2016年中考数学复习专题 选择填空题(1)
- 格式:doc
- 大小:646.33 KB
- 文档页数:7
山西省中考数学计算真题汇总一.选择题(共1小题)1.分式方程的解为()A.x=﹣1 B.x=1 C.x=2 D.x=3二.填空题(共8小题)2.不等式组的解集是.3.化简的结果是.4.计算:=.5.计算:9x3÷(﹣3x2)=.6.方程=0的解为x=.7.方程的解是x=.8.分解因式:5x3﹣10x2+5x=.9.分解因式:ax4﹣9ay2=.三.解答题(共21小题)10.(1)计算:(﹣3)2﹣()﹣1﹣×+(﹣2)0(2)先化简,再求值:﹣,其中x=﹣2.11.解方程:2(x﹣3)2=x2﹣9.12.(1)计算:(﹣3﹣1)×﹣2﹣1÷.(2)解方程:=﹣.13.阅读与计算:请阅读以下材料,并完成相应的任务.斐波那契(约1170﹣1250)是意大利数学家,他研究了一列数,这列数非常奇妙,被称为斐波那契数列(按照一定顺序排列着的一列数称为数列).后来人们在研究它的过程中,发现了许多意想不到的结果,在实际生活中,很多花朵(如梅花、飞燕草、万寿菊等)的瓣数恰是斐波那契数列中的数.斐波那契数列还有很多有趣的性质,在实际生活中也有广泛的应用.斐波那契数列中的第n个数可以用[﹣]表示(其中,n≥1).这是用无理数表示有理数的一个范例.任务:请根据以上材料,通过计算求出斐波那契数列中的第1个数和第2个数.14.(1)计算:(﹣2)2•sin60°﹣()﹣1×;(2)分解因式:(x﹣1)(x﹣3)+1.15.解不等式组并求出它的正整数解:.16.(1)计算:sin45°﹣()0;(2)下面是小明化简分式的过程,请仔细阅读,并解答所提出的问题.解:﹣=﹣…第一步=2(x﹣2)﹣x+6…第二步=2x﹣4﹣x﹣6…第三步=x+2…第四步小明的解法从第步开始出现错误,正确的化简结果是.17.解方程:(2x﹣1)2=x(3x+2)﹣7.18.(1)计算:.(2)先化简,再求值.(2x+3)(2x﹣3)﹣4x(x﹣1)+(x﹣2)2,其中x=﹣.19.解方程:.20.(1)先化简.再求值:,其中.(2)解不等式组:,并把它的解集表示在数轴上.21.(1)计算:°+(2)先化简,再求值:•,其中x=﹣3.22.化简:23.(1)计算:(x+3)2﹣(x﹣1)(x﹣2)(2)化简:(3)解方程:x2﹣2x﹣3=024.计算:(3﹣π)0+4sin45°﹣+|1﹣|.25.解不等式组:.26.计算:()﹣2﹣(π﹣)0+|﹣2|+4sin60°.27.已知2a2+3a﹣6=0.求代数式3a(2a+1)﹣(2a+1)(2a﹣1)的值.28.解不等式组,并写出它的所有非负整数解.29.计算:(6﹣π)0+(﹣)﹣1﹣3tan30°+|﹣|30.已知x﹣y=,求代数式(x+1)2﹣2x+y(y﹣2x)的值.山西省中考数学计算真题汇总参考答案与试题解析一.选择题(共1小题)1.(2011•山西)分式方程的解为()A.x=﹣1 B.x=1 C.x=2 D.x=3【分析】观察可得最简公分母是2x(x+3),方程两边乘最简公分母,可以把分式方程转化为整式方程求解.【解答】解:方程的两边同乘2x(x+3),得x+3=4x,解得x=1.检验:把x=1代入2x(x+3)=8≠0.∴原方程的解为:x=1.故选B.【点评】本题考查了分式方程的解法,注:(1)解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.(2)解分式方程一定注意要验根.二.填空题(共8小题)2.(2012•山西)不等式组的解集是﹣1<x≤3.【分析】先求出两个不等式的解集,再求其公共解.【解答】解:,解不等式①得,x>﹣1,解不等式②得,x≤3,所以不等式组的解集是﹣1<x≤3.