7,6+6六种方法。
它们的乘积分别是1×11=11,2×10=20,3×9=27,4×8=32,5×7=35,6×6=36。
显然,把12分拆成6+6时,有最大的积6×6=36。
例8 把11分拆成两个自然数的和,再求出这两个自然数的积,要使这个积最大,应该如何分拆?分析与解:把11分拆成两个自然数的和,当不考虑加数的顺序时,有1+10,2+9,3+8,4+7,5+6五种方法。
它们的乘积分别是1×10=10,2×9=18,3×8=24,4×7=28,5×6=30。
显然,把11分拆成5+6时,有最大的积5×6=30。
说明:由上面的两个例子可以看出,在自然数n的所有二项分拆中,当n是偶数2m时,以分成m+m时乘积最大;当n是奇数2m+1时,以分成m+(m+1)时乘积最大。
换句话说,把自然数S(S>1)分拆为两个自然数m与n的和,使其积mn最大的条件是:m=n,或m=n+1。
例9 试把1999分拆为8个自然数的和,使其乘积最大。
分析:反复使用上述结论,可知要使分拆成的8个自然数的乘积最大,必须使这8个数中的任意两数相等或差数为1。
解:因为1999=8×249+7,由上述分析,拆法应是1个249,7个250,其乘积249×2507为最大。
说明:一般地,把自然数S=pq+r(0≤r<p,p与q是自然数)分拆为p个自然数的和,使其乘积M为最大,则M为q p-r×(q+1)r。
例10 把14分拆成若干个自然数的和,再求出这些数的积,要使得到的积最大,应该把14如何分拆?这个最大的乘积是多少?分析与解:我们先考虑分成哪些数时乘积才能尽可能地大。
首先,分成的数中不能有1,这是显然的。
其次,分成的数中不能有大于4的数,否则可以将这个数再分拆成2与另外一个数的和,这两个数的乘积一定比原数大,例如7就比它分拆成的2和5的乘积小。
再次,因为4=2×2,故我们可以只考虑将数分拆成2和3。
注意到2+2+2=6,2×2×2=8;3+3=6,3×3=9,因此分成的数中若有三个2,则不如换成两个3,换句话说,分成的数中至多只能有两个2,其余都是3。
根据上面的讨论,我们应该把14分拆成四个3与一个2之和,即14=3+3+3+3+2,这五数的积有最大值3×3×3×3×2=162。
说明:这类问题最早出现于1976年第18届国际数学奥林匹克试卷中。
该试卷第4题是:若干个正整数的和为1976,求这些正整数的积的最大值。
答案是2×3658。
这是由美国提供的一个题目,时隔两年,它又出现在美国大学生数学竞赛中。
1979年美国第40届普特南数学竞赛A-1题是:求出正整数n及a1,a2,…,a n的值,使a1+a2+…+a n=1979且乘积最大。
答案是n=660。
1992年武汉市小学数学竞赛第一题的第6题是:将1992表示成若干个自然数的和,如果要使这些数的乘积最大,这些自然数是____。
答案:这些数应是664个3。
上述三题的逻辑结构并不随和的数据而改变,所以分别冠以当年的年份1976,1979和1992,这种改换数据的方法是数学竞赛命题中最简单的方法,多用于不同地区不同级别不同年份的竞赛中,所改换的数据一般都是出于对竞赛年份的考虑。
将上述三题的结论推广为一般情形便是:把自然数S(S>1)分拆为若干个自然数的和:S=a1+a2+…+a n,则当a1,a2,…,a n中至多有两个2,其余都是3时,其连乘积m=a1a2…a n有最大值。
例11 把1993分拆成若干个互不相等的自然数的和,且使这些自然数的乘积最大,该乘积是多少?解:由于把1993分拆成若干个互不相等的自然数的和的分法只有有限种,因而一定存在一种分法,使得这些自然数的乘积最大。