上海市闸北区九年级数学下学期第二次模拟试题
- 格式:doc
- 大小:324.16 KB
- 文档页数:9
2021年上海闸北区中考数学二模卷(含答案)2021学年第二学期九年级数学学科期中练习卷(2021. 4)(满分150分,考试时间100分钟)考生注意:1、本试卷含三个大题,共25题;2、答题时,考生务必按答题要求在答题纸规定的位置上作答,在草稿纸、本试卷上答题一律无效;3、除第一、二大题外,其余各题如无特别说明,都必须在答题纸的相应位置上写出证明或计算的主要步骤.一、选择题(本大题共6题,每题4分,满分24分)【下列各题的四个选项中,有且只有一个选项是正确的,选择正确项的代号并填涂在答题纸的相应位置上.】1.9的平方根是……………………………………………………………………(▲ )(A)3;(B)-3;(C)3和-3;(D)9. 2.下列实数中,是无理数的是……………………………………………………(▲ )(A)2;(B)25;(C)22;(D)cos60. 73.在下列二次根式中,与a是同类二次根式的是………………………………(▲ )(A)2a;(B)3a2;(C)a3;(D)a4 4.下列方程有实数根的是………………………………………………………(▲ )(A)x?x?1?0;(B)x?0;(C)241x2?;(D)x?1?0. x?1x?15.某中学篮球队14名队员的年龄情况如下表,则这些队员年龄的众数和中位数分别是…………………………………………………………………………………………(▲ )(A)15,16;(B)16,16;(C)16,16.5;(D)17,16.5. 6.如图1,EF是⊙O的直径,CD 交⊙O于M、N,H为MN的中点,EC⊥CD于点C,FD⊥CD于点D,则下列结论错误的是……(▲ )(A)CM��DN;(B) CH��HD;ECMODNH年龄(单位:岁) 14 人数 2 15 3 16 4 17 3 F18 2 图1ECOH? (C)OH⊥CD;(D). OHFD二、填空题:(本大题共12题,每题4分,满分48分)【请将结果直接填入答题纸的相应位置】7.我国最长的河流长江全长约为6300千米,用科学记数法表示为▲ 千米. 8.计算:x4n?xn? ▲ .y 9.因式分解:2a2-2=▲ . 10.化简x1的结果是▲ . ?22(x?1)(1?x)O x 11.方程x+1?2的解是▲ .m-112.已知反比例函数y=的图象如图2所示,x则实数m的取值范围是▲ .图2 13.从等边三角形、平行四边形、矩形、菱形、圆、等腰梯形共6个图形中任选一个图形,选出的图形恰好是中心对称图形的概率为▲ .14.某校对初中学生开展的四项课外活动进行了一次抽样调查(每人只参加其中的一项活动),调查结果如图3 所示.根据图示所提供的样本数据,可得学生参加科技活动的频率是▲ .15.已知a?3,b?5,且b与a反向,则用向量b表示向量a,即a= ▲ b. 16.如图4,自动扶梯AB段的长度为20米,倾斜角A为?,高度BC为▲ 米.(结果用含?的三角比表示)17.如图5,在四边形ABCD中,点M,N分别在AB、BC上,将△BMN沿MN翻折,得△FMN,若MF∥AD,FN∥DC,则∠B=▲ 度.18.如图6,等腰△ABC的顶角A的度数是36°,点D是腰AB的黄金分割点(AD>BD),将△BCD绕着点C按照顺时针方向旋转一个角度后点D落在点E处,联结AE,当AE∥CD时,这个旋转角是▲ 度.- 2 -图5B ? AC 图4CADB图6(反面还有试题)三、解答题:(本大题共7题,满分78分)19.(本题满分10分)计算:2?1??(?-1)0??3???.tan60?1?4??1220.(本题满分10分)??2x?1?x?4,①?解不等式组:?xx?1 ,并把解集在数轴上表示出来.??1.② ?3?221.(本题满分10分,第(1)小题5分,第(2)小题5分)已知:如图7,在梯形ABCD中,DF平分∠D,若以点D为 A圆心,DC长为半径作弧,交边AD于点E,联结EF、BE、EC.(1)求证:四边形EDCF是菱形;-2 -1 0 1 2 3 4 5 EDBFC图7(2)若点F是BC的中点,请判断线段BE和EC的位置关系,并证明你的结论.22.(本题满分10分,第(1)小题2分,第(2)小题4分,第(3)小题4分)全面实现低碳生活已逐渐成为人们的共识.某企业为了发展低碳经济,采用技术革新,减少二氧化碳的排放.随着排放量的减少,企业相应获得的利润也有所提高,且相应获得的利润y(万元)与月份x(月)(1≤x≤6)的函数关系如图8所示: y (万元) (1)根据图像,请判断:y与x(1≤x≤6)的变化规律应该符合函数关系式;(填写序号:①反比例函数、②一次函数、③二次函数);95 80 (2)求出y与x(1≤x≤6)的函数关系式(不写取值范围); 60 (3)经统计发现,从6月到8月每月利润的增长率相同,且8月份的利润为151.2万元,求这个增长率.- 3 -40 20 O 1 2 3 4 5 6 图8 x (月)23.(本题满分12分,第(1)小题4分,第(2)小题4分,第(3)小题4分)已知:如图9,点D是线段BC上的任意一点,△ABD和△DCE都是等边三角形,AD与BE 交于点F.(1)求证:△BDE≌△ADC;(2)求证:AB2 = BC?AF;(3)若BD=12,CD=6,求∠ABF的正弦值.24.(本题满分12分,第(1)小题4分,第(2)小题4分,第(3)小题4分)已知:如图10,二次函数y=ax2+4的图像与 x轴交于点A和点B(点A在点B 的左侧),与yA B O x y C B AE DCF 图9轴交于点C,且cos∠CAO=2. 2图10(1)求二次函数的解析式;(2)若以点O为圆心的圆与直线AC相切于点D,求点D的坐标;(3)在(2)的条件下,抛物线上是否存在点P使得以P、A、D、O为顶点的四边形是直角梯形,若存在,请求出点P坐标;若不存在,请说明理由.....25.(本题满分14分,第(1)小题6分,第(2)小题4分,第(3)小题4分)已知:如图11―①,△ABC中,AB=AC=6,BC=4,点D在BC的延长线上,联结AD,以AD为一边作△ADE,使点E与点B位于直线AD的两侧,且AD=AE,∠DAE=∠BAC.(1)如果AE//BC,请判断四边形ABDE的形状并证明;(2)如图11―②,设M是BC中点,N是DE中点,联结AM、AN 、MN,求证:△ABD∽△AMN;(3)设BD=x,在(2)的前提下,以BC为直径的⊙M与以DE为直径的⊙N存在着哪些位置关系?并求出相应的x的取值范围(直接写出结论).AENBBC图11―①D- 4 -AEMD C图11―②2021学年第二学期九年级质量抽测卷(2021年4月)答案及评分参考(考试时间:100分钟,满分:150分)一. 选择题(本大题共6题,每题4分,满分24分)题号答案 1 C 2 A 3 C 4 B5 B6 D 二、填空题(本大题共12题,每题4分,满分48分) 7、6.3?103. 8、x3n . 9、2(a?1)(a?1). 10、11、x=3. 12、m?1. 13、15、?1. x?12. 14、0.2. 33. 16、20sin?. 17、95. 18、72或者108. 5三. 解答题(本大题共7题,满分78分) 19、(本题满分10分)解:原式=2?1?3?2 …………………………………………………(5分) 3?1=3?1?3?3 ………………………………………………………(3分)=23?2 .……………………………………………………………(2分) 20.(本题满分10分)解:由①得:?3x?3……………………………………………………………(2分)解得x??1…………………………………………………………(1分)由②得:3x?2(x?1)?6…………………………………………………(3分)解得x?4 …………………………………………………………(1分)所以不等式组的解集是?1?x?4 .………………………………………(1分)o ? 0 1 2 3 4 -1 ………………………………………(2分)21.(本题满分10分,第(1)小题5分,第(2)小题5分)解:(1)∵DF平分∠D∴∠ EDF=∠CDF……………………………(1分)A∵作弧∴ED=DC …………………………………(1分)在△EDF与△CDF中,EDBFC图7- 5 -感谢您的阅读,祝您生活愉快。
A B C DE 图5九年级数学学科期中练习卷答案要点与评分标准一、选择题:(本大题共6题,每题4分,满分24分)1.C ; 2.D ; 3.D ; 4.B ; 5.A ; 6.A . 二、填空题:(本大题共12题,每题4分,满分48分)7.2; 8.(x x x -; 9.-2<x ≤2; 10.x =2; 11.1;12.2(1)2y x =--+; 13.6; 14.0r ; 15.2m +3; 16.2; 17.250; 18. 13或 53.三、解答题:(本大题共7题,满分78分) 19.解:原式=111)333-+--……………………………………(6分)53…………………………………………………………………………(4分)20.解:去分母:2(1)5(1)4x x -++= ………………………………………………(3分) 整理得:2320x x ++= …………………………………………………………………(2分) 解得:11x =-, 22x =-………………………………………………………………(4分) 经检验:11x =-是增根,舍去.22x =-是原方程的根.……………………………(1分) 所以原方程的根是22x =-.21.解:(1)平均数:(20+13+21+18+34+30+31+35+38+31)÷10=27.1(万人)………(3分) 中位数:30.5(万人) ……………………………………………………………(2分) 众数: 31(万人) ………………………………………………………………(2分) (2)估计世博会184天中,持票入园超过30万人的天数是: 51849210⨯=(天) …………………………………………………………(3分)22.(1)解:如: ①②④⇒AD ∥BC ………………………………… (1分)证明:在AB 上取点M ,使AM =AD ,联结EM , ……………… (1分) ∵ AE 平分∠BAD ∴∠MAE =∠DAE 又∵AM =AD AE =AE ,∴ △AEM ≌△AED ∴ ∠D =∠AME …………………………… (2分) 又∵ AB =AD +BC ∴ MB =BC ,∴ △BEM ≌△BCE ∴ ∠C =∠BME …………………………… (2分) 故∠D +∠C =∠AME +∠BME =180°∴ AD ∥BC ……………… (2分)(2)不正确…………………………………(2分) 23.(本题满分12分,每小题4分) 解:(1)∵四边形ABCD 是矩形,∴AE ∥BC , ∵AB =8, BC =6,∴AC =10, ∵AP AE CP CB=,即15106AP AP =- …………………………………………………………(2分) 解得:507AP =.……………………………………………………………………………(2分)(2)∵AB =8,AE =15,∴BE =17. 作AH ⊥BE ,垂足为H ,则AB AE BE AH ⋅=⋅,∴8151201717AB AE AH BE ⋅⨯===. ………………………(2分) ∵50120717>,∴⊙A 与BE 相交. ………………… (2分) (3)①168r << , ………………………………… (2分) ②224r <<,或21618r <<. ……………………… (2分)24.解:(1)如图;M 1 的坐标为(-1,2)…………………………………………(2分+2分) (2)1k =-,b m = ……………………………………………………………………(4分) (3)由(2)知,直线M 1 M 的解析式为8y x =-+则(,)M x y 满足(8)2x x -+=-解得14x =+24x =-14y =-,24y =+∴M 1,M 的坐标分别为(4-,4+,(4+4-).……………(4分)25.解:(1) A (3,0),B (0,1),C (0,3),D (-1,0)………………………………………(4分) (2)∵抛物线2y ax bx c =++经过C 点,∴c =3.………………………………………(1分)又∵抛物线经过A,C两点,∴933030a ba b++=⎧⎨-+=⎩解得12ab=-⎧⎨=⎩……………………(2分)∴223y x x=-++………………………………………………………………………(1分) ∴2223(1)4y x x x=-++=--+,∴顶点G(1,4).…………………………………(1分) (3)解:过点G作GH⊥y轴垂足为点H,∵AB=BG=tan∠BAO=13,tan∠GBH=13,∴∠GBH=∠BAO……………………………………………………………………………(1分)∵∠BAO+∠ABO=90°,∴∠GBH+∠ABO=90°,∴∠GBA=90°,∴∠ABQ=∠DOC=∠AOB…………………………………………………………………(1分)①当OD BQOC BA=时,△ODC∽△BQA,即13=过点Q作QN⊥∵NQ HGBQ BG=∵tan∠GBH=13②同理可得:Q。
上海市闸北区2019-2020学年中考第二次模拟数学试题一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.下列图形都是由同样大小的菱形按照一定规律所组成的,其中第①个图形中一共有3个菱形,第②个图形中一共有7个菱形,第③个图形中一共有13个菱形,…,按此规律排列下去,第⑨个图形中菱形的个数为()A.73 B.81 C.91 D.1092.若ab<0,则正比例函数y=ax与反比例函数y=bx在同一坐标系中的大致图象可能是()A.B.C.D.3.已知关于x的方程x2﹣4x+c+1=0有两个相等的实数根,则常数c的值为()A.﹣1 B.0 C.1 D.3 4.用半径为8的半圆围成一个圆锥的侧面,则圆锥的底面半径等于()A.4 B.6 C.16πD.85.不等式组1040xx+>⎧⎨-≥⎩的解集是()A.﹣1≤x≤4B.x<﹣1或x≥4C.﹣1<x<4 D.﹣1<x≤46.如图,l1、l2、l3两两相交于A、B、C三点,它们与y轴正半轴分别交于点D、E、F,若A、B、C三点的横坐标分别为1、2、3,且OD=DE=1,则下列结论正确的个数是()①13EAEC=,②S△ABC=1,③OF=5,④点B的坐标为(2,2.5)A.1个B.2个C.3个D.4个7.有下列四个命题:①相等的角是对顶角;②两条直线被第三条直线所截,同位角相等;③同一种正五边形一定能进行平面镶嵌;④垂直于同一条直线的两条直线互相垂直.其中假命题的个数有()A.1个B.2个C.3个D.4个8.如图,AB与⊙O相切于点A,BO与⊙O相交于点C,点D是优弧AC上一点,∠CDA=27°,则∠B 的大小是()A.27°B.34°C.36°D.54°9.若31x与4x互为相反数,则x的值是()A.1 B.2 C.3 D.410.下列图形中,线段MN的长度表示点M到直线l的距离的是()A.B.C. D.11.“a是实数,|a|≥0”这一事件是()A.必然事件B.不确定事件C.不可能事件D.随机事件12.1.桌面上放置的几何体中,主视图与左视图可能不同的是( )A.圆柱B.正方体C.球D.直立圆锥二、填空题:(本大题共6个小题,每小题4分,共24分.)13.一个不透明的袋子中装有5个球,其中3个红球、2个黑球,这些球除颜色外无其它差别,现从袋子中随机摸出一个球,则它是黑球的概率是_____.14.点P的坐标是(a,b),从-2,-1,0,1,2这五个数中任取一个数作为a的值,再从余下的四个数中任取一个数作为b的值,则点P(a,b)在平面直角坐标系中第二象限内的概率是.15.分解因式:m2n﹣2mn+n= .16.