【点评】本题主要考查了一元一次不等式组解集的求法,其简便求法就是用口诀求解.求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解).3.(2012•山西)化简的结果是.【分析】将原式第一项的第一个因式分子利用平方差公式分解因式,分母利用完全平方公式分解因式,第二个因式的分母提取x分解因式,约分后将第一项化为最简分式,然后利用同分母分式的加法法则计算后,即可得到结果.【解答】解:•+=•+=+=.故答案为:.【点评】此题考查了分式的混合运算,分式的加减运算关键是通分,通分的关键是找最简公分母;分式的乘除运算关键是约分,约分的关键是找公因式,约分时分式的分子分母出现多项式,应先将多项式分解因式后再约分.4.(2011•山西)计算:=.【分析】根据负指数幂、二次根式化简、特殊角的三角函数3个考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.【解答】解:原式=3+0.5﹣6×=,故答案为.【点评】本题是基础题,考查了实数的有关运算,还涉及了零指数幂、负指数幂、二次根式化简、绝对值等考点.5.(2010•山西)计算:9x3÷(﹣3x2)=﹣3x.【分析】根据单项式的除法和同底数幂相除,底数不变,指数相减,进行计算.【解答】解:9x3÷(﹣3x2)=﹣3x.【点评】本题主要考查单项式的除法,同底数幂的除法,熟练掌握运算法则和性质是解题的关键.6.(2010•山西)方程=0的解为x=5.【分析】观察可得最简公分母是(x+1)(x﹣2),方程两边乘以最简公分母,可以把分式方程化为整式方程,再求解.【解答】解:方程两边同乘以(x+1)(x﹣2),得2(x﹣2)﹣(x+1)=0,解得x=5.经检验:x=5是原方程的解.【点评】(1)解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.(2)解分式方程一定注意要验根.7.(2009•太原)方程的解是x=5.【分析】本题最简公分母为2x(x﹣1),去分母,转化为整式方程求解.结果要检验.【解答】解:方程两边同乘2x(x﹣1),得4x=5(x﹣1),去括号得4x=5x﹣5,移项得5x﹣4x=5,合并同类项得x=5.经检验x=5是原分式方程的解.【点评】解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解,解分式方程一定注意要验根.8.(2015•北京)分解因式:5x3﹣10x2+5x=5x(x﹣1)2.【分析】先提取公因式5x,再根据完全平方公式进行二次分解.【解答】解:5x3﹣10x2+5x=5x(x2﹣2x+1)=5x(x﹣1)2.故答案为:5x(x﹣1)2.【点评】本题考查了提公因式法,公式法分解因式,提取公因式后利用完全平方公式进行二次分解,注意分解要彻底.9.(2014•北京)分解因式:ax4﹣9ay2=a(x2﹣3y)(x2+3y).【分析】首先提取公因式a,进而利用平方差公式进行分解即可.【解答】解:ax4﹣9ay2=a(x4﹣9y2)=a(x2﹣3y)(x2+3y).故答案为:a(x2﹣3y)(x2+3y).【点评】此题主要考查了提公因式法与公式法的综合运用,正确利用平方差公式是解题关键.三.解答题(共21小题)10.(2016•山西)(1)计算:(﹣3)2﹣()﹣1﹣×+(﹣2)0(2)先化简,再求值:﹣,其中x=﹣2.【分析】(1)根据实数的运算顺序,首先计算乘方和乘法,然后从左到右依次计算,求出算式(﹣3)2﹣()﹣1﹣×+(﹣2)0的值是多少即可.(2)先把﹣化简为最简分式,再把x=﹣2代入求值即可.