如图,圆锥的表面展开图由一扇形和一个圆组成,已知圆的面积为100π,扇形的圆心角为120°,这个扇形的面积为.17.不等式组的解是________.18.分解因式:mx 2﹣6mx+9m=_____.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)先化简代数式:222111a a a a a +⎛⎫-÷ ⎪---⎝⎭,再代入一个你喜欢的数求值. 20.(6分)将如图所示的牌面数字分别是1,2,3,4 的四张扑克牌背面朝上,洗匀后放在桌面上.从中随机抽出一张牌,牌面数字是偶数的概率是_____;先从中随机抽出一张牌,将牌面数字作为十位上的数字,然后将该牌放回并重新洗匀,再随机抽取一张,将牌面数字作为个位上的数字,请用画树状图或列表的方法求组成的两位数恰好是 4 的倍数的概率.21.(6分) “六一”期间,小张购述100只两种型号的文具进行销售,其中A 种型号的文具进价为10元/只,售价为12元,B 种型号的文具进价为15元1只,售价为23元/只.(1)小张如何进货,使进货款恰好为1300元?(2)如果购进A 型文具的数量不少于B 型文具数量的910倍,且要使销售文具所获利润不低于500元,则小张共有几种不同的购买方案?哪一种购买方案使销售文具所获利润最大?22.(8分)解方程311(1)(2)x x x x -=--+. 23.(8分)如图,∠AOB=90°,反比例函数y=﹣2x (x <0)的图象过点A (﹣1,a ),反比例函数y=k x (k >0,x >0)的图象过点B ,且AB ∥x 轴.(1)求a 和k 的值;(2)过点B 作MN ∥OA ,交x 轴于点M ,交y 轴于点N ,交双曲线y=k x于另一点C ,求△OBC 的面积.24.(10分)某校为了创建书香校远,计划进一批图书,经了解.文学书的单价比科普书的单价少20元,用800元购进的文学书本数与用1200元购进的科普书本数相等.文学书和科普书的单价分别是多少元?该校计划用不超过5000元的费用购进一批文学书和科普书,问购进60本文学书后最多还能购进多少本科25.(10分)对于平面上两点A,B,给出如下定义:以点A或B为圆心,AB长为半径的圆称为点A,B 的“确定圆”.如图为点A,B的“确定圆”的示意图.(1)已知点A的坐标为(-1,0),点B的坐标为(3,3),则点A,B的“确定圆”的面积为______;(2)已知点A的坐标为(0,0),若直线y=x+b上只存在一个点B,使得点A,B的“确定圆”的面积为9π,求点B的坐标;(3)已知点A在以P(m,0)为圆心,以1为半径的圆上,点B在直线33=-+y x上,若要使所有点A,B的“确定圆”的面积都不小于9π,直接写出m的取值范围.26.(12分)如图,小明今年国庆节到青城山游玩,乘坐缆车,当登山缆车的吊箱经过点A到达点B时,它经过了200m,缆车行驶的路线与水平夹角∠α=16°,当缆车继续由点B到达点D时,它又走过了200m,缆车由点B到点D的行驶路线与水平面夹角∠β=42°,求缆车从点A到点D垂直上升的距离.(结果保留整数)(参考数据:sin16°≈0.27,cos16°≈0.77,sin42°≈0.66,cos42°≈0.74)27.(12分)(1)解方程:+=4(2)解不等式组并把解集表示在数轴上:.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.C试题解析:第①个图形中一共有3个菱形,3=12+2;第②个图形中共有7个菱形,7=22+3;第③个图形中共有13个菱形,13=32+4;…,第n个图形中菱形的个数为:n2+n+1;第⑨个图形中菱形的个数92+9+1=1.故选C.考点:图形的变化规律.2.D【解析】【分析】根据ab<0及正比例函数与反比例函数图象的特点,可以从a>0,b<0和a<0,b>0两方面分类讨论得出答案.【详解】解:∵ab<0,∴分两种情况:(1)当a>0,b<0时,正比例函数y=ax数的图象过原点、第一、三象限,反比例函数图象在第二、四象限,无此选项;(2)当a<0,b>0时,正比例函数的图象过原点、第二、四象限,反比例函数图象在第一、三象限,选项D符合.故选D【点睛】本题主要考查了反比例函数的图象性质和正比例函数的图象性质,要掌握它们的性质才能灵活解题.3.D【解析】分析:由于方程x2﹣4x+c+1=0有两个相等的实数根,所以∆ =b2﹣4ac=0,可得关于c的一元一次方程,然后解方程求出c的值.详解:由题意得,(-4)2-4(c+1)=0,c=3.故选D.点睛:本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式∆ =b2﹣4ac:当∆>0时,一元二次方程有两个不相等的实数根;当∆=0时,一元二次方程有两个相等的实数根;当∆<0时,一元二次方程没有实数根.4.A【解析】【分析】由于半圆的弧长=圆锥的底面周长,那么圆锥的底面周长为8π,底面半径=8π÷2π.【详解】解:由题意知:底面周长=8π,∴底面半径=8π÷2π=1.故选A.【点睛】此题主要考查了圆锥侧面展开扇形与底面圆之间的关系,圆锥的侧面展开图是一个扇形,此扇形的弧长等于圆锥底面周长,扇形的半径等于圆锥的母线长,解决本题的关键是应用半圆的弧长=圆锥的底面周长.5.D【解析】试题分析:解不等式①可得:x>-1,解不等式②可得:x≤4,则不等式组的解为-1<x≤4,故选D.6.C【解析】【分析】①如图,由平行线等分线段定理(或分线段成比例定理)易得:13 EA OAEC OC'='=;②设过点B且与y轴平行的直线交AC于点G,则S△ABC=S△AGB+S△BCG,易得:S△AED=12,△AED∽△AGB且相似比=1,所以,△AED≌△AGB,所以,S△AGB=12,又易得G为AC中点,所以,S△AGB=S△BGC=12,从而得结论;③易知,BG=DE=1,又△BGC∽△FEC,列比例式可得结论;④易知,点B的位置会随着点A在直线x=1上的位置变化而相应的发生变化,所以④错误.【详解】解:①如图,∵OE∥AA'∥CC',且OA'=1,OC'=1,∴13 EA OAEC OC'='=,故①正确;②设过点B且与y轴平行的直线交AC于点G(如图),则S△ABC=S△AGB+S△BCG,∵DE=1,OA'=1,∴S△AED=12×1×1=12,∵OE∥AA'∥GB',OA'=A'B',∴AE=AG,∴△AED∽△AGB且相似比=1,∴△AED≌△AGB,∴S△ABG=12,同理得:G为AC中点,∴S△ABG=S△BCG=12,∴S△ABC=1,故②正确;③由②知:△AED≌△AGB,∴BG=DE=1,∵BG∥EF,∴△BGC∽△FEC,∴13 BG CGEF CE==,∴EF=1.即OF=5,故③正确;④易知,点B的位置会随着点A在直线x=1上的位置变化而相应的发生变化,故④错误;故选C.【点睛】本题考查了图形与坐标的性质、三角形的面积求法、相似三角形的性质和判定、平行线等分线段定理、函数图象交点等知识及综合应用知识、解决问题的能力.考查学生数形结合的数学思想方法.7.D【解析】根据对顶角的定义,平行线的性质以及正五边形的内角及镶嵌的知识,逐一判断.【详解】解:①对顶角有位置及大小关系的要求,相等的角不一定是对顶角,故为假命题;②只有当两条平行直线被第三条直线所截,同位角相等,故为假命题;③正五边形的内角和为540°,则其内角为108°,而360°并不是108°的整数倍,不能进行平面镶嵌,故为假命题;④在同一平面内,垂直于同一条直线的两条直线平行,故为假命题.故选:D.【点睛】本题考查了命题与证明.对顶角,垂线,同位角,镶嵌的相关概念.关键是熟悉这些概念,正确判断.8.C【解析】【分析】由切线的性质可知∠OAB=90°,由圆周角定理可知∠BOA=54°,根据直角三角形两锐角互余可知∠B=36°.【详解】解:∵AB与⊙O相切于点A,∴OA⊥BA.∴∠OAB=90°.∵∠CDA=27°,∴∠BOA=54°.∴∠B=90°-54°=36°.故选C.考点:切线的性质.9.D【解析】由题意得31x+4x=0,去分母3x+4(1-x)=0,解得x=4.故选D.10.A【解析】解:图B、C、D中,线段MN不与直线l垂直,故线段MN的长度不能表示点M到直线l的距离;图A中,线段MN与直线l垂直,垂足为点N,故线段MN的长度能表示点M到直线l的距离.故选A.【解析】根据数轴上某个数与原点的距离叫做这个数的绝对值的定义,由a是实数,得|a|≥0恒成立,因此,这一事件是必然事件.故选A.12.B【解析】试题分析:根据从正面看得到的视图是主视图,从左边看得到的图形是左视图,从上面看得到的图形是俯视图,正方体主视图与左视图可能不同,故选B.考点:简单几何体的三视图.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.2 5【解析】【分析】用黑球的个数除以总球的个数即可得出黑球的概率.【详解】解:∵袋子中共有5个球,有2个黑球,∴从袋子中随机摸出一个球,它是黑球的概率为25;故答案为25.【点睛】本题考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=mn.14.【解析】画树状图为:共有20种等可能的结果数,其中点P(a,b)在平面直角坐标系中第二象限内的结果数为4,所以点P(a,b)在平面直角坐标系中第二象限内的概率=420=15.故答案为1 5 .15.n(m﹣1)1.【解析】【分析】先提取公因式n后,再利用完全平方公式分解即可【详解】m1n﹣1mn+n=n(m1﹣1m+1)=n(m﹣1)1.故答案为n(m﹣1)1.16.300π【解析】试题分析:首先根据底面圆的面积求得底面的半径,然后结合弧长公式求得扇形的半径,然后利用扇形的面积公式求得侧面积即可.∵底面圆的面积为100π,∴底面圆的半径为10,∴扇形的弧长等于圆的周长为20π,设扇形的母线长为r,则120180r=20π,解得:母线长为30,∴扇形的面积为πrl=π×10×30=300π考点:(1)、圆锥的计算;(2)、扇形面积的计算17.x>4【解析】【分析】分别解出不等式组中的每一个不等式,然后根据同大取大得出不等式组的解集.【详解】由①得:x>2;由②得:x>4;∴此不等式组的解集为x>4;故答案为x>4.【点睛】考查了解一元一次不等式组,一元一次不等式组的解法:解一元一次不等式组时,一般先求出其中各不等式的解集,再求出这些解集的公共部分.解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.18.m(x﹣3)1.【解析】【分析】先把提出来,然后对括号里面的多项式用公式法分解即可。
上海市九年级下学期数学中考二模试卷姓名:________ 班级:________ 成绩:________一、单选题 (共9题;共18分)1. (2分)不小于﹣3的负整数有()A . 3个B . 2个C . 1个D . 无数个2. (2分)如图,AB∥CD,AD和BC相交于点O,∠A=40°,∠AOB=75°.则∠C等于()A . 40°B . 65°C . 75°D . 115°3. (2分) (2019八上·洪山期末) 根据图①的面积可以说明多项式的乘法运算(2a+b)(a+b)=2a2+3ab+b2 ,那么根据图②的面积可以说明多项式的乘法运算是()A . (a+3b)(a+b)=a2+4ab+3b2B . (a+3b)(a+b)=a2+3b2C . (b+3a)(b+a)=b2+4ab+3a2D . (a+3b)(a﹣b)=a2+2ab﹣3b24. (2分)若干桶方便面摆放在桌子上,实物图片左边所给的是它的三视图,该图中上面左为主视图、右为左视图、下为俯视图,则一堆方便面共有()A . 5桶B . 6桶C . 9桶D . 12桶5. (2分)七年级(1)班与(2)班各选出20名学生进行英文打字比赛,通过对参赛学生每分钟输入的单词个数进行统计,两个班成绩的平均数相同,(1)班成绩的方差为17.5,(2)班成绩的方差为15,由此可知()A . (1)班比(2)班的成绩稳定B . (2)班比(1)班的成绩稳定C . 两个班的成绩一样稳定D . 无法确定哪个班的成绩更稳定6. (2分) (2017九上·深圳期中) 下列方程中,有两个不相等实数根的是()A .B .C .D .7. (2分) A,B两地相距340千米,甲、乙两车分别从A,B两地同时出发,相向而行,匀速行驶.在距离A,B两地的中点10千米处两车相遇,设甲车速度为V1千米/时,乙车的速度为V2千米/时,则V1:V2等于()A . 8:7B . 8:9C . 8:7或7:8D . 8:9或9:88. (2分)(2017·香坊模拟) 如图,电线杆AB的中点C处有一标志物,在地面D点处测得标志物的仰角为45°,若测得DC的长度为 a,则电线杆AB的长可表示为()A . aB . 2aC . aD . a9. (2分)矩形ABCD的对角线AC,BD相交于点O,∠AOD=120°,AC=6,则△ABO的周长为()A . 18B . 15C . 12D . 9二、填空题 (共6题;共7分)10. (1分)两个多项式①a2+2ab+b2 ,②a2﹣b2的公因式是________11. (1分) (2020九上·兰考期末) 在英语句子“Wish you success”(祝你成功)中任选一个字母,这个字母为“s”的概率是________.12. (1分) (2018九上·郴州月考) 若一次函数的图像与反比例函数的图像没有公共点,则实数的取值范围是________.13. (1分) (2019九上·台安月考) 有一人患了流感,经过两轮传染后共有81人患了流感,设每轮传染中一个人都传染了人,根据题意可列方程为________.14. (2分)(2018·井研模拟) 如图,扇形纸片AOB中,已知∠AOB=90º,OA=6,取OA的中点C,过点C作DC⊥OA 交于点D,点F是上一点.若将扇形BOD沿OD翻折,点B恰好与点F重合,用剪刀沿着线段BD、DF、FA 依次剪下,则剩下的纸片(阴影部分)面积是________15. (1分) (2020八上·自贡期末) 是△ 的中线,, ;把△ 沿直线折叠,使点落在点的位置,连接 ,则的长为 ________ .三、解答题 (共8题;共83分)16. (5分)计算:2﹣1+tan45°﹣|2﹣|+÷.17. (15分)计算:(1) 3x(1﹣x)+2x(x+3)+5(x﹣2);(2) 5a﹣3(a﹣2)﹣2[a﹣3(3﹣2a)+6].18. (10分)(2014·百色) 如图,已知点E、F在四边形ABCD的对角线延长线上,AE=CF,DE∥BF,∠1=∠2.(1)求证:△AED≌△CFB;(2)若AD⊥CD,四边形ABCD是什么特殊四边形?请说明理由.19. (16分) (2019九上·天河期末) 某体育老师随机抽取了九年级甲、乙两班部分学生进行一分钟跳绳的测试,并对成绩进行统计分析,绘制了频数分布表和统计图,请你根据图表中的信息完成下列问题:分组频数频率第一组(0≤x<120)30.15第二组(120≤x<160)8a第三组(160≤x<200)70.35第四组(200≤x<240)b0.1(1)频数分布表中a=________,b=________,并将统计图补充完整________;(2)如果该校九年级共有学生360人,估计跳绳能够一分钟完成160或160次以上的学生有多少人?(3)已知第一组中有两个甲班学生,第四组中只有一个甲班学生,老师随机从这两个组中各选一名学生谈测试体会,则所选两人正好都是甲班学生的概率是多少?20. (10分)(2017·大石桥模拟) 某体育场看台的坡面AB与地面的夹角是37°,看台最高点B到地面的垂直距离BC为2.4米,看台正前方有一垂直于地面的旗杆DE,在B点用测角仪测得旗杆的最高点E的仰角为33°,已知测角仪BF的高度为1.2米,看台最低点A与旗杆底端D之间的距离为15米(C,A,D在同一条直线上).(1)求看台最低点A到最高点B的坡面距离AB;(2)一面红旗挂在旗杆上,固定红旗的上下两个挂钩G、H之间的距离为1.2米,下端挂钩H与地面的距离为1米,要求用30秒的时间将红旗升到旗杆的顶端,求红旗升起的平均速度(计算结果保留两位小数)(sin37°≈0.6,cos37°≈0.8,tan37°≈0.75,sin33°≈0.54,cos33°≈0.84,tan33°≈0.65)21. (2分)(2017·河西模拟) 国庆期间,为了满足百姓的消费需求,某商店计划用170000元购进一批家电,这批家电的进价和售价如表:类别彩电冰箱洗衣机进价(元/台)200016001000售价(元/台)230018001100若在现有资金允许的范围内,购买表中三类家电共100台,其中彩电台数是冰箱台数的2倍,设该商店购买冰箱x台.(1)商店至多可以购买冰箱多少台?(2)购买冰箱多少台时,能使商店销售完这批家电后获得的利润最大?最大利润为多少元?22. (15分) (2016九上·海门期末) 如图,已知在矩形ABCD中,BC=2CD=2a,点E在边CD上,在矩形ABCD 的左侧作矩形ECGF,使CG=2GF=2b,连接BD,CF,连结AF交BD于点H.(1)求证:BD∥CF;(2)求证:H是AF的中点;(3)连结CH,若HC⊥BD,求a:b的值.23. (10分)(2018·潮南模拟) 如图,已知抛物线的对称轴是y轴,且点(2,2),(1,)在抛物线上,点P是抛物线上不与顶点N重合的一动点,过P作PA⊥x轴于A,PC⊥y轴于C,延长PC交抛物线于E,设M是O 关于抛物线顶点N的对称点,D是C点关于N的对称点.(1)求抛物线的解析式及顶点N的坐标;(2)求证:四边形PMDA是平行四边形;(3)求证:△DPE∽△PAM,并求出当它们的相似比为时的点P的坐标.参考答案一、单选题 (共9题;共18分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、二、填空题 (共6题;共7分)10-1、11-1、12-1、13-1、14-1、15-1、三、解答题 (共8题;共83分)16-1、17-1、17-2、18-1、18-2、19-1、19-2、19-3、20-1、20-2、21-1、21-2、22-1、22-2、22-3、23-1、23-2、23-3、第11 页共12 页第12 页共12 页。