【解答】解:(1)(﹣3)2﹣()﹣1﹣×+(﹣2)0=9﹣5﹣4+1=1(2)x=﹣2时,﹣=﹣=﹣===2【点评】(1)此题主要考查了实数的运算,要熟练掌握,解答此题的关键是要明确:在进行实数运算时,和有理数运算一样,要从高级到低级,即先算乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到右的顺序进行.另外,有理数的运算律在实数范围内仍然适用.(2)此题还考查了零指数幂的运算,要熟练掌握,解答此题的关键是要明确:①a0=1(a ≠0);②00≠1.(3)此题还考查了分式的化简求值,要熟练掌握,解答此题的关键是要明确:一般是先化简为最简分式或整式,再代入求值.化简时不能跨度太大,而缺少必要的步骤.(4)此题还考查了负整数指数幂的运算,要熟练掌握,解答此题的关键是要明确:①a﹣p=(a≠0,p为正整数);②计算负整数指数幂时,一定要根据负整数指数幂的意义计算;③当底数是分数时,只要把分子、分母颠倒,负指数就可变为正指数.11.(2016•山西)解方程:2(x﹣3)2=x2﹣9.【分析】方程移项后,提取公因式化为积的形式,然后利用两数相乘积为0,两因式中至少有一个为0转化为两个一元一次方程来求解.【解答】解:方程变形得:2(x﹣3)2﹣(x+3)(x﹣3)=0,分解因式得:(x﹣3)(2x﹣6﹣x﹣3)=0,解得:x1=3,x2=9.【点评】此题考查了解一元二次方程﹣因式分解法,熟练掌握因式分解法是解本题的关键.12.(2015•山西)(1)计算:(﹣3﹣1)×﹣2﹣1÷.(2)解方程:=﹣.【分析】(1)原式先计算乘方运算,再计算乘除运算,最后算加减运算即可得到结果;(2)分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:(1)原式=﹣4×﹣÷(﹣)=﹣9+4=﹣5;(2)去分母得:2=2x﹣1﹣3,解得:x=3,经检验x=3是分式方程的解.【点评】此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.13.(2015•山西)阅读与计算:请阅读以下材料,并完成相应的任务.斐波那契(约1170﹣1250)是意大利数学家,他研究了一列数,这列数非常奇妙,被称为斐波那契数列(按照一定顺序排列着的一列数称为数列).后来人们在研究它的过程中,发现了许多意想不到的结果,在实际生活中,很多花朵(如梅花、飞燕草、万寿菊等)的瓣数恰是斐波那契数列中的数.斐波那契数列还有很多有趣的性质,在实际生活中也有广泛的应用.斐波那契数列中的第n个数可以用[﹣]表示(其中,n≥1).这是用无理数表示有理数的一个范例.任务:请根据以上材料,通过计算求出斐波那契数列中的第1个数和第2个数.【分析】分别把1、2代入式子化简求得答案即可.【解答】解:第1个数,当n=1时,[﹣]=(﹣)=×=1.第2个数,当n=2时,[﹣]=[()2﹣()2]=×(+)(﹣)=×1×=1.【点评】此题考查二次根式的混合运算与化简求值,理解题意,找出运算的方法是解决问题的关键.14.(2014•山西)(1)计算:(﹣2)2•sin60°﹣()﹣1×;(2)分解因式:(x﹣1)(x﹣3)+1.【分析】(1)本题涉及零指数幂、乘方、特殊角的三角函数值、二次根式化简四个考点.针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果;(2)根据整式的乘法,可得多项式,根据因式分解的方法,可得答案.【解答】解:(1)原式=2﹣2×=﹣2;(2)原式=x2﹣4x+3+1=(x﹣2)2.【点评】本题考查实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟记特殊角的三角函数值,熟练掌握负整数指数幂、零指数幂、二次根式、绝对值等考点的运算.15.