上海市闸北区2019-2020学年中考数学二模考试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.某市2017年国内生产总值(GDP )比2016年增长了12%,由于受到国际金融危机的影响,预计2018比2017年增长7%,若这两年GDP 年平均增长率为x %,则x %满足的关系是( )A .12%7%%x +=B .(112%)(17%)2(1%)x ++=+C .12%7%2%x +=D .2(112%)(17%)(1%)x ++=+2.为了尽早适应中考体育项目,小丽同学加强跳绳训练,并把某周的练习情况做了如下记录:周一(160个),周二(160个),周三(180个),周四(200个),周五(170个).则小丽这周跳绳个数的中位数和众数分别是( )A .180个,160个B .170个,160个C .170个,180个D .160个,200个3.如图所示,正方形ABCD 的面积为12,△ABE 是等边三角形,点E 在正方形ABCD 内,在对角线AC 上有一点P,使PD+PE 的和最小,则这个最小值为 ( )A .23B .2C .3D .64.下列图形中,可以看作是中心对称图形的是( )A .B .C .D .5.如图,已知射线OM ,以O 为圆心,任意长为半径画弧,与射线OM 交于点A ,再以点A 为圆心,AO 长为半径画弧,两弧交于点B ,画射线OB ,那么∠AOB 的度数是( )A .90°B .60°C .45°D .30°6.如图,在正方形ABCD 中,AB=9,点E 在CD 边上,且DE=2CE ,点P 是对角线AC 上的一个动点,则PE+PD 的最小值是( )A.310B.103C.9 D.927.如图,在坐标系中放置一菱形OABC,已知∠ABC=60°,点B在y轴上,OA=1,先将菱形OABC沿x轴的正方向无滑动翻转,每次翻转60°,连续翻转2017次,点B的落点依次为B1,B2,B3,…,则B2017的坐标为()A.(1345,0)B.(1345.5,3)C.(1345,3)D.(1345.5,0)8.如图,直线l是一次函数y=kx+b的图象,若点A(3,m)在直线l上,则m的值是()A.﹣5 B.32C.52D.79.如果y=2x-2x-,那么y x的算术平方根是()A.2 B.3 C.9 D.±310.在数轴上到原点距离等于3的数是( )A.3 B.﹣3 C.3或﹣3 D.不知道11.二次函数y=ax²+bx+c(a,b,c为常数)中的x与y的部分对应值如表所示:x -1 0 1 3y135- 32953下列结论:(1)abc<0(2)当x>1时,y的值随x值的增大而减小;(3)16a+4b+c<0(4)x=3是方程ax²+(b-1)x+c=0的一个根;其中正确的个数为( ) A .4个 B .3个 C .2个 D .1个12.一个圆锥的底面半径为52,母线长为6,则此圆锥的侧面展开图的圆心角是( ) A .180° B .150°C .120°D .90° 二、填空题:(本大题共6个小题,每小题4分,共24分.)13.已知一组数据﹣3、3,﹣2、1、3、0、4、x 的平均数是1,则众数是_____.14.某航空公司规定,旅客乘机所携带行李的质量x(kg)与其运费y(元)由如图所示的一次函数图象确定,则旅客可携带的免费行李的最大质量为 kg15.已知一个等腰三角形的两边长分别为2和4,则该等腰三角形的周长是 .16.若一个多边形的每一个外角都等于 40°,则这个多边形的内角和是_____.17.分解因式:x 2y ﹣2xy 2+y 3=_____.18.点 C 在射线 AB 上,若 AB=3,BC=2,则AC 为_____.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)今年 3 月 12 日植树节期间, 学校预购进 A 、B 两种树苗,若购进 A 种树苗 3 棵,B 种树苗 5 棵,需 2100 元,若购进 A 种树苗 4 棵,B 种树苗 10棵,需 3800 元.(1)求购进 A 、B 两种树苗的单价;(2)若该单位准备用不多于 8000 元的钱购进这两种树苗共 30 棵,求 A 种树苗至少需购进多少棵? 20.(6分)如图,C 是⊙O 上一点,点P 在直径AB 的延长线上,⊙O 的半径为3,PB=2,PC=1. (1)求证:PC 是⊙O 的切线.(2)求tan ∠CAB 的值.21.(6分)抛物线23y ax bx a =+-经过A (-1,0)、C (0,-3)两点,与x 轴交于另一点B .求此抛物线的解析式;已知点D (m,-m-1) 在第四象限的抛物线上,求点D 关于直线BC 对称的点D’的坐标;在(2)的条件下,连结BD ,问在x 轴上是否存在点P ,使PCB CBD ∠=∠,若存在,请求出P 点的坐标;若不存在,请说明理由.22.(8分)如图,MN 是一条东西方向的海岸线,在海岸线上的A 处测得一海岛在南偏西32°的方向上,向东走过780米后到达B 处,测得海岛在南偏西37°的方向,求小岛到海岸线的距离.(参考数据:tan37°=cot53°≈0.755,cot37°=tan53°≈1.327,tan32°=cot58°≈0.625,cot32°=tan58°≈1.1.)23.(8分)如图,一个长方形运动场被分隔成A 、B 、A 、B 、C 共5个区,A 区是边长为am 的正方形,C 区是边长为bm 的正方形.列式表示每个B 区长方形场地的周长,并将式子化简;列式表示整个长方形运动场的周长,并将式子化简;如果a =20,b =10,求整个长方形运动场的面积.24.(10分)已知P 是O e 的直径BA 延长线上的一个动点,∠P 的另一边交O e 于点C 、D ,两点位于AB 的上方,AB =6,OP=m ,1sin 3P =,如图所示.另一个半径为6的1O e 经过点C 、D ,圆心距1OO n =.(1)当m=6时,求线段CD 的长;(2)设圆心O 1在直线AB 上方,试用n 的代数式表示m ;(3)△POO 1在点P 的运动过程中,是否能成为以OO 1为腰的等腰三角形,如果能,试求出此时n 的值;如果不能,请说明理由.25.(10分)先化简,再求值:(m+2﹣52m -)•243m m --,其中m=﹣12.26.(12分)在△ABC 中,AB=AC ,∠BAC=α,点P 是△ABC 内一点,且∠PAC+∠PCA=2α,连接PB ,试探究PA 、PB 、PC 满足的等量关系. (1)当α=60°时,将△ABP 绕点A 逆时针旋转60°得到△ACP′,连接PP′,如图1所示.由△ABP ≌△ACP′可以证得△A PP′是等边三角形,再由∠PAC+∠PCA=30°可得∠APC 的大小为 度,进而得到△CPP′是直角三角形,这样可以得到PA 、PB 、PC 满足的等量关系为 ;(2)如图2,当α=120°时,参考(1)中的方法,探究PA 、PB 、PC 满足的等量关系,并给出证明; (3)PA 、PB 、PC 满足的等量关系为 .27.(12分)如图,Rt △ABC 中,∠C=90°,AB=14,AC=7,D 是BC 上一点,BD=8,DE ⊥AB ,垂足为E ,求线段DE 的长.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.D【解析】分析:根据增长率为12%,7%,可表示出2017年的国内生产总值,2018年的国内生产总值;求2年的增长率,可用2016年的国内生产总值表示出2018年的国内生产总值,让2018年的国内生产总值相等即可求得所列方程.详解:设2016年的国内生产总值为1,∵2017年国内生产总值(GDP )比2016年增长了12%,∴2017年的国内生产总值为1+12%; ∵2018年比2017年增长7%, ∴2018年的国内生产总值为(1+12%)(1+7%),∵这两年GDP 年平均增长率为x%, ∴2018年的国内生产总值也可表示为:()21%x +,∴可列方程为:(1+12%)(1+7%)=()21%x +.故选D .点睛:考查了由实际问题列一元二次方程的知识,当必须的量没有时,应设其为1;注意2018年的国内生产总值是在2017年的国内生产总值的基础上增加的,需先算出2016年的国内生产总值.2.B【解析】【分析】根据中位数和众数的定义分别进行解答即可.【详解】解:把这些数从小到大排列为160,160,170,180,200,最中间的数是170,则中位数是170; 160出现了2次,出现的次数最多,则众数是160;故选B .【点睛】此题考查了中位数和众数,掌握中位数和众数的定义是解题的关键;中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数;众数是一组数据中出现次数最多的数.3.A【解析】连接BD ,交AC 于O ,∵正方形ABCD ,∴OD=OB ,AC ⊥BD ,∴D 和B 关于AC 对称,则BE 交于AC 的点是P 点,此时PD+PE 最小,∵在AC 上取任何一点(如Q 点),QD+QE 都大于PD+PE (BE ),∴此时PD+PE 最小,此时PD+PE=BE ,∵正方形的面积是12,等边三角形ABE ,∴=,即最小值是故选A.【点睛】本题考查了正方形的性质,等边三角形的性质,轴对称-最短路线问题等知识点的应用,关键是找出PD+PE最小时P点的位置.4.A【解析】分析:根据中心对称的定义,结合所给图形即可作出判断.详解:A、是中心对称图形,故本选项正确;B、不是中心对称图形,故本选项错误;C、不是中心对称图形,故本选项错误;D、不是中心对称图形,故本选项错误;故选:A.点睛:本题考查了中心对称图形的特点,属于基础题,判断中心对称图形的关键是旋转180°后能够重合.5.B【解析】【分析】首先连接AB,由题意易证得△AOB是等边三角形,根据等边三角形的性质,可求得∠AOB的度数.【详解】连接AB,根据题意得:OB=OA=AB,∴△AOB是等边三角形,∴∠AOB=60°.故答案选:B.【点睛】本题考查了等边三角形的判定与性质,解题的关键是熟练的掌握等边三角形的判定与性质.6.A【解析】解:如图,连接BE,设BE与AC交于点P′,∵四边形ABCD是正方形,∴点B与D关于AC对称,∴P′D=P′B,∴P′D+P′E=P′B+P′E=BE最小.即P在AC与BE的交点上时,PD+PE最小,为BE的长度.∵直角△CBE中,∠BCE=90°,BC=9,CE=13CD=3,∴BE=2293=310.故选A.点睛:此题考查了轴对称﹣﹣最短路线问题,正方形的性质,要灵活运用对称性解决此类问题.找出P点位置是解题的关键.7.B【解析】连接AC,如图所示.∵四边形OABC是菱形,∴OA=AB=BC=OC.∵∠ABC=60°,∴△ABC是等边三角形.∴AC=AB.∴AC=OA.∵OA=1,∴AC=1.画出第5次、第6次、第7次翻转后的图形,如图所示.由图可知:每翻转6次,图形向右平移2.∵3=336×6+1,∴点B1向右平移1322(即336×2)到点B3.∵B1的坐标为(1.5,32),∴B3的坐标为(1.5+1322,32),故选B.点睛:本题是规律题,能正确地寻找规律 “每翻转6次,图形向右平移2”是解题的关键. 8.C【解析】【分析】把(-2,0)和(0,1)代入y=kx+b ,求出解析式,再将A (3,m )代入,可求得m.【详解】把(-2,0)和(0,1)代入y=kx+b ,得201k b b -+=⎧⎨=⎩, 解得121k b ⎧=⎪⎨⎪=⎩所以,一次函数解析式y=12x+1, 再将A (3,m )代入,得 m=12×3+1=52. 故选C.【点睛】本题考核知识点:考查了待定系数法求一次函数的解析式,根据解析式再求函数值.9.B【解析】解:由题意得:x ﹣2≥0,2﹣x≥0,解得:x=2,∴y=1,则y x =9,9的算术平方根是1.故选B . 10.C【解析】【分析】根据数轴上到原点距离等于3的数为绝对值是3的数即可求解.【详解】绝对值为3的数有3,-3.故答案为C.【点睛】本题考查数轴上距离的意义,解题的关键是知道数轴上的点到原点的距离为绝对值.11.B 【解析】【分析】(1)利用待定系数法求出二次函数解析式为y=-75x2+215x+3,即可判定正确;(2)求得对称轴,即可判定此结论错误;(3)由当x=4和x=-1时对应的函数值相同,即可判定结论正确;(4)当x=3时,二次函数y=ax2+bx+c=3,即可判定正确.【详解】(1)∵x=-1时y=-135,x=0时,y=3,x=1时,y=295,∴1352953a b ca b cc⎧-+-⎪⎪⎪++⎨⎪=⎪⎪⎩==,解得7 =52153 abc⎧-⎪⎪⎪⎨⎪=⎪⎪⎩=∴abc<0,故正确;(2)∵y=-75x2+215x+3,∴对称轴为直线x=-21572()5⨯-=32,所以,当x>32时,y的值随x值的增大而减小,故错误;(3)∵对称轴为直线x=32,∴当x=4和x=-1时对应的函数值相同,∴16a+4b+c<0,故正确;(4)当x=3时,二次函数y=ax2+bx+c=3,∴x=3是方程ax2+(b-1)x+c=0的一个根,故正确;综上所述,结论正确的是(1)(3)(4).故选:B.【点睛】本题考查了二次函数的性质,主要利用了待定系数法求二次函数解析式,二次函数的增减性,二次函数与不等式,根据表中数据求出二次函数解析式是解题的关键.12.B【解析】【分析】【详解】解:5622180nππ⨯=,解得n=150°.故选B.考点:弧长的计算.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.3【解析】∵-3、3, -2、1、3、0、4、x的平均数是1,∴-3+3-2+1+3+0+4+x=8∴x=2,∴一组数据-3、3, -2、1、3、0、4、2,∴众数是3.故答案是:3.14.20【解析】设函数表达式为y=kx+b把(30,300)、(50、900)代入可得:y=30x-600当y=0时x=20所以免费行李的最大质量为20kg15.1.【解析】试题分析:因为2+2<4,所以等腰三角形的腰的长度是4,底边长2,周长:4+4+2=1,答:它的周长是1,故答案为1.考点:等腰三角形的性质;三角形三边关系.16.1260︒【解析】【分析】根据任何多边形的外角和都是360度,先利用360°÷40°求出多边形的边数,再根据多边形的内角和公式(n-2)•180°计算即可求解.【详解】解:多边形的边数是:360°÷40°=9,则内角和是:(9-2)•180°=1260°.故答案为1260°.【点睛】本题考查正多边形的外角与边数的关系,求出多边形的边数是解题的关键.17.y(x﹣y)2【解析】【分析】原式提取公因式,再利用完全平方公式分解即可【详解】x2y﹣2xy2+y3=y(x2-2xy+y2)=y(x-y)2.【点睛】本题考查了提公因式法与公式法的综合运用,熟练掌握运算法则是解本题的关键.18.2或2.【解析】解:本题有两种情形:(2)当点C在线段AB上时,如图,∵AB=3,BC=2,∴AC=AB﹣BC=3-2=2;(2)当点C在线段AB的延长线上时,如图,∵AB=3,BC=2,∴AC=AB+BC=3+2=2.故答案为2或2.点睛:在未画图类问题中,正确画图很重要,本题渗透了分类讨论的思想,体现了思维的严密性,在今后解决类似的问题时,要防止漏解.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(1)购进A 种树苗的单价为200 元/棵,购进B 种树苗的单价为300 元/棵(2)A 种树苗至少需购进 1 棵【解析】【分析】(1)设购进A种树苗的单价为x元/棵,购进B种树苗的单价为y元/棵,根据“若购进A种树苗3棵,B 种树苗5棵,需210元,若购进A种树苗4棵,B种树苗1棵,需3800元”,即可得出关于x、y的二元一次方程组,解之即可得出结论;(2)设需购进A种树苗a棵,则购进B种树苗(30-a)棵,根据总价=单价×购买数量结合购买两种树苗的总费用不多于8000元,即可得出关于a的一元一次不等式,解之取其中的最小值即可得出结论.【详解】设购进 A 种树苗的单价为x 元/棵,购进 B 种树苗的单价为y 元/棵,根据题意得:,解得:.答:购进A 种树苗的单价为200 元/棵,购进 B 种树苗的单价为300 元/棵.(2)设需购进A 种树苗 a 棵,则购进 B 种树苗(30﹣a)棵,根据题意得:200a+300(30﹣a)≤8000,解得:a≥1.∴A种树苗至少需购进1 棵.【点睛】本题考查了一元一次不等式的应用以及二元一次方程组的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)根据数量间的关系,正确列出一元一次不等式.20.(1)见解析;(2).【解析】【分析】(1)连接OC、BC,根据题意可得OC2+PC2=OP2,即可证得OC⊥PC,由此可得出结论.(2)先根据题意证明出△PBC∽△PCA,再根据相似三角形的性质得出边的比值,由此可得出结论.【详解】(1)如图,连接OC、BC∵⊙O的半径为3,PB=2∴OC=OB=3,OP=OB+PB=5∵PC=1∴OC2+PC2=OP2∴△OCP是直角三角形,∴OC⊥PC∴PC 是⊙O 的切线.(2)∵AB 是直径∴∠ACB=90°∴∠ACO+∠OCB=90°∵OC ⊥PC∴∠BCP+∠OCB=90°∴∠BCP=∠ACO∵OA=OC∴∠A=∠ACO∴∠A=∠BCP在△PBC 和△PCA 中:∠BCP=∠A ,∠P=∠P∴△PBC ∽△PCA , ∴∴tan ∠CAB=【点睛】本题考查了切线与相似三角形的判定与性质,解题的关键是熟练的掌握切线的判定与相似三角形的判定与性质.21.(1)2y x 2x 3=-- (2)(0,-1)(3)(1,0)(9,0)【解析】【分析】(1)将A (−1,0)、C (0,−3)两点坐标代入抛物线y =ax 2+bx−3a 中,列方程组求a 、b 的值即可; (2)将点D (m ,−m−1)代入(1)中的抛物线解析式,求m 的值,再根据对称性求点D 关于直线BC 对称的点D'的坐标;(3)分两种情形①过点C 作CP ∥BD ,交x 轴于P ,则∠PCB =∠CBD ,②连接BD′,过点C 作CP′∥BD′,交x 轴于P′,分别求出直线CP 和直线CP′的解析式即可解决问题.【详解】解:(1)将A (−1,0)、C (0,−3)代入抛物线y =ax 2+bx−3a 中,得3033a b a a --=⎧⎨-=-⎩ ,解得12 ab=⎧⎨=-⎩∴y=x2−2x−3;(2)将点D(m,−m−1)代入y=x2−2x−3中,得m2−2m−3=−m−1,解得m=2或−1,∵点D(m,−m−1)在第四象限,∴D(2,−3),∵直线BC解析式为y=x−3,∴∠BCD=∠BCO=45°,CD′=CD=2,OD′=3−2=1,∴点D关于直线BC对称的点D'(0,−1);(3)存在.满足条件的点P有两个.①过点C作CP∥BD,交x轴于P,则∠PCB=∠CBD,∵直线BD解析式为y=3x−9,∵直线CP过点C,∴直线CP的解析式为y=3x−3,∴点P坐标(1,0),②连接BD′,过点C作CP′∥BD′,交x轴于P′,∴∠P′CB=∠D′BC,根据对称性可知∠D′BC=∠CBD,∴∠P′CB=∠CBD,∵直线BD′的解析式为113y x=-∵直线CP′过点C,∴直线CP′解析式为133y x=-,∴P′坐标为(9,0),综上所述,满足条件的点P坐标为(1,0)或(9,0).【点睛】本题考查了二次函数的综合运用.关键是由已知条件求抛物线解析式,根据抛物线的对称性,直线BC 的特殊性求点的坐标,学会分类讨论,不能漏解.22.10【解析】试题分析:如图:过点C 作CD ⊥AB 于点D ,在Rt △ACD 中,利用∠ACD 的正切可得AD=0.625CD ,同样在Rt △BCD 中,可得BD= 0.755CD ,再根据AB=BD-CD=780,代入进行求解即可得.试题解析:如图:过点C 作CD ⊥AB 于点D ,由已知可得:∠ACD=32°,∠BCD =37°,在Rt △ACD 中,∠ADC=90°,∴AD=CD·tan ∠ACD=CD·tan32°=0.625CD , 在Rt △BCD 中,∠BDC=90°,∴BD=CD·tan ∠BCD=CD·tan37°=0.755CD , ∵AB=BD-CD=780,∴0.755CD-0.625CD=780,∴CD=10,答:小岛到海岸线的距离是10米.【点睛】本题考查了解直角三角形的应用,正确添加辅助线构造直角三角形、根据图形灵活选用三角函数进行求解是关键.23.(1)4a (2)8a (3)1500S =【解析】试题分析:(1)结合图形可得矩形B 的长可表示为:a+b ,宽可表示为:a-b ,继而可表示出周长;(2)根据题意表示出整个矩形的长和宽,再求周长即可;(3)先表示出整个矩形的面积,然后代入计算即可. 试题解析:(1)矩形B 的长可表示为:a+b ,宽可表示为:a-b ,∴每个B 区矩形场地的周长为:2(a+b+a-b )=4a ;(2)整个矩形的长为a+a+b=2a+b ,宽为:a+a-b=2a-b ,∴整个矩形的周长为:2(2a+b+2a-b )=8a ;(3)矩形的面积为:S=(2a+b )(2a-b )=224a b - ,把20a =,10b =代入得,S=4×202-102=4×400-100=1500. 点睛:本题考查了列代数式的知识,属于基础题,解答本题的关键是结合图形表示出各矩形的长和宽.24. (1)CD=25;(2)m=23812n n - ;(3) n 的值为955或9155 【解析】分析:(1)过点O 作OH ⊥CD ,垂足为点H ,连接OC .解Rt △POH ,得到OH 的长.由勾股定理得CH 的长,再由垂径定理即可得到结论;(2)解Rt △POH ,得到Rt 3m OH OCH V =.在和Rt △1O CH 中,由勾股定理即可得到结论; (3)△1POO 成为等腰三角形可分以下几种情况讨论:① 当圆心1O 、O 在弦CD 异侧时,分1OP OO =和11O P OO =.②当圆心1O 、O 在弦CD 同侧时,同理可得结论.详解:(1)过点O 作OH ⊥CD ,垂足为点H ,连接OC .在Rt △1sin 63POH P PO =Q 中,=,,∴2OH =. ∵AB =6,∴3OC =.由勾股定理得: 5CH =∵OH ⊥DC ,∴225CD CH == (2)在Rt △1sin 3POH P PO m Q 中,=,=,∴3m OH =. 在Rt △OCH 中,2293m CH ⎛⎫- ⎪⎝⎭=. 在Rt △1O CH 中,22363m CH n ⎛⎫-- ⎪⎝⎭=. 可得: 2236933m m n ⎛⎫⎛⎫--- ⎪ ⎪⎝⎭⎝⎭=,解得23812n m n -:=. (3)△1POO 成为等腰三角形可分以下几种情况:① 当圆心1O 、O 在弦CD 异侧时i )1OP OO =,即m n =,由23812n n n -=,解得9n :=. 即圆心距等于O e 、1O e 的半径的和,就有O e 、1O e 外切不合题意舍去.ii )11O P OO = n =,解得:23m n =,即23n 23812n n-=,解得n : ②当圆心1O 、O 在弦CD 同侧时,同理可得: 28132n m n-=.∵1POO ∠是钝角,∴只能是m n =,即28132n n n-=,解得n :综上所述:n 点睛:本题是圆的综合题.考查了圆的有关性质和两圆的位置关系以及解直径三角形.解答(3)的关键是要分类讨论.25.-2(m+3),-1.【解析】【分析】此题的运算顺序:先括号里,经过通分,再约分化为最简,最后代值计算.【详解】解:(m+2-5m-2)•243m m --, =()22245•23m m m m-----, =-()22(3)(3)•23m m m m m -+---, =-2(m+3).把m=-12代入,得, 原式=-2×(-12+3)=-1. 26.(1)150,222PA PC PB +=(1)证明见解析(3)22224sin2PA PC PB α+=【解析】【分析】(1)根据旋转变换的性质得到△PAP′为等边三角形,得到∠P′PC =90°,根据勾股定理解答即可;(1)如图1,作将△ABP 绕点A 逆时针旋转110°得到△ACP′,连接PP′,作AD ⊥PP′于D ,根据余弦的定义得到PP′,根据勾股定理解答即可;(3)与(1)类似,根据旋转变换的性质、勾股定理和余弦、正弦的关系计算即可.试题解析:【详解】解:(1)∵△ABP ≌△ACP′,∴AP =AP′,由旋转变换的性质可知,∠PAP′=60°,P′C =PB ,∴△PAP′为等边三角形,∴∠APP′=60°,∵∠PAC +∠PCA =12×60° =30°, ∴∠APC =150°,∴∠P′PC =90°,∴PP′1+PC 1=P′C 1,∴PA 1+PC 1=PB 1,故答案为150,PA 1+PC 1=PB 1;(1)如图,作120PAP =∠'°,使AP AP '=,连接PP ',CP '.过点A 作AD ⊥PP '于D 点. ∵120BAC PAP '∠∠==°, 即BAP PAC PAC CAP ∠∠∠∠'+=+,∴BAP CAP =∠∠'.∵AB =AC ,AP AP '=,∴BAP CAP 'V V ≌.∴P C PB '=,180302PAP APD AP D -∠∠''∠o ===°. ∵AD ⊥PP ',∴90ADP ∠=°. ∴在Rt APD △中,3cos 2PD AP APD AP ⋅∠==. ∴23PP PD AP '==.∵60PAC PCA ∠∠+=°, ∴180120APC PAC PCA ∠-∠-∠o ==°.∴90P PC APC APD ==∠∠-∠'°. ∴在Rt P PC V '中,222P P PC P C ''+=.∴2223PA PC PB +=;(3)如图1,与(1)的方法类似,作将△ABP 绕点A 逆时针旋转α得到△ACP′,连接PP′,作AD ⊥PP′于D ,由旋转变换的性质可知,∠PAP′=α,P′C =PB ,∴∠APP′=90°-2α, ∵∠PAC +∠PCA =2α, ∴∠APC =180°-2α, ∴∠P′PC =(180°-2α)-(90°-2α)=90°, ∴PP′1+PC 1=P′C 1,∵∠APP′=90°-2α, ∴PD =PA•cos (90°-2α)=PA•sin 2α, ∴PP′=1PA•sin 2α, ∴4PA 1sin 12α+PC 1=PB 1, 故答案为4PA 1sin 12α+PC 1=PB 1. 【点睛】本题考查的是旋转变换的性质、等边三角形的性质、勾股定理的应用,掌握等边三角形的性质、旋转变换的性质、灵活运用类比思想是解题的关键.27.1.【解析】试题分析:根据相似三角形的判定与性质,可得答案.试题解析:∵DE ⊥AB ,∴∠BED=90°,又∠C=90°,∴∠BED=∠C .又∠B=∠B ,∴△BED ∽△BCA ,∴,∴DE===1.考点:相似三角形的判定与性质.2019-2020学年中考数学模拟试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.下列图案是轴对称图形的是( )A .B .C .D .2.如图,线段AB 两个端点的坐标分别为A (2,2)、B (3,1),以原点O 为位似中心,在第一象限内将线段AB 扩大为原来的2倍后得到线段CD ,则端点C 的坐标分别为( )A .(4,4)B .(3,3)C .(3,1)D .(4,1)3.如图,分别以等边三角形ABC 的三个顶点为圆心,以边长为半径画弧,得到的封闭图形是莱洛三角形,若AB=2,则莱洛三角形的面积(即阴影部分面积)为( )A .3π+B .3π-C .23π-D .223π-4.如图,若△ABC 内接于半径为R 的⊙O ,且∠A =60°,连接OB 、OC ,则边BC 的长为( )A 2RB .32RC 2D 3R5.一辆慢车和一辆快车沿相同的路线从A 地到B 地,所行驶的路程与时间的函数图形如图所示,下列说法正确的有( )①快车追上慢车需6小时;②慢车比快车早出发2小时;③快车速度为46km/h;④慢车速度为46km/h;⑤A、B两地相距828km;⑥快车从A地出发到B地用了14小时A.2个B.3个C.4个D.5个6.已知直线m∥n,将一块含30°角的直角三角板ABC按如图方式放置(∠ABC=30°),其中A,B两点分别落在直线m,n上,若∠1=20°,则∠2的度数为()A.20°B.30°C.45°D.50°7.在娱乐节目“墙来了!”中,参赛选手背靠水池,迎面冲来一堵泡沫墙,墙上有人物造型的空洞.选手需要按墙上的造型摆出相同的姿势,才能穿墙而过,否则会被墙推入水池.类似地,有一块几何体恰好能以右图中两个不同形状的“姿势”分别穿过这两个空洞,则该几何体为()A.B.C.D.8.如图,点A是反比例函数y=kx的图象上的一点,过点A作AB⊥x轴,垂足为B.点C为y轴上的一点,连接AC,BC.若△ABC的面积为3,则k的值是()A.3 B.﹣3 C.6 D.﹣69.如图所示,在平面直角坐标系中,抛物线y=-x2+3的顶点为A点,且与x轴的正半轴交于点B,P 点为该抛物线对称轴上一点,则OP +12AP 的最小值为( ).A .3B .23C .32214+D .3232+ 10.某商场试销一种新款衬衫,一周内售出型号记录情况如表所示:型号(厘米)38 39 40 41 42 43 数量(件) 25 30 36 50 28 8 商场经理要了解哪种型号最畅销,则上述数据的统计量中,对商场经理来说最有意义的是( ) A .平均数 B .中位数 C .众数 D .方差11.如果解关于x 的分式方程2122m x x x -=--时出现增根,那么m 的值为 A .-2B .2C .4D .-412.