(2014•山西)解不等式组并求出它的正整数解:.【分析】先求出不等式组中每一个不等式的解集,再求出它们的公共部分就是不等式组的解集.【解答】解:解①得:x>﹣,解②得:x≤2,则不等式组的解集是:﹣<x≤2.则正整数解是:1,2【点评】本题考查的是一元一次不等式组的解,解此类题目常常要结合数轴来判断.还可以观察不等式的解,若x>较小的数、<较大的数,那么解集为x介于两数之间.16.(2013•山西)(1)计算:sin45°﹣()0;(2)下面是小明化简分式的过程,请仔细阅读,并解答所提出的问题.解:﹣=﹣…第一步=2(x﹣2)﹣x+6…第二步=2x﹣4﹣x﹣6…第三步=x+2…第四步小明的解法从第二步开始出现错误,正确的化简结果是.【分析】(1)根据特殊角的三角函数值,0指数幂的定义解答;(2)先通分,后加减,再约分.【解答】(1)解:原式=×﹣1=1﹣1=0.(2)解:﹣=﹣====.于是可得,小明的解法从第二步开始出现错误,正确的化简结果是.故答案为二,.【点评】(1)本题考查了特殊角的三角函数值,0指数幂,是一道简单的杂烩题;(2)本题考查了分式的加减,要注意,不能去分母.17.(2013•太原)解方程:(2x﹣1)2=x(3x+2)﹣7.【分析】根据配方法的步骤先把方程转化成标准形式,再进行配方即可求出答案.【解答】解:(2x﹣1)2=x(3x+2)﹣7,4x2﹣4x+1=3x2+2x﹣7,x2﹣6x=﹣8,(x﹣3)2=1,x﹣3=±1,x1=2,x2=4.【点评】此题考查了配方法解一元二次方程,掌握配方法的一般步骤:(1)把常数项移到等号的右边;(2)把二次项的系数化为1;(3)等式两边同时加上一次项系数一半的平方是解题的关键,是一道基础题.18.(2012•山西)(1)计算:.(2)先化简,再求值.(2x+3)(2x﹣3)﹣4x(x﹣1)+(x﹣2)2,其中x=﹣.【分析】(1)分别根据0指数幂、负整数指数幂、特殊角的三角函数值计算出各数,再根据实数混合运算的法则进行解答即可;(2)先根据整式混合运算的法则把原式进行化简,再把x的值代入进行计算即可.【解答】解:(1)原式=1+2×﹣3=1+3﹣3=1;(2)原式=4x2﹣9﹣4x2+4x+x2﹣4x+4=x2﹣5.当x=﹣时,原式=(﹣)2﹣5=3﹣5=﹣2.【点评】本题考查的是实数的混合运算及整式的化简求值,熟记0指数幂、负整数指数幂、特殊角的三角函数值计算法则及整式混合运算的法则是解答此题的关键.19.(2012•山西)解方程:.【分析】先去分母把分式方程化为整式方程,求出整式方程中x的值,代入公分母进行检验即可.【解答】解:方程两边同时乘以2(3x﹣1),得4﹣2(3x﹣1)=3,化简,﹣6x=﹣3,解得x=.检验:x=时,2(3x﹣1)=2×(3×﹣1)≠0所以,x=是原方程的解.【点评】本题考查的是解分式方程.在解答此类题目时要注意验根,这是此类题目易忽略的地方.20.(2011•山西)(1)先化简.再求值:,其中.(2)解不等式组:,并把它的解集表示在数轴上.【分析】(1)将分式的分子、分母因式分解,约分,通分化简,再代值计算;(2)先分别解每一个不等式,再求解集的公共部分,用数轴表示出来.【解答】解:(1)原式=•﹣=﹣===,当a=﹣时,原式==﹣2;(2)由①得,x≥﹣1,由②得,x<2∴不等式组的解集为﹣1≤x<2.用数轴上表示如图所示.【点评】本题考查了分式的化简求值解一元一次不等式组.分式化简求值的关键是把分式化到最简,然后代值计算,解一元一次不等式组,就是先分别解每一个不等式,再求解集的公共部分.21.(2010•山西)(1)计算:°+(2)先化简,再求值:•,其中x=﹣3.