一、单选题 如图,△ABC 中,AD 是BC 边上的高,AE 、BF 分别是∠BAC 、∠ABC 的平分线,∠BAC=50°,∠ABC=60°,则∠EAD+∠ACD=( )A .75°B .80°C .85°D .90°二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如图,直线a 经过正方形ABCD 的顶点A ,分别过此正方形的顶点B 、D 作BF a ⊥于点F 、DE a ⊥ 于点E .若85DE BF ==,,则EF 的长为________.14.如图,在△ABC 中,∠C =90°,BC =16 cm ,AC =12 cm ,点P 从点B 出发,沿BC 以2 cm/s 的速度向点C 移动,点Q 从点C 出发,以1 cm/s 的速度向点A 移动,若点P 、Q 分别从点B 、C 同时出发,设运动时间为ts ,当t =__________时,△CPQ 与△CBA 相似.15.如图,在平行四边形ABCD中,E为边BC上一点,AC与DE相交于点F,若CE=2EB,S△AFD=9,则S△EFC等于_____.16.把两个同样大小的含45°角的三角尺按如图所示的方式放置,其中一个三角尺的锐角顶点与另一个的直角顶点重合于点A,且另三个锐角顶点B,C,D在同一直线上.若AB=2,则CD=_____.17.如图,点A,B在反比例函数kyx(k>0)的图象上,AC⊥x轴,BD⊥x轴,垂足C,D分别在x轴的正、负半轴上,CD=k,已知AB=2AC,E是AB的中点,且△BCE的面积是△ADE的面积的2倍,则k的值是______.18.如图,在△ABC中,点D、E分别在AB、AC上,且DE∥BC,已知AD=2,DB=4,DE=1,则BC=_____.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图,在大楼AB正前方有一斜坡CD,坡角∠DCE=30°,楼高AB=60米,在斜坡下的点C 处测得楼顶B的仰角为60°,在斜坡上的D处测得楼顶B的仰角为45°,其中点A,C,E在同一直线上.求坡底C点到大楼距离AC的值;求斜坡CD的长度.20.(6分)先化简,再求值:22211·1441x x x x x x -++--+-,其中x 是从-1、0、1、2中选取一个合适的数. 21.(6分)山地自行车越来越受中学生的喜爱.一网店经营的一个型号山地自行车,今年一月份销售额为30000元,二月份每辆车售价比一月份每辆车售价降价100元,若销售的数量与上一月销售的数量相同,则销售额是27000元.求二月份每辆车售价是多少元?为了促销,三月份每辆车售价比二月份每辆车售价降低了10%销售,网店仍可获利35%,求每辆山地自行车的进价是多少元?22.(8分)九(1)班针对“你最喜爱的课外活动项目”对全班学生进行调查(每名学生分别选一个活动项目),并根据调查结果列出统计表,绘制成扇形统计图.根据以上信息解决下列问题:m = ,n = ;扇形统计图中机器人项目所对应扇形的圆心角度数为 °;从选航模项目的4名学生中随机选取2名学生参加学校航模兴趣小组训练,请用列举法(画树状图或列表)求所选取的2名学生中恰好有1名男生、1名女生的概率.23.(8分)探究:在一次聚会上,规定每两个人见面必须握手,且只握手1次若参加聚会的人数为3,则共握手 次:;若参加聚会的人数为5,则共握手 次;若参加聚会的人数为n (n 为正整数),则共握手 次;若参加聚会的人共握手28次,请求出参加聚会的人数.拓展:嘉嘉给琪琪出题:“若线段AB 上共有m 个点(含端点A ,B ),线段总数为30,求m 的值.”琪琪的思考:“在这个问题上,线段总数不可能为30”琪琪的思考对吗?为什么?24.(10分)已知平行四边形.尺规作图:作的平分线交直线于点,交延长线于点(要求:尺规作图,保留作图痕迹,不写作法);在(1)的条件下,求证:. 25.(10分)已知:如图,在平行四边形ABCD 中,BAD ∠的平分线交BC 于点E ,过点D 作AE 的垂线交AE 于点G ,交AB 延长线于点F ,连接EF ,ED .求证:EF ED =; 若60ABC ∠=︒,6AD =, 2CE =,求EF 的长.26.(12分)已知:如图,AB=AE ,∠1=∠2,∠B=∠E .求证:BC=ED .27.(12分)如图,在65⨯的矩形方格纸中,每个小正方形的边长均为1,线段AB 的两个端点均在小正方形的顶点上.在图中画出以线段AB 为底边的等腰CAB ∆,其面积为5,点C 在小正方形的顶点上;在图中面出以线段AB 为一边的ABDE W ,其面积为16,点D 和点E 均在小正方形的顶点上;连接CE ,并直接写出线段CE 的长.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.C【解析】解:A.此图形不是轴对称图形,不合题意;B.此图形不是轴对称图形,不合题意;C.此图形是轴对称图形,符合题意;D.此图形不是轴对称图形,不合题意.故选C.2.A【解析】【分析】利用位似图形的性质结合对应点坐标与位似比的关系得出C点坐标.【详解】∵以原点O为位似中心,在第一象限内将线段AB扩大为原来的2倍后得到线段CD,∴A点与C点是对应点,∵C点的对应点A的坐标为(2,2),位似比为1:2,∴点C的坐标为:(4,4)故选A.【点睛】本题考查了位似变换,正确把握位似比与对应点坐标的关系是解题关键.3.D【解析】【分析】莱洛三角形的面积是由三块相同的扇形叠加而成,其面积=三块扇形的面积相加,再减去两个等边三角形的面积,分别求出即可.【详解】过A作AD⊥BC于D,∵△ABC是等边三角形,∴AB=AC=BC=2,∠BAC=∠ABC=∠ACB=60°,∵AD⊥BC,∴BD=CD=1,33。
2019年上海市闸北区中考数学二模试卷一.选择题:(本大题共6题,每题4分,满分24分)1.下列代数式中,属于分式的是()A.﹣3 B.C.D.﹣4a3b2.的值为()A.2 B.﹣2 C.土2 D.不存在3.下列方程中,没有实数根的方程是()A.x2+2x﹣1=0 B.x2+2x+1=0 C.x2﹣x+2=0 D.x2﹣x﹣2=04.方程组的解是()A.B.C.D.5.如图,已知∠BDA=∠CDA,则不一定能使△ABD≌△ACD的条件是()A.BD=DC B.AB=AC C.∠B=∠C D.∠BAD=∠CAD6.若⊙O1与⊙O2相交于两点,且圆心距O1O2=5cm,则下列哪一选项中的长度可能为此两圆的半径?()A.1cm、2cm B.2cm、3cm C.10cm、15cm D.2cm、5cm二.填空题:(本大题共12题,每题4分,满分48分)7.计算:a5÷a2=.8.分解因式:3x2﹣6x=.9.不等式组的解集是.10.函数y=的定义域是.11.二次函数y=x2﹣2x+b的对称轴是直线x=.12.袋子里有4个黑球,m个白球,它们除颜色外都相同.经过大量实验,从中任取一个球恰好是黑球的概率是,则m的值是.13.某中学九(1)班5个同学在体育测试“1分钟跳绳”项目中,跳绳个数如下:126,134,118,152,148.这组数据中,中位数是.14.某企业2019年的年利润为100万元,2019年和2019年连续增长,且这两年的增长率相同,据统计2019年的年利润为125万元.若设这个相同的增长率为x,那么可列出的方程是.15.如图,AB∥DE,△ACB是等腰直角三角形,且∠C=90°,CB的延长线交DE于点G,则∠CGE=度.16.如图,在△ABC中,点D在AC边上且AD:DC=1:2,若,,那么=(用向量、表示).17.在平面直角坐标系xOy中,⊙C的半径为r,点P是与圆心C不重合的点,给出如下定义:若点P′为射线CP上一点,满足CP•CP′=r2,则称点P′为点P关于⊙C的反演点.如图为点P及其关于⊙C的反演点P′的示意图.写出点M (,0)关于以原点O为圆心,1为半径的⊙O的反演点M′的坐标.18.如图,底角为α的等腰△ABC绕着点B顺时针旋转,使得点A与边BC上的点D重合,点C与点E重合,联结AD、CE.已知tanα=,AB=5,则CE=.三.解答题:(本大题共7题,满分78分)19.计算:cos30°+|1﹣|﹣()﹣1.20.解方程:.21.已知:如图,在△ABC 中,∠ABC=45°,AD 是BC 边上的中线,过点D 作DE ⊥AB于点E ,且sin ∠DAB=,DB=3.求:(1)AB 的长;(2)∠CAB 的余切值.22.甲骑自行车从A 地出发前往B 地,同时乙步行从B 地出发前往A 地,如图所示,y 甲、y 乙分别表示甲、乙离开A 地y (km )与已用时间x (h )之间的关系,且直线y 甲与直线y 乙相交于点M .(1)求y 甲与x 的函数关系式(不必注明自变量x 的取值范围);(2)求A 、B 两地之间距离.23.如图,直角梯形ABCD 中,∠B=90°,AD ∥BC ,BC=2AD ,点E 为边BC 的中点. (1)求证:四边形AECD 为平行四边形;(2)在CD 边上取一点F ,联结AF 、AC 、EF ,设AC 与EF 交于点G ,且∠EAF=∠CAD .求证:△AEC ∽△ADF ;(3)在(2)的条件下,当∠ECA=45°时.求:FG :EG 的比值.24.如图,矩形OMPN 的顶点O 在原点,M 、N 分别在x 轴和y 轴的正半轴上,OM=6,ON=3,反比例函数y=的图象与PN 交于C ,与PM 交于D ,过点C 作CA ⊥x 轴于点A ,过点D 作DB ⊥y 轴于点B ,AC 与BD 交于点G .(1)求证:AB ∥CD ;(2)在直角坐标平面内是否若存在点E ,使以B 、C 、D 、E 为顶点,BC 为腰的梯形是等腰梯形?若存在,求点E 的坐标;若不存在请说明理由.25.如图,在△ABC中,AB=AC=6,BC=4,⊙B与边AB相交于点D,与边BC相交于点E,设⊙B的半径为x.(1)当⊙B与直线AC相切时,求x的值;(2)设DC的长为y,求y关于x的函数解析式,并写出定义域;(3)若以AC为直径的⊙P经过点E,求⊙P与⊙B公共弦的长.2019年上海市闸北区中考数学二模试卷参考答案与试题解析一.选择题:(本大题共6题,每题4分,满分24分)1.下列代数式中,属于分式的是()A.﹣3 B.C.D.﹣4a3b【考点】分式的定义.【分析】判断分式的依据是看分母中是否含有字母,如果含有字母则是分式,如果不含有字母则不是分式.【解答】解:A、3是整式,故A错误;B、a﹣b是整式,故B错误;C、是分式不是整式,故C正确;D、﹣4a3b是整式,故D错误;故选:C.2.的值为()A.2 B.﹣2 C.土2 D.不存在【考点】算术平方根.【分析】直接根据算术平方根的定义求解.【解答】解:因为4的算术平方根是2,所以=2.故选A.3.下列方程中,没有实数根的方程是()A.x2+2x﹣1=0 B.x2+2x+1=0 C.x2﹣x+2=0 D.x2﹣x﹣2=0【考点】根的判别式.【分析】分别求出每一个方程中判别式△的值,如果△<0,那么一元二次方程没有实数根.【解答】解:A、∵△=4+4=8>0,∴方程有两个不相等的两个实数根;B、∵△=4﹣4=0,∴方程有两个相等的两个实数根;C、∵△=1﹣8=﹣7<0,∴方程没有实数根;D、∵△=1+8=9>0,∴方程有两个不相等的两个实数根;故选C.4.方程组的解是()A.B.C.D.【考点】解二元一次方程组.【分析】本题解法有多种.可用加减消元法或代入消元法解方程组,解得x、y的值;也可以将A、B、C、D四个选项的数值代入原方程检验,能使每个方程的左右两边相等的x、y的值即是方程的解.【解答】解:将方程组中4x﹣y=13乘以2,得8x﹣2y=26①,将方程①与方程3x+2y=7相加,得x=3.再将x=3代入4x﹣y=13中,得y=﹣1.故选B.5.如图,已知∠BDA=∠CDA,则不一定能使△ABD≌△ACD的条件是()A.BD=DC B.AB=AC C.∠B=∠C D.∠BAD=∠CAD【考点】全等三角形的判定.【分析】全等三角形的判定定理有SAS,ASA,AAS,SSS,根据以上定理逐个判断即可.【解答】解:A、BD=DC,∠BDA=∠CDA,AD=AD,符合全等三角形的判定定理SAS,能推出△ABD≌△ACD,故本选项错误;B、AB=AC,∠BDA=∠CDA,AD=AD,不符合全等三角形的判定定理,不能推出△ABD ≌△ACD,故本选项正确;C、∠B=∠C,∠BDA=∠CDA,AD=AD,符合全等三角形的判定定理AAS,能推出△ABD ≌△ACD,故本选项错误;D、∠BDA=∠CDA,AD=AD,∠BAD=∠CAD,符合全等三角形的判定定理ASA,能推出△ABD≌△ACD,故本选项错误;故选B.6.若⊙O1与⊙O2相交于两点,且圆心距O1O2=5cm,则下列哪一选项中的长度可能为此两圆的半径?()A.1cm、2cm B.2cm、3cm C.10cm、15cm D.2cm、5cm【考点】圆与圆的位置关系.【分析】由各选项中⊙O1与⊙O2的半径以及圆心距O1O2=5cm,根据圆和圆的位置与两圆的圆心距、半径的数量之间的关系,得出⊙O1与⊙O2的位置关系即可求解.【解答】解:A、∵5>2+1,∴d>R+r,∴两圆外离,故本选项错误;B、∵5=2+3,∴d=R+r,∴两圆外切,故本选项错误;C、∵5=15﹣10,∴d=R﹣r,∴两圆内切,故本选项错误;D、∵5﹣2<5<5+2,∴R﹣r<d<R+r,∴两圆相交,故本选项正确;故选D.二.填空题:(本大题共12题,每题4分,满分48分)7.计算:a5÷a2=a3.【考点】同底数幂的除法.【分析】根据同底数幂相除,底数不变指数相减计算即可.【解答】解:a5÷a2=a5﹣2=a3.8.分解因式:3x2﹣6x=3x(x﹣2).【考点】因式分解-运用公式法.【分析】首先确定公因式为3x,然后提取公因式3x,进行分解.【解答】解:3x2﹣6x=3x(x﹣2).故答案为:3x(x﹣2).9.不等式组的解集是1<x<3.【考点】解一元一次不等式组.【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【解答】解:解不等式x+1>2,得:x>1,解不等式2x<6,得:x<3,∴不等式组的解集为:1<x<3,故答案为:1<x<3.10.函数y=的定义域是x≤1.【考点】函数自变量的取值范围;二次根式有意义的条件.【分析】本题主要考查自变量的取值范围,函数关系中主要有二次根式.根据二次根式的意义,被开方数是非负数.【解答】解:根据题意得:1﹣x≥0,解得x≤1.11.二次函数y=x2﹣2x+b的对称轴是直线x=1.【考点】二次函数的性质.【分析】将二次函数配方成顶点式即可确定对称轴方程.【解答】解:∵y=x2﹣2x+b=x2﹣2x+1+b﹣1=(x+1)2+b﹣1故对称轴是直线x=1.故答案为:1.12.袋子里有4个黑球,m个白球,它们除颜色外都相同.经过大量实验,从中任取一个球恰好是黑球的概率是,则m的值是4.【考点】概率公式.【分析】根据概率公式列出从中任取一个球恰好是黑球的概率公式,求出m的值即可.【解答】解:袋子里有4个黑球,m个白球,若从中任取一个球恰好是黑球的概率是,根据题意可得:=,解得m=4.故答案为:4.13.某中学九(1)班5个同学在体育测试“1分钟跳绳”项目中,跳绳个数如下:126,134,118,152,148.这组数据中,中位数是134.【考点】中位数.【分析】把这组数按从大到小(或从小到大)的顺序排列,因为数的个数是奇数个,所以中间哪个数就是中位数.【解答】解:按照从小到大的顺序排列为:118,126,134,148,152,中位数为:134.故答案为:134;14.某企业2019年的年利润为100万元,2019年和2019年连续增长,且这两年的增长率相同,据统计2019年的年利润为125万元.若设这个相同的增长率为x,那么可列出的方程是100(1+x)2=125.【考点】由实际问题抽象出一元二次方程.【分析】一般用增长后的量=增长前的量×(1+增长率),2019年年利润是100(1+x)万元,在2019年的基础上再增长x,就是2019年的年利润,即可列出方程.【解答】解:设增长率为x,根据题意2019年为100(1+x)万元,2019年为100(1+x)2万元.则100(1+x)2=125;故答案为:100(1+x)2=125.15.如图,AB∥DE,△ACB是等腰直角三角形,且∠C=90°,CB的延长线交DE于点G,则∠CGE=135度.【考点】平行线的性质;等腰直角三角形.【分析】先根据等腰直角三角形的性质求出∠ABC的度数,再由平行线的性质求出∠DGB 的度数,根据补角的定义即可得出结论.【解答】解:∵△ACB是等腰直角三角形,且∠C=90°,∴∠ABC=45°.∵AB∥DE,∴∠DGB=∠ABC=45°,∴∠CGE=180°﹣45°=135°.故答案为:135.16.如图,在△ABC中,点D在AC边上且AD:DC=1:2,若,,那么=2+2(用向量、表示).【考点】*平面向量.【分析】由,,直接利用三角形法则求解,即可求得,又由点D在AC边上且AD:DC=1:2,即可求得答案.【解答】解:∵,,∴=+=+,∵点D在AC边上且AD:DC=1:2,∴=2=2+2.故答案为:2+2.17.在平面直角坐标系xOy中,⊙C的半径为r,点P是与圆心C不重合的点,给出如下定义:若点P′为射线CP上一点,满足CP•CP′=r2,则称点P′为点P关于⊙C的反演点.如图为点P及其关于⊙C的反演点P′的示意图.写出点M (,0)关于以原点O为圆心,1为半径的⊙O的反演点M′的坐标(2,0).【考点】相似三角形的判定与性质;坐标与图形性质;点与圆的位置关系.【分析】根据点P′为射线CP上一点,满足CP•CP′=r2,点P′为点P关于⊙C的反演点列式计算即可.【解答】解:设点M′的坐标为(a,0),由题意得,a=12,解得,a=2,则设点M′的坐标为(2,0),故答案为:(2,0).18.如图,底角为α的等腰△ABC绕着点B顺时针旋转,使得点A与边BC上的点D重合,点C与点E重合,联结AD、CE.已知tanα=,AB=5,则CE=.【考点】旋转的性质;等腰三角形的性质.【分析】如图,作AH⊥BC于H,EF⊥BC于F,则BH=CH,先利用三角形函数的定义和勾股定理可计算出BH=4,则BC=2BH=8,再根据旋转的性质得∠CBE=α,BE=BC=8,接着在Rt△BEF中利用三角函数的定义可计算出EF和BF,然后在Rt△CEF中利用勾股定理计算CE.【解答】解:如图,作AH⊥BC于H,EF⊥BC于F,则BH=CH,在Rt△ABH中,tan∠ABH=tanα==,设AH=3t,则BH=4t,∴AB==5t,∴5t=5,解得t=1,∴BC=2BH=8,∵等腰△ABC绕着点B顺时针旋转,使得点A与边BC上的点D重合,∴∠CBE=α,BE=BC=8,在Rt△BEF中,tan∠EAF=tanα==,设AH=3x,则BH=4x,BE=5x,∴5x=8,解得x=,∴EF=,BF=,∴CF=8﹣=,在Rt△CEF中,CE==.故答案为.三.解答题:(本大题共7题,满分78分)19.计算:cos30°+|1﹣|﹣()﹣1.【考点】实数的运算;负整数指数幂;特殊角的三角函数值.【分析】原式第一项利用特殊角的三角函数值计算,第二项分母有理化,第三项利用绝对值的代数意义化简,最后一项利用负整数指数幂法则计算即可得到结果.【解答】解:原式=++﹣1﹣3=2﹣.20.解方程:.【考点】解分式方程.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:去分母得:x﹣5+x2﹣1=3x﹣3,整理得:(x﹣3)(x+1)=0,解得:x1=3,x2=﹣1,经检验x=﹣1是增根,分式方程的解为x=3.21.已知:如图,在△ABC中,∠ABC=45°,AD是BC边上的中线,过点D作DE⊥AB于点E,且sin∠DAB=,DB=3.求:(1)AB的长;(2)∠CAB的余切值.【考点】解直角三角形.【分析】(1)在Rt△BDE中,求得BE=DE=3,在Rt△ADE中,得到AE=4,根据线段的和差即可得到结论;(2)作CH⊥AB于H,根据已知条件得到BC=6,由等腰直角三角形的性质得到BH=CH=6,根据三角函数的定义即可得到结论.【解答】解:(1)在Rt△BDE中,DE⊥AB,BD=3∠ABC=45°,∴BE=DE=3,在Rt△ADE中,sin∠DAB=,DE=3,∴AE=4,AB=AE+BE=4+3=7;(2)作CH⊥AB于H,∵AD是BC边上是中线,BD=3,∴BC=6,∵∠ABC=45°,∴BH=CH=6,∴AH=7﹣6=1,在Rt △CHA 中,cot ∠CAB==.22.甲骑自行车从A 地出发前往B 地,同时乙步行从B 地出发前往A 地,如图所示,y 甲、y 乙分别表示甲、乙离开A 地y (km )与已用时间x (h )之间的关系,且直线y 甲与直线y 乙相交于点M .(1)求y 甲与x 的函数关系式(不必注明自变量x 的取值范围);(2)求A 、B 两地之间距离.【考点】一次函数的应用.【分析】(1)设y 甲=kx (k ≠0),由点M 的坐标利用待定系数法即可求出y 甲关于x 的函数关系式;(2)设y 乙=mx +n ,由函数图象得出点的坐标,结合点的坐标利用待定系数法即可求出y 乙关于x 的函数关系式,再令x=0求出y 值即可得出结论.【解答】解:(1)设y 甲=kx (k ≠0),∵点M (0.5,7.5)在直线y 甲的图象上,∴0.5k=7.5,解得:k=15.∴y 甲关于x 的函数关系式为y 甲=15x .(2)设y 乙=mx +n ,将点(0.5,7.5),点(2,0)代入函数关系式得:,解得:.∴y 乙关于x 的函数关系式为y 乙=﹣5x +10.令y 乙=﹣5x +10中x=0,则y=10.∴A 、B 两地之间距离为10千米.23.如图,直角梯形ABCD 中,∠B=90°,AD ∥BC ,BC=2AD ,点E 为边BC 的中点. (1)求证:四边形AECD 为平行四边形;(2)在CD 边上取一点F ,联结AF 、AC 、EF ,设AC 与EF 交于点G ,且∠EAF=∠CAD .求证:△AEC ∽△ADF ;(3)在(2)的条件下,当∠ECA=45°时.求:FG :EG 的比值.【考点】相似形综合题.【分析】(1)由E为BC中点,得到BC=2CE,再由BC=2AD,得到CE=AD,再由AD与CE平行,利用一组对边平行且相等的四边形为平行四边形即可得证;(2)由四边形AECD为平行四边形,得到对角相等,再由已知角相等,利用两对角相等的三角形相似即可得证;(3)设AD=BE=CE=a,由∠ECA=45°,得到△ABC为等腰直角三角形,即AB=BC=2a,在Rt△ABE中,根据勾股定理表示出AE,由三角形AEC与三角形ADF相似得比例,表示出DF.由CD﹣DF表示出CF,再由AE与DC平行得比例,即可求出所求式子之比.【解答】解:(1)∵BC=2AD,点E为BC中点,∴BC=2CE,∴AD=CE,∵AD∥CE,∴四边形AECD为平行四边形;(2)∵四边形AECD为平行四边形,∴∠D=∠AEC,∵∠EAF=∠CAD,∴∠EAC=∠DAF,∴△AEC∽△ADF,(3)设AD=BE=CE=a,由∠ECA=45°,得到△ABC为等腰直角三角形,即AB=BC=2a,∴在Rt△ABE中,根据勾股定理得:AE==a,∵△AEC∽△ADF,∴=,即=,∴DF=a,∴CF=CD﹣DF=a﹣a=a,∵AE∥DC,∴===.24.如图,矩形OMPN的顶点O在原点,M、N分别在x轴和y轴的正半轴上,OM=6,ON=3,反比例函数y=的图象与PN交于C,与PM交于D,过点C作CA⊥x轴于点A,过点D作DB⊥y轴于点B,AC与BD交于点G.(1)求证:AB∥CD;(2)在直角坐标平面内是否若存在点E,使以B、C、D、E为顶点,BC为腰的梯形是等腰梯形?若存在,求点E的坐标;若不存在请说明理由.【考点】反比例函数综合题.【分析】(1)首先求得C和D的坐标,证明=即可证得;(2)分成PN∥DB和CD∥AB两种情况进行讨论,即可求解.【解答】(1)证明:∵四边形OMPN是矩形,OM=6,ON=3,∴P的坐标是(6,3).∵点C和D都在反比例函数y=的图象上,且点C在PN上,点D在PM上,∴点C(2,3),点D(6,1).又∵DB⊥y轴,CA⊥x轴,∴A的坐标是(2,0),B的坐标是(0,1).∵BG=2,GD=4,CG=2,AG=1.∴=,==,∴=,∴AB∥CD;(2)解:①∵PN∥DB,∴当DE1=BC时,四边形BCE1D是等腰梯形,此时直角△CNB≌直角△E1PD,∴PE1=CN=2,∴点E1的坐标是(4,3);②∵CD∥AB,当E2在直线AB上,DE2=BC=2,四边形BCDE2为等腰梯形,直线AB的解析式是y=﹣x+1,∴设点E2(x,﹣x+1),DE2=BC=2,∴(x﹣6)2+(x)2=8,解得:x1=,x2=4(舍去).∴E2的坐标是(,﹣).25.如图,在△ABC中,AB=AC=6,BC=4,⊙B与边AB相交于点D,与边BC相交于点E,设⊙B的半径为x.(1)当⊙B与直线AC相切时,求x的值;(2)设DC的长为y,求y关于x的函数解析式,并写出定义域;(3)若以AC为直径的⊙P经过点E,求⊙P与⊙B公共弦的长.【考点】圆的综合题.【分析】(1)根据勾股定理,求出AG,再由割线定理,求出BH即可;(2)由相似得出比例式,表示出DF,CF,由勾股定理建立函数关系式;(3)根据圆的性质求出BE,CE,再用△BQP∽△BGE,求出EG即可,【解答】解:(1)作AG⊥BC,BH⊥AC,∵AB=AC,AG⊥BC,∴BG=CG=2,∴AG==4,∵AG×BC=BH×AC,∴BH==,∴当⊙B与直线AC相切时,x=;(2)作DF⊥BC,∴DF∥AG,∴,∴,∴DF=x,∴CF=4﹣x,在Rt△CFD中,CD2=DE2+CF2,∴y==(<x≤4),(3)①作PQ⊥BC,∵EF是⊙B,⊙P的公共弦,∵⊙P经过点E,∴PA=PE=PC,∴AE⊥BC,∵AC=AB,∴BE=CE=2,∵PQ∥AE,且P是AC中点,∴PQ=AE=2,CP=3,∴CQ=1,BQ=3,∴BP=,∵△BQP∽△BGE,∴,∴,∴EG=,∴EF=;②当点E,与点C重合时,EF=.2019年10月31日。
九年级数学学科期中练习卷〔2022.4〕 〔考试时间:100分钟,总分值:150分〕考生注意:1.本试卷含三个大题,共25题:2.答题时,考生务必按答题要求在答题纸规定的位置上作答,在草稿纸、本试卷上答题一律无效;3.除第一、二大题外,其余各题如无特别说明,都必须在答题纸的相应位置上写出证明或计算的主要步骤. 一、选择题:〔本大题共6题,每题4分,总分值24分〕【以下各题的四个选项中,有且只有一个选项是正确的,选择正确项的代号并填涂在答题纸的相应位置上.】1.根据国家统计局1月28日发布 2022年国民经济和社会开展统计公报 ,去年全年国内生产总值﹙GDP ﹚为397983亿元.用科学记数法保存三个有效数字为 (A)53.9710⨯亿元;(B)50.3910⨯亿元;(C)53.9810⨯亿元;(D)43.9810⨯亿元.2.某班50名学生的一次英语听力测试成绩分布如下表所示(总分值10分):这次听力测试成绩的众数是成绩(分) 0 1 2 3 4 5 6 7 8 9 10 人数(人)113561519(A)5分;(B)6分; (C)9分; (D)10分.3.以下各图是选自历届世博会会徽中的图案,其中只是轴对称图形的是4.设a >0,b >0,那么以下运算错误的选项是(A)ab a b =⋅;(B)a b a b +=+;(C)2()a a =; (D)a a b b=. 5.以下四边形①等腰梯形,②正方形,③矩形,④菱形的对角线一定相等的是 (A)①②③; (B)①②③④; (C)①②; (D)②③. 6.〔x 1, y 1〕,〔x 2, y 2〕,〔x 3, y 3〕是反比例函数4y x=-的图像上的三个点,且120x x <<,30x >,那么1y ,2y ,3y 的大小关系是(A)312y y y <<;(B)213y y y <<;(C)123y y y <<;(D)321y y y <<. 二、填空题:〔本大题共12题,每题4分,总分值48分〕【请将结果直接填入答题纸的相应位置.】 7.计算:124=▲.8.因式分解:32x x -=▲. 9.不等式组12336x x -≥-⎧⎨>-⎩的解是▲.10.方程(3)20x x -⋅-=的解是▲.11.函数1()1f x x =--,那么(2)f =▲. 12.将二次函数22y x =-+的图像向右平移1个单位后,所得图像的函数解析式是▲.(A ) (B)(C) (D)图1m +3 m 3图4 ABCDE图513.玉树地震灾区小朋友卓玛从某地捐赠的2种不同款式的书包和3种不同款式的文具盒中,分别取一个书包和一个文具盒进行款式搭配,不同搭配的可能有▲种. 14.如果a 与b 是互为相反向量,那么a b +=▲.15.如图1,边长为(m +3)的正方形纸片剪出一个边长为m 的正方形之后,剩余局部又剪拼成一个矩形(不重叠无缝隙),假设拼成的矩形一边长为3,那么另一边长是▲.16.等腰△ABC 中,AB =AC =5,CB =8,点G 是△ABC的重心,那么AG =▲. 17.如图2,一条公路的转弯处是一段圆弧(图中的AB ),点O是这段弧的圆心,C 是AB 上一点,OC ⊥AB ,垂足为点D , AB =300m ,CD =50m ,那么这段弯路的半径是▲m .18. 如图3,在边长为2的正方形ABCD 中,E ,F ,O 分别是AB ,CD ,AD 的中点,以点O 为圆心,以OE 为半径画弧EF ,P 是EF 上的一个动点,连结OP ,并延长OP 交线段 BC 于点K ,过点P 作⊙O 的切线,分别交射线AB 于点M , 交直线BC 于点G . 假设3=BMBG,那么BK =▲.三、解答题:(本大题共7题,总分值78分) 19.〔此题总分值10分〕计算:011712321339-⎛⎫+-+-- ⎪⎝⎭-cot 60︒.20.〔此题总分值10分〕解方程:2154111x x x x --=+--. 21.〔此题总分值10分〕2022年,世博会在我国的上海举行,在网上随机抽取了5月份中的某10天持票入园参观的人数,绘成下面的统计图.根据图4中的信息答复以下问题:(1)求出这10天持票入园人数的平均数、中位数和众数;(2)不考虑其它因素的影响,以这10天的数据作为样本,估计在世博会开馆的184天中,持票入园人数超过..30万人的有多少天 22.〔此题总分值10分,第〔1〕小题8分,第〔2〕小题2分〕四边形ABCD ,点E 是CD 上的一点,连接AE 、BE . (1)给出四个条件: ①AE 平分∠BAD ,②BE 平分∠ABC , ③AE ⊥EB ,④AB =AD +BC .请你以其中三个作为命题的条件, 写出一个能推出AD ∥BC 的正确命题,并加以证明;(2)请你判断命题“AE 平分∠BAD ,BE 平分∠ABC ,点E 是 CD 的中点,那么AD ∥BC 〞是否正确 23.〔此题总分值12分,每题4分〕AOD BFK E图3GMC P 图2如图6,矩形ABCD 中,BC =6,AB =8,延长AD 到点E ,使AE =15,连结BE 交AC 于点P .(1)求AP 的长;(2)假设以点A 为圆心,AP 为半径作⊙A ,试判断线段BE 与⊙A 的位置关系并说明理由; (3)以点A 为圆心,r 1为半径的动⊙A ,使点D 在动⊙A 的内部,点B 在动⊙A 的外部. ①求动⊙A 的半径r 1的取值范围;②假设以点C 为圆心,r 2为半径的动⊙C 与动⊙A24.〔此题总分值12分〕点P 的坐标为〔m ,0〕,在x 轴上存在点Q 〔不与P 点重合〕使点M 落在反比例函数2y x=-的图像上.符合上述条件的正方形只有两个,且一个正方形的顶点M 1M 在第二象限;(1)如图7所示,点P 坐标为〔1,0〕,图中已画出一 个符合条件的正方形PQMN ,请你在图中画出符合条件的 另一个正方形111PQ M N ,并写出点1M 的坐标;(2) 请你通过改变P 点的坐标,对直线1M M 的解析 式y ﹦kx +b 进行探究:①写出k 的值;②假设点P 的坐标为〔m ,0〕,求b 的值; (3) 依据(2)的规律,如果点P 的坐标为〔8,0〕,请 你求出点1M 和点M 的坐标.25.〔此题总分值14分,第〔1〕小题4分,第〔2〕小题5直线113y x =-+分别交x 轴、y 轴于A 、B 两点,△AOB 绕点O 按逆时针方向旋转90°后得到△COD ,抛物线2y ax bx c =++经过A 、C 、D 三点.(1) 写出点A 、B 、C 、D 的坐标;(2) 求经过A 、C 、D 三点的抛物线表达式,并求抛物线顶点G 的坐标;(3) 在直线BG 上是否存在点Q ,使得以点A 、B 、Q 为顶点的三角形与△COD 相似假设存在,请求出点Q 的坐标;假设不存在,请说明理由.图7 图8。