【分析】(1)先把根式化成最简根式,把三角函数化为实数,再计算;(2)先对括号里的分式通分、对分解因式,再去括号化简求值.【解答】解:(1)原式=3+(﹣8)﹣+1 (4分)=3﹣8﹣1+1=﹣5.(5分)(2)原式=•(1分)=(2分)==(3分)=x+2.(4分)当x=﹣3时,原式=﹣3+2=﹣1.(5分)【点评】考查了实数的运算和分式的化简求值,熟练掌握和运用有关法则是关键.22.(2009•太原)化简:【分析】首先把括号里的式子进行通分,然后把除法运算转化成乘法运算,进行约分化简.【解答】解:原式===1.【点评】解决本题的关键是分式的通分和分式的乘法中的约分.要先化简后计算.23.(2009•山西)(1)计算:(x+3)2﹣(x﹣1)(x﹣2)(2)化简:(3)解方程:x2﹣2x﹣3=0【分析】(1)首先计算一次式的平方和两个一次式的积,然后进行减法计算即可;(2)首先把第一个分式进行化简转化为同分母的分式的加法,即可计算;(3)利用配方法,移项使方程的右边只有常数项,方程两边同时加上一次项系数的一半,则左边是完全平方式,右边是常数,即可利用直接开平方法求解.【解答】解:(1)(x+3)2﹣(x﹣1)(x﹣2)=x2+6x+9﹣(x2﹣3x+2)=x2+6x+9﹣x2+3x﹣2=9x+7.(2)===1.(3)移项,得x2﹣2x=3,配方,得(x﹣1)2=4,∴x﹣1=±2,∴x1=﹣1,x2=3.【点评】(1)解决本题的关键是掌握整式乘法法则;(2)本题主要考查分式运算的掌握情况;(3)本题主要考查了配方法解一元二次方程,正确理解解题步骤是解题关键.24.(2016•北京)计算:(3﹣π)0+4sin45°﹣+|1﹣|.【分析】根据实数的运算顺序,首先计算乘方、开方和乘法,然后从左向右依次计算,求出算式(3﹣π)0+4sin45°﹣+|1﹣|的值是多少即可.【解答】解:(3﹣π)0+4sin45°﹣+|1﹣|=1+4×﹣2﹣1=1﹣2+﹣1=【点评】(1)此题主要考查了实数的运算,要熟练掌握,解答此题的关键是要明确:在进行实数运算时,和有理数运算一样,要从高级到低级,即先算乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到右的顺序进行.另外,有理数的运算律在实数范围内仍然适用.(2)此题还考查了零指数幂的运算,要熟练掌握,解答此题的关键是要明确:①a0=1(a ≠0);②00≠1.(3)此题还考查了特殊角的三角函数值,要牢记30°、45°、60°角的各种三角函数值.25.(2016•北京)解不等式组:.【分析】根据不等式性质分别求出每一个不等式的解集,再根据口诀:大小小大中间找可得不等式组的解集.【解答】解:解不等式2x+5>3(x﹣1),得:x<8,解不等式4x>,得:x>1,∴不等式组的解集为:1<x<8.【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.26.(2015•北京)计算:()﹣2﹣(π﹣)0+|﹣2|+4sin60°.【分析】原式第一项利用负整数指数幂法则计算,第二项利用零指数幂法则计算,第三项利用绝对值的代数意义化简,最后一项利用特殊角的三角函数值计算即可得到结果.【解答】解:原式=4﹣1+2﹣+4×=5+.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.27.(2015•北京)已知2a2+3a﹣6=0.求代数式3a(2a+1)﹣(2a+1)(2a﹣1)的值.【分析】原式第一项利用单项式乘以多项式法则计算,第二项利用平方差公式化简,去括号合并得到最简结果,把已知等式变形后代入计算即可求出值.【解答】解:∵2a2+3a﹣6=0,即2a2+3a=6,∴原式=6a2+3a﹣4a2+1=2a2+3a+1=6+1=7.【点评】此题考查了整式的混合运算﹣化简求值,熟练掌握运算法则是解本题的关键.28.(2015•北京)解不等式组,并写出它的所有非负整数解.【分析】分别求出不等式组中两不等式的解集,找出解集的公共部分确定出不等式组的解集,即可确定出所有非负整数解.【解答】解:,由①得:x≥﹣2;由②得:x<,∴不等式组的解集为﹣2≤x<,则不等式组的所有非负整数解为:0,1,2,3.【点评】此题考查了解一元一次不等式组,以及一元一次不等式组的整数解,熟练掌握运算法则是解本题的关键.29.(2014•北京)计算:(6﹣π)0+(﹣)﹣1﹣3tan30°+|﹣|【分析】本题涉及零指数幂、负整指数幂、特殊角的三角函数值、二次根式化简四个考点.针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.【解答】解:原式=1﹣5﹣+=﹣4.【点评】本题考查实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟记特殊角的三角函数值,熟练掌握负整数指数幂、零指数幂、二次根式、绝对值等考点的运算.30.(2014•北京)已知x﹣y=,求代数式(x+1)2﹣2x+y(y﹣2x)的值.【分析】先把代数式计算,进一步化简,再整体代入x﹣y=,求得数值即可.【解答】解:∵x﹣y=,∴(x+1)2﹣2x+y(y﹣2x)=x2+2x+1﹣2x+y2﹣2xy=x2+y2﹣2xy+1=(x﹣y)2+1=()2+1=3+1=4.【点评】此题考查整式的混合运算与化简求值,注意先化简,再整体代入求值.。
2016年浙江省湖州市中考数学试卷一、选择题(本大题有10小题,每小题3分,共30分)下面每小题给出的四个选项中,只有一个是正确的,请选出各题中一个最符合题意的选项,并在答题卷上将相应题次中对应字母的方框涂黑,不选、多选、错选均不给分1.计算(﹣20)+16的结果是()A.﹣4 B.4 C.﹣2016 D.20162.为了迎接杭州G20峰会,某校开展了设计“YJG20”图标的活动,下列图形中及时轴对称图形又是中心对称图形的是()A. B. C. D.3.由六个相同的立方体搭成的几何体如图所示,则它的主视图是()A. B. C. D.4.受“乡村旅游第一市”的品牌效应和2015年国际乡村旅游大会的宣传效应的影响,2016年湖州市在春节黄金周期间共接待游客约2800000人次,同比增长约56%,将2800000用科学记数法表示应是()A.28×105 B.2.8×106 C.2.8×105 D.0.28×1055.数据1,2,3,4,4,5的众数是()A.5 B.3 C.3.5 D.46.如图,AB∥CD,BP和CP分别平分∠ABC和∠DCB,AD过点P,且与AB垂直.若AD=8,则点P到BC的距离是()A.8 B.6 C.4 D.27.有一枚均匀的正方体骰子,骰子各个面上的点数分别为1,2,3,4,5,6,若任意抛掷一次骰子,朝上的面的点数记为x,计算|x﹣4|,则其结果恰为2的概率是()A. B. C. D.8.如图,圆O是Rt△ABC的外接圆,∠ACB=90°,∠A=25°,过点C作圆O的切线,交AB 的延长线于点D,则∠D的度数是()A.25° B.40° C.50° D.65°9.定义:若点P(a,b)在函数y=的图象上,将以a为二次项系数,b为一次项系数构造的二次函数y=ax2+bx称为函数y=的一个“派生函数”.例如:点(2,)在函数y=的图象上,则函数y=2x2+称为函数y=的一个“派生函数”.现给出以下两个命题:(1)存在函数y=的一个“派生函数”,其图象的对称轴在y轴的右侧(2)函数y=的所有“派生函数”,的图象都进过同一点,下列判断正确的是()A.命题(1)与命题(2)都是真命题B.