上海中考二模数学试题及答案一、选择题1. 若集合A = {1, 2, 3, 4, 5, 6, 7},B = {2, 4, 6, 8,10},则A ∩ B = ()A. {2, 4, 6}B. {1, 2, 3}C. {8, 10}D. {1, 3, 5, 7}2. 已知直线l与x轴交于点A,直线l与y轴交于点B,则下列说法中正确的是()A. 点(0, 0)在l上B. 点(0, 1)在l上C. A与B的横坐标之积小于0D. A、B的横坐标之积大于03. 方程(x-2)²-4 = 0的根是()A. 0B. 2C. 4D. 64. a1, a2, a3, ...是等差数列,若a1+a9=28,a5+a11=24,则该数列首项为()A. 1B. 2C. 3D. 45. 在Rt△ABC中,AB=12,AC=16,则BC的长度为()A. 4B. 8C. 12D. 16答案:1. A 2. D 3. B 4. C 5. B二、填空题1. 若a:b=2:3,且a:b:c=3:5:7,求c。
2. 设二次函数f(x)=-2x²+3x+4,若f(x)的图像与x轴交于点A、B,且AB=4,则A、B的横坐标分别为___。
3. 已知平行四边形ABCD中,AB=2a,AD=a+3,AC=4a-3,则BD 等于___。
4. 已知函数y=f(x)的图像关于原点对称,则f(-x)=___。
5. 若函数y=f(x)=ax²+x-1在区间[0, 1]上是增函数,则a的取值范围是___。
答案:1. 7 2. (-1, 3) 3. 2a-3 4. f(x) 5. a>0三、解答题1. 已知等差数列S的首项为a,公差为d,且S1 + S2 + S3 = 15,求S6的值。
解答:设等差数列的第n项是Sn,则有Sn = a + (n-1)d。
根据等差数列和公式,可以得到:S1 = aS2 = a + dS3 = a + 2dS6 = a + 5d给出条件S1 + S2 + S3 = 15,代入上面的式子可以得到:a + (a + d) + (a + 2d) = 153a + 3d = 15再考虑到S6 = a + 5d,将3a + 3d = 15带入可以得到:3a + 3d = 153(a + d) = 15a + d = 5将a + d = 5带入S6 = a + 5d:S6 = 5 + 5dS6 = 5(d + 1)所以S6的值为5(d + 1)。
2020-2021学年上海市中考二模数学试卷有答案初中毕业生学业模拟考试数学试卷(满分150分,完卷时间100分钟)考生注意:1.本试卷含三个大题,共25题;2.答题时,考生务必按答题要求在答题纸规定的位置上作答,在草稿纸、本试卷上答题一律无效;3.除第一、二大题外,其余各题如无特别说明,都必须在答题纸的相应位置上写出证明或计算的主要步骤.一、选择题:(本大题共6题,每题4分,满分24分)【下列各题的四个选项中,有且只有一个选项是正确的,选择正确项的代号并填涂在答题纸的相应位置上】 1.下列各根式中与3是同类二次根式的是……………………………………………()(A )9;(B )31;(C(D )30.2.下列运算中,正确的是…………………………………………………………………()(A )325x x x +=;(B )32x x x -=;(C )326x x x ?=;(D )32x x x ÷=.3.不等式组?≤>+103x x 的解集在数轴上表示正确的是…………………………………()4.已知一组数据123,,x x x 的平均数和方差分别为6和2,则数据1231,1,1x x x +++的平均数和方差分别是……………………………………………………………………………()(A )6和2;(B )6和3;(C )7和2;(D )7和3.5.顺次连结等腰梯形的各边中点所得到的四边形(A );(B ).(C )(D )是……………………………………()(A )平行四边形;(B )菱形;(C )矩形;(D )正方形.6.已知在△ABC 中,AB=AC=13,BC=10,如果以A 为圆心r 为半径的⊙A 和以BC为直径的⊙D相交,那么r的取值范围……………………………………………………………()(A )313r <<;(B )517r <<;(C )713r <<;(D )717r <<.二、填空题:(本大题共12题,每题4分,满分48分)【请将结果直接填入答题纸的相应位置上】7.因式分解:24a -= .81=的解为 .9.如果一元二次方程220x x a ++=有两个不相等的实数根,那么a 的取值范围是. 10.函数y =23x-中自变量x 的取值范围是_______. 11.将抛物线221y x =-向右平移2个单位,再向上平移2个单位所得抛物线的表达式是.12.如果反比例函数21k y x-=的图像在每个象限内y 随x 的增大而减小,那么k 的取值范围是.13.在等腰梯形、正五边形、平行四边形、矩形这4种图形中,任取一种图形,这个图形是中心对称图形的概率是.14.为了解某区初三学生的课余生活情况,调查小组在全区范围内随机抽取部分学生进行问卷调查. 问卷中请学生选择最喜欢的课余生活种类(每人只选一类),选项有音乐类、美术类、体育类及其他共四类,调查后将数据绘制成扇形统计图(如图所示). 如果该区有6000名初三学生,请你估计该区最喜欢体育运动的初三学生约有名.15.已知在△ABC 中,AB a AC b ==u u u r u u u r r r ,,M 是边BC 上的一点,:1:2BM CM =,用向量a ρ、b r表示AM u u u u r = .16.一公路大桥引桥长100米,已知引桥的坡度3:1=i ,那么引桥的铅直高度为米(结果保留根号).17.如果三角形有一边上的中线长恰好等于这边的长,那么称这个三角形为“有趣三角形”,这条中线称为“有趣中线”.已知Rt △ABC 中,∠C=90°,较短的一条直角边边长为1,如果Rt △ABC 是“有趣三角形”,那么这个三角形“有趣中线”32%其他16%音乐12%美术%体育(第14题图)CABD (第18题图)长等于 .18.如图,在Rt △ABC 中,90ACB ∠=?,AC=4,BC=3,点D 为AB 的中点,将△ACD 绕着点C 逆时针旋转,使点A 落在CB 的延长线A '处,点D 落在点D '处,则D B '长为.三、解答题:(本大题共7题,满分78分)19.(本题满分10分)11()24-20.(本题满分10分)解方程:213221x x x x +-=+.21.(本题满分10分,第(1)小题4分,第(2)小题6分)如图,已知在△ABC 中,AB=AC ,8BC =,tan 3ABC ∠=,AD ⊥BC 于D,(第21题图)O 是AD 上一点,OD=3,以OB 为半径的⊙O 分别交AB 、AC 于E 、F .求:(1)⊙O 的半径;(2)BE 的长.22.(本题满分10分,第(1)小题4分,第(2)小题6分)某市对火车站进行了大规模的改建,改建后的火车站除原有的普通售票窗口外,新增了自动打印车票的无人售票窗口.如图,线段OA 和OB 分别表示某日从上午8点到上午11点,每个普通售票窗口售出的车票数1w (张)和每个无人售票窗口售出的车票数2w (张)关于售票时间t (小时)的函数图象.(1)求1w (张)与t (小时)的函数解析式;(2)若当天开放无人售票窗口个数是普通售票窗口个数的2倍,从上午8点到上午11点,两种窗口共售出的车票数为2400张,求当天开放无人售票窗口的个数?23.(本题满分12分,每小题6分)如图,在正方形ABCD 中,E 是边CD 上一点,AF AE 交CB 的延长线于小时)(第22题图)(第23题图)(第24题图)点F ,联结DF ,分别交AE 、AB 于点G 、P. (1)求证:AE=AF ;(2)若∠BAF=∠BFD,求证:四边形APED 是矩形.24.(本题满分12分,第(1)小题3分,第(2)小题4分,第(3)小题5分)如图,在直角坐标平面内,直线5+-=x y 与x 轴和y 轴分别交于A 、B 两点,二次函数c bx x y ++=2的图象经过点A 、B (1)求这个二次函数的解析式;(2)求OCA ∠sin 的值;(3)若P 是这个二次函数图象上位于x 轴下方的一点,且?ABP 的面积为10,求点P(第25题图1)D ABFCE(第25题图2)DABFCEB(第25题备用图)25.(本题满分14分,第(1)小题3分,第(2)小题5分,第(3)小题6分)在ABC ?中,AC=25,35AB =,4tan 3A =,点D 为边AC 上一点,且AD=5,点E 、F 分别为边AB 上的动点(点F 在点E 的左边),且EDF A ∠=∠.设y AF x AE ==,.(1)如图1,当DF AB ⊥ 时,求AE 的长;(2)如图2,当点E 、F在边AB上时,求函数的定义域;的函数关系式,并写出关于x y (3)联结CE ,当相似时,和ADF DEC ??求x 的值.初中毕业生学业模拟考试答案及评分参考(满分150分,考试时间100分钟)一、选择题 (本大题共6题,每题4分,满分24分) 题号 1 2 3 45 6 答案BDACBD二、填空题 (本大题共12题,每题4分,满分48分)7、(2)(2)a a +-;8、x=1 ;9、a<1; 10、x ≠3 ; 11、22(2)1y x =-+ ;12、12k >;13、12 ;14、2400; 15、2133a b +r r;16、 17; 18 .19、解:原式=………………………………(8分)=2- …………………………………………………………(2分)20、解:设21x y x+=………………………………………(1分) 原方程化为232y y-= …………………………(1分)2230y y --=……………………………………(2分)解得123,1y y ==- ………………………………(2分)当213x x+=时解得1x = …………………………(1分)当211x x+=-时解得13x =- …………………………(1分)经检验1x =,13x =-都是原方程的根…………………………(1分)所以原方程的根为1x =,13x =-…………………………(1分) 21、解:(1)∵AB=AC, AD ⊥BC ∴BD=CD=4…………………………(2在RT BOD ?中∵OD=3∴OB=5…………………………(2分)(2)过O 点作,AB H OH AB ⊥交于又∵OH 过圆心O ∴BH=EH ……………………………………………(1分)∵在RT ABD ?中tan 3ADABD BD∠==,∴AD =12, AB=104……………………………………………(1分)(第21题图)∵OD=3 ∴AO=9∵,OAH BAD OHA ADB ∠=∠∠=∠ ∵AOH ?∽ABD ?∴AH AOAD AB=∴12AH =∴AH =2分)∴BH =……………………………………………………………………(1分)∴BE =……………………………………………………………………(1分)22、(1)设kt w =1(0≠k )………………………………………………………(1分)把240,3==w t 代入解得80=k …………………………………………………(2分)所以t w 801=…………………………………………………………………………(1分)(2)设当天开放无人售票窗口x 个,普通售票窗口x 21个………………………(1分)由题意得240018021240=+?x x ………………………………………………………(3分)解得8=x …………………………………………………………………………………(1分)答:当天开放无人售票窗口8个.………………………………………………………(1分)23、∵四边形ABCD 是正方形,∴090=∠=∠=∠DAB ABC ADE ,AB AD =,AD //BC ,AB //CD ………… (3分)∵AE AF ⊥∴090=∠EAF ∴BAE DAE ∠=∠…………………………………(1分)∴∴ABF ADE ………………………………………………………………… (1分)∴AF=AE ………………………………………………… ( 1分)2) ∵BFD BAF ∠=∠,∠DAE=∠BAF ∴∠BFP=∠EAD …(2分)∴AD //BC ∴∠ADF=∠CFD ∴∠ADF=∠DAG ∴GA=DG …………………(2分)∵∠AGP=∠DGE∴DGE AGP ………………………………………………(1分)∴DE AP =又∵AP //ED ∴四边形APED 是平行四边形………………………………(2分)∵∠ADE=900, ∴四边形APED矩形……………………………………………………………………(1分)24.解:(1)由直线5+-=x y 得点B(0,5),A(5,0),…………………………(1分)将A 、B 两点的坐标代入c bx x y ++=2,得 ?=++=05255c b c ………… (1分)解得??=-=56c b …………………………………………………………………(1分)∴抛物线的解析式为562+-=x x y ………………………………………(1分)(2)过点C 作轴x CH ⊥交x 轴于点H把562+-=x x y 配方得2(3)4y x =--∴点C(3,-4),…………………(1分)∴CH=4,AH=2,AC=52∴OC=5,…………………(1分)∵OA=5∴OA=OC ∴OCA OAC ∠=∠………………………(1分)OCA ∠sin =552524sin ===∠AC CH OAC ………………………(1分)(3)过P 点作PQ ⊥x 轴并延长交直线5+-=x y 于Q 设点P 56,(2+-m mm ),Q(m,-m+5))56(52+--+-=m m m PQ =m m 5-2+…………………(1分)∵PQA PQB ABP S S S += ∴)(2121212121h h PQ h PQ h PQ S ABP +??=??+??= …………………(1分)∴5)5(21102?+-=m m ∴4,121==m m …………………(1分)∴P(1,0)(舍去),P (4,-3)…………………(1分)25.(1)∵DF AB ⊥,∴90AFD ∠=? ,∴90A ADF ∠+∠=?∵EDF A ∠=∠,∴90EDF ADF ∠+∠=?,即90ADF ∠=?……(1分)在090,5Rt ADE ADE AD ?∠==中,,34tan =A ∴203DE = ………………………………………………………………(1分)∴253AE = ……………………………………………………………………(1分)(2)过点D 作G AB AB DG 于交,⊥ ∵ADEEDF ∠=∠,AEDDEF ∠=∠∴EDF∽EAD ?…………(1分)∴EDAEEF ED =∴EF AE ED ?=.2…………………………………………(1分)∴090,10RT AGD AGD AD ?∠==中,,34tan =A ∴86DG AG ==,∴6EG x =-∴2224x-3)DE =+(……………………(1分)∴)(3(422y x x x -?=-+)∴xy 256-=……………………………………………………………………(1分)(2535)6x ≤≤)…………………………………………………………………(1分)(3)∵A AFD EDF EDC ∠+∠=∠+∠,且EDF A ∠=∠.∴AFD EDC ∠=∠…………………………………………………………………(2分)01当时CED A ∠=∠∵EDF A ∠=∠,又∵FDE CED ∠=∠ ∴DF //CE ∴AE AF AC AD =∴x y =255∵x y 256-=∴x x=)25-65(5,2521==x x ………………………………………………………………(2分)02当时DCE A ∠=∠∵A EDF ∠=∠,∴ECD ?∽DAF ? ∴AD CE AF CD =∴520x y =∵x y 256-=∴x x=)25-65(∴6125=x ………………………………………………………………(2分)综上当相似时,和ADF DEC ??5,2521==x x 6125=x .。
2015学年第二学期九年级质量抽测卷数 学 卷(满分150分,考试时间100分钟)考生注意:1、本试卷含三个大题,共25题;2、答题时,考生务必按答题要求在答题纸规定的位置上作答,在草稿纸、本试卷上答题一律无效;3、除第一、二大题外,其余各题如无特别说明,都必须在答题纸的相应位置上写出证明或计算的主要步骤.一.选择题:(本大题共6题,每题4分,满分24分)【下列各题的四个选项中,有且只有一个选项是正确的,选择正确项的代号并填涂在答题纸的相应位置上】1.下列代数式中,属于分式的是……………………………………………………( ▲ ) (A )3- ; (B )12a b - ; (C )1x; (D )34a b -. 2.4的值为…………………………………………………………………………( ▲ ) (A )2 ;(B )2-;(C )2±;(D )不存在.3.下列方程中,没有实数根的方程是………………………………………………( ▲ ) (A )2210x x +-=; (B )2210x x ++=; (C )220x x -+=;(D )220x x --=.4.方程组⎩⎨⎧=-=+134723y x y x 的解是………………………………………………………( ▲ )(A )⎩⎨⎧=-=31y x ; (B )⎩⎨⎧-==13y x ; (C ) ⎩⎨⎧-=-=13y x ; (D )⎩⎨⎧-=-=31y x .5.如图,已知∠BDA =∠CDA ,则不一定...能使△ABD ≌△ACD 的条件是………( ▲ ) (A )BD =DC (B )AB =AC (C )∠B =∠C (D )∠BAD =∠CAD6.若1O e 与2O e 相交于两点,且圆心距125O O =cm ,则下列 哪一选项中的长度可能为此两圆的半径?…………………( ▲ ) (A )1cm 、2cm ; (B )2cm 、3cm ; (C )10cm 、 15cm ; (D )2cm 、 5cm .CDAB(第5题图)二.填空题:(本大题共12题,每题4分,满分48分) 【请将结果直接填入答题纸的相应位置上】 7.计算:52a a ÷= ▲ . 8.分解因式:236x x -= ▲ .9.不等式组1226x x +>⎧⎨<⎩的解集是 ▲ .10.函数1y x =-的定义域是 ▲ .11.二次函数22y x x b =-+的对称轴是直线x = ▲ .12.袋子里有4个黑球,m 个白球,它们除颜色外都相同.经过大量实验,从中任取一个球恰好是黑球的概率是12,则m 的值是 ▲ . 13.某中学九(1)班5个同学在体育测试“1分钟跳绳”项目中,跳绳个数如下:126,134,118,152,148.这组数据中,中位数是 ▲ .14.某企业2013年的年利润为100万元,2014年和2015年连续增长,且这两年的增长率相同,据统计2015年的年利润为125万元.若设这个相同的增长率为x ,那么可列出的方程是 ▲ .15.如图,AB ∥DE ,△ACB 是等腰直角三角形,且∠C = 90°, CB 的延长线交DE 于点G ,则∠CGE= ▲ 度. 16.如图,在△ABC 中,点D 在AC 边上且AD:DC=1:2,若AB m =u u u r u r ,BD n =u u u r r ,那么DC u u u r= ▲ (用向量m 、n 表示).17.在平面直角坐标系xOy 中,⊙C 的半径为r ,点P 是与圆心 C 不重合的点,给出如下定义:若点'P 为射线..CP 上一点,满足2r 'CP CP =⋅,则称点'P 为点P 关于⊙C 的反演点.如图为点P 及其关于⊙C 的反演点'P 的示意图.写出点M (12,0)关于以原 点O 为圆心,1为半径的⊙O 的反演点'M 的坐标 ▲ .18.如图,底角为α的等腰△ABC 绕着点B 顺时针旋转, 使得点A 与边BC 上的点D 重合,点C 与点E 重合,联结 AD 、CE .已知tan α=34,AB=5,则CE= ▲ . 三.解答题:(本大题共7题,满分78分)(第18题图) αCB A(第16题图)ABD(第15题图)A CD EB G xyP' CPO(第21题图)DABCE 19.(本题满分10分)计算:11cos3013331-⎛⎫++-- ⎪-⎝⎭o.20.(本题满分10分)解方程:253111x x x -+=-+.21.(本题满分10分,第(1)小题5分,第(2)小题5分) 已知:如图,在△ABC 中,∠ABC=45°,AD 是BC 边上的中线,过点D 作DE ⊥AB 于点E ,且sin∠DAB=53,DB=32.求:(1)AB 的长; (2)∠CAB 的余切值.22.(本题满分10分,第(1)小题4分,第(2)小题6分)甲骑自行车从A 地出发前往B 地,同时乙步行从B 地 出发前往A 地,如图所示,y 甲、y 乙分别表示甲、乙离开A 地y (km )与已用时间x (h )之间的关系,且直线y 甲与直线y 乙相 交于点M .(1)求y 甲与x 的函数关系式(不必注明自变量x 的取值范围);(2)求A 、B 两地之间距离.23.(本题满分12分,第(1)小题4分,第(2)小题4分,第(3)小题4分)(第22题图)x (h)My 乙y 甲y (km)O 27.50.5如图,直角梯形ABCD 中,∠B=90°,AD ∥BC ,BC=2AD ,点E 为边BC 的中点. (1)求证:四边形AECD 为平行四边形;(2)在CD 边上取一点F ,联结AF 、 AC 、 EF ,设AC 与EF 交于点G ,且∠EAF=∠CAD.求证:△AEC ∽△ADF ;(3)在(2)的条件下,当∠E CA=45°时.求:FG:EG 的比值.24.(本题满分12分,第(1)小题6分,第(2)小题6分)如图,矩形OMPN 的顶点O 在原点,M 、N 分别在x 轴和y 轴的正半轴上,OM=6,ON=3,反比例函数xy 6的图像与PN 交于C ,与PM 交于D ,过点C 作CA⊥x 轴于点A ,过点D 作DB⊥y 轴于点B ,AC 与BD 交于点G . (1)求证:AB//CD ;(2)在直角坐标平面内是否若存在点E ,使以 B 、C 、D 、E 为顶点,BC 为腰的梯形是等腰梯 形?若存在,求点E 的坐标;若不存在请说明理由.25.(本题满分14分,第(1)小题4分,第(2)小题4分,第(3)小题6分)如图,在△ABC 中,AB=AC=6,BC=4,⊙B 与边AB 相交于点D ,与边BC 相交于点E ,设⊙B 的半径为x .(1)当⊙B 与直线AC 相切时,求x 的值;(2)设DC 的长为y ,求y 关于x 的函数解析式,并写出定义域; (3)若以AC 为直径的⊙P 经过点E ,求⊙P 与⊙B 公共弦的长.CB ADE (第25题图)(第23题图)ABCED FGG O yAxB CD NPM2015学年第二学期九年级质量抽测卷数 学 卷参考答案与评分标准一.选择题:(本大题共6题,每题4分,满分24分)1.C ; 2.A ; 3.C ; 4.B ; 5.B ; 6. D . 二.填空题:(本大题共12题,每题4分,满分48分)7.3a ; 8.3x (x -2); 9.1<x <3; 10.x ≤1; 11. 1; 12.4;13.134; 14.2100(1)125x +=; 15.135; 16.22m n +u r r ;17.(2,0); 18.8105.三.解答题:(本大题共7题,满分78分) 19.(本题满分10分)解:原式=331313+++-- ……………………2分×4=8分 =7232- ………………………………………2分20.(本题满分10分)解:2513(1)x x x -+-=- ………………………………3分2230x x --= ………………………………………3分 x-3)(x+1)=0(解得x 1=3,x 2=-1 …………………………………2分 经检验,x =-1是增根,舍去, ……………………1分 ∴原方程的解为x =3 …………………………………1分 21.(本题满分10分,第(1)小题5分,第(2)小题5分) 解(1)在Rt△BDE 中,DE ⊥AB ,BD =32 ∴BE =DE =3,……………………………………2分 在Rt△ADE 中,sin∠DAB=35,DE =3, ∴AE =4, …………………………………………2分 ∴AB =AE +BE =4+3=7 ………………………1分 (2)作CH ⊥AB ,垂足为H …………………………1分 ∵AD 是BC 边上的中线,DB =32∴BC =62, …………………………………1分 ∵∠ABC=45°,∴BH =CH =6,…………………1分 ∴AH =7-6=1 ……………………………………1分 即在Rt△C HA 中,1cot 6AH CABCH ?= ………1分 22.(本题满分10分,第(1)小题4分,第(2)小题6分) 解:(1)设=(0)y kx k 甲¹ ………………………………1分 则0.5k =7.5,∴k =15, ………………………2分 ∴15y x =甲.……………………………………1分 (2)解法一:设=+(0)y kx b k 甲¹……………………………1分把点(1.5,7.5)、(2,0)分别代入,得:(第21题图)DA BE H(第22题图)x (h)My 乙y 甲y (km)O27.50.57.5=0.502k bk b ì+ïí=+ïî …………………………………2分 解得510k b ì=-ïí=ïî∴=510y x 乙-+ ………………………………2分∴AB =5×2=10km . …………………………1分解法二:设乙的速度为v km/h , ………………………1分则2v =0.5v +7.5 ……………………………2分∴v =5 …………………………………………1分∴AB =5×2=10km . ………………………2分 23.(本题满分12分,第(1)小题4分,第(2)小题4分,第(3)小题4分) 解:(1)∵AD ∥BC ,BC =2AD ,点E 是BC 上的中点,∴BC =2CE ………………1分∴AD =CE , ………………………………………2分∴四边形AECD 为平行四边形.……………………1分(2)∵四边形AECD 是平行四边形∴∠D=∠AEC,………………………………………2分又∠EAF=∠CAD,∴∠EAC=∠DAF, …………1分∴△AEC ∽△ADF …………………………………1分 (3)设AD =a ,则BC =2a ,又∵∠ECA=45°,∠B=90°, ∴AB =BC =2a ,AE =DC =5a∵△AEC ∽△ADF∴AE ECAD DF=,即5a a DF =,∴5DF a =,……………………1分 ∴5455CF DC DF a a a =-=-=. ……………………1分 ∵AE ∥DC∴FG FCEG AE ==454555aa=.……………………………………………2分24.(本题满分12分,第(1)小题6分,第(2)小题6分) 解:∵矩形OMPN ,OM =6,ON =3∴点P (6,3) ∵点C 、D 都在反比例函数6y x=图像上, 且点C 在PN 上,点D 在PM 上, ∴点C (2,3),点D (6,1)………………2分 又DB ⊥y 轴,CA ⊥x 轴, ∴A (2,0),B (0,1)∵BG =2,GD =4,CG =2,AG =1 ∴12AG GC =, 2142BG GD ==…………………2分 (第23题图)AB CE DF GOyAx B CD N P M G∴=AG BGGC GD…………………………………1分 ∴AB ∥CD . …………………………………1分 又解:求直线CD 的解析式为142y x =-+,直线AB 的解析式为112y x =-+. 因为两直线的斜率相等,在y 轴上的截距不等,所以两直线平行.(酌情给分)(2)①∵PN ∥DB∴当DE 1=BC 时,四边形BCE 1D 是等腰梯形此时Rt △CNB ≌△Rt △E 1PD , ∴PE 1=CN =2,∴点E 1(4,3) ………………………2分②∵CD ∥AB ,当E 2在直线AB 上,DE 2=BC =22, 四边形BCDE 2为等腰梯形, 直线AB 的解析式为112y x =-+……1分 ∴设点E 2(x ,112x -+)DE 2=BC=22,∴8)21()6(22=+-x x ………………1分5281=x ,42=x (舍去) ∴E 2(528,59-); ………………2分25.(本题满分14分,第(1)小题4分,第(2)小题4分,第(3)小题6分) 解:(1)作AG ⊥BC 于G ,BH ⊥AC 于H , ………………1分∵AB =AC ,AG ⊥BC ,∴BG =GC =2,…………1分 ∴AG 22226242AC CG --=1分 又AG ·BC =BH ·AC ,∴42482AG BC BH AC 状==1分 ∴当⊙B 与直线AC 相切时.823x =(2)作DF ⊥BC 于F ,则DF ∥AG ,∴BD DFAB AG=, 即642x =,∴223DF x =………………1分 1sin 3BF BD B x =?, ∴CF =4-13x , …………………………1分(第24题图)Oy Ax B C D N P MG E 1 E 2HAB H EF BDAG (第24题图)OyAxB CDN P GE 1E 2在Rt △CFD 中,CD 2=DF 2+CF 2∴22122(4)()33y x x =-+ =28163x x -+…………………………1分(0<x ≤4). ………………………………1分(3)解法一:作PQ ⊥BC 于Q . ……………………………1分∵EF 是⊙B 、⊙P 的公共弦, ∴BP ⊥EF ,且EG =FG ,∵⊙P 经过点E ,∴PA =PE =PC , ∴AE ⊥BC ,又AC =AB ,∴BE =EC =2∵PQ ∥AE ,且P 是AC 的中点 ∴PQ =1222AE =,CP =3, ∴CQ =1,BQ =3,∴BP =17 …………………………………1分 设BP 交EF 于点H设m B H =,由2222PH PE BH BE -=-,2222)m 17(3m 2--=-………………………………………………1分解得4m 3417=,∴EF=82m 3417=…………………………………………………………1分解法二:作PQ ⊥BC 于Q .…………………………………………………1分 ∵EF 是⊙B 、⊙P 的公共弦, ∴BP ⊥EF ,且EG =FG ,∵⊙P 经过点E ,∴PA =PE =PC ,∴AE ⊥BC , 又AC =AB ,∴BE =EC =2 ∵PQ ∥AE ,且P 是AC 的中点,∴PQ =1222AE =,CP =3,∴CQ =1,BQ =3,∴BP =17…………………………………………………………1分而Rt △BQP ∽Rt △BGE , …………………………………………1分 ∴EG BE PQ BP =,即2217=,∴43417EG =∴公共弦EF =83417………………………………………………1分E FB C D AQ P G E F BCDAQ PH当点E 和点C 重合时,341716EF ……………………………2分。