命题(1)与命题(2)都是假命题C.命题(1)是假命题,命题(2)是真命题D.命题(1)是真命题,命题(2)是假命题10.如图1,在等腰三角形ABC中,AB=AC=4,BC=7.如图2,在底边BC上取一点D,连结AD,使得∠DAC=∠ACD.如图3,将△ACD沿着AD所在直线折叠,使得点C落在点E处,连结BE,得到四边形ABED.则BE的长是()A.4 B. C.3 D.2二、填空题(本题有6小题,每小题4分,共24分)11.数5的相反数是.12.方程=1的根是x= .13.如图,在Rt△ABC中,∠ACB=90°,BC=6,AC=8,分别以点A,B为圆心,大于线段AB 长度一半的长为半径作弧,相交于点E,F,过点E,F作直线EF,交AB于点D,连结CD,则CD的长是.14.如图1是我们常用的折叠式小刀,图2中刀柄外形是一个矩形挖去一个小半圆,其中刀片的两条边缘线可看成两条平行的线段,转动刀片时会形成如图2所示的∠1与∠2,则∠1与∠2的度数和是度.15.已知四个有理数a,b,x,y同时满足以下关系式:b>a,x+y=a+b,y﹣x<a﹣b.请将这四个有理数按从小到大的顺序用“<”连接起来是.16.已知点P在一次函数y=kx+b(k,b为常数,且k<0,b>0)的图象上,将点P向左平移1个单位,再向上平移2个单位得到点Q,点Q也在该函数y=kx+b的图象上.(1)k的值是;(2)如图,该一次函数的图象分别与x轴、y轴交于A,B两点,且与反比例函数y=图象交于C,D两点(点C在第二象限内),过点C作CE⊥x轴于点E,记S1为四边形CEOB的面积,S2为△OAB的面积,若=,则b的值是.三、解答题(本题有8小题,共66分)17.计算:tan45°﹣sin30°+(2﹣)0.18.当a=3,b=﹣1时,求下列代数式的值.(1)(a+b)(a﹣b);(2)a2+2ab+b2.19.湖州市菱湖镇某养鱼专业户准备挖一个面积为2000平方米的长方形鱼塘.(1)求鱼塘的长y(米)关于宽x(米)的函数表达式;(2)由于受场地的限制,鱼塘的宽最多只能挖20米,当鱼塘的宽是20米,鱼塘的长为多少米?20.如图,已知四边形ABCD内接于圆O,连结BD,∠BAD=105°,∠DBC=75°.(1)求证:BD=CD;(2)若圆O的半径为3,求的长.21.中华文明,源远流长;中华诗词,寓意深广.为了传承优秀传统文化,我市某校团委组织了一次全校2000名学生参加的“中国诗词大会”海选比赛,赛后发现所有参赛学生的成绩均不低于50分,为了更好地了解本次海选比赛的成绩分布情况,随机抽取了其中200名学生的海选比赛成绩(成绩x取整数,总分100分)作为样本进行整理,得到下列统计图表:抽取的200名学生海选成绩分组表请根据所给信息,解答下列问题:(1)请把图1中的条形统计图补充完整;(温馨提示:请画在答题卷相对应的图上)(2)在图2的扇形统计图中,记表示B组人数所占的百分比为a%,则a的值为,表示C组扇形的圆心角θ的度数为度;(3)规定海选成绩在90分以上(包括90分)记为“优等”,请估计该校参加这次海选比赛的2000名学生中成绩“优等”的有多少人?22.随着某市养老机构(养老机构指社会福利院、养老院、社区养老中心等)建设稳步推进,拥有的养老床位不断增加.(1)该市的养老床位数从2013年底的2万个增长到2015年底的2.88万个,求该市这两年(从2013年度到2015年底)拥有的养老床位数的平均年增长率;(2)若该市某社区今年准备新建一养老中心,其中规划建造三类养老专用房间共100间,这三类养老专用房间分别为单人间(1个养老床位),双人间(2个养老床位),三人间(3个养老床位),因实际需要,单人间房间数在10至30之间(包括10和30),且双人间的房间数是单人间的2倍,设规划建造单人间的房间数为t.①若该养老中心建成后可提供养老床位200个,求t的值;②求该养老中心建成后最多提供养老床位多少个?最少提供养老床位多少个?23.如图,已知二次函数y=﹣x2+bx+c(b,c为常数)的图象经过点A(3,1),点C(0,4),顶点为点M,过点A作AB∥x轴,交y轴于点D,交该二次函数图象于点B,连结BC.(1)求该二次函数的解析式及点M的坐标;(2)若将该二次函数图象向下平移m(m>0)个单位,使平移后得到的二次函数图象的顶点落在△ABC的内部(不包括△ABC的边界),求m的取值范围;(3)点P是直线AC上的动点,若点P,点C,点M所构成的三角形与△BCD相似,请直接写出所有点P的坐标(直接写出结果,不必写解答过程).24.数学活动课上,某学习小组对有一内角为120°的平行四边形ABCD(∠BAD=120°)进行探究:将一块含60°的直角三角板如图放置在平行四边形ABCD所在平面内旋转,且60°角的顶点始终与点C重合,较短的直角边和斜边所在的两直线分别交线段AB,AD于点E,F (不包括线段的端点).(1)初步尝试如图1,若AD=AB,求证:①△BCE≌△ACF,②AE+AF=AC;(2)类比发现如图2,若AD=2AB,过点C作CH⊥AD于点H,求证:AE=2FH;(3)深入探究如图3,若AD=3AB,探究得:的值为常数t,则t= .2016年浙江省湖州市中考数学试卷参考答案与试题解析一、选择题(本大题有10小题,每小题3分,共30分)下面每小题给出的四个选项中,只有一个是正确的,请选出各题中一个最符合题意的选项,并在答题卷上将相应题次中对应字母的方框涂黑,不选、多选、错选均不给分1.计算(﹣20)+16的结果是()A.﹣4 B.4 C.﹣2016 D.2016【考点】有理数的加法.【分析】根据有理数的加法运算法则进行计算即可得解.【解答】解:(﹣20)+16,=﹣(20﹣16),=﹣4.故选A.2.为了迎接杭州G20峰会,某校开展了设计“YJG20”图标的活动,下列图形中及时轴对称图形又是中心对称图形的是()A. B. C. D.【考点】中心对称图形;轴对称图形.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、是轴对称图形.不是中心对称图形,因为找不到任何这样的一点,旋转180度后它的两部分能够重合;即不满足中心对称图形的定义.故错误;B、不是轴对称图形,因为找不到任何这样的一条直线,沿这条直线对折后它的两部分能够重合;即不满足轴对称图形的定义.也不是中心对称图形.故错误;C、不是轴对称图形,因为找不到任何这样的一条直线,沿这条直线对折后它的两部分能够重合;即不满足轴对称图形的定义.也不是中心对称图形.故错误;D、是轴对称图形,又是中心对称图形.故正确.故选:D.3.由六个相同的立方体搭成的几何体如图所示,则它的主视图是()A. B. C. D.【考点】简单组合体的三视图.【分析】根据主视方向确定看到的平面图形即可.【解答】解:结合几何体发现:从主视方向看到上面有一个正方形,下面有3个正方形,故选A.4.受“乡村旅游第一市”的品牌效应和2015年国际乡村旅游大会的宣传效应的影响,2016年湖州市在春节黄金周期间共接待游客约2800000人次,同比增长约56%,将2800000用科学记数法表示应是()A.28×105B.2.8×106C.2.8×105D.0.28×105【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于10时,n是正数;当原数的绝对值小于1时,n是负数.【解答】解:2800000=2.8×106,故选:B.5.数据1,2,3,4,4,5的众数是()A.5 B.3 C.3.5 D.4【考点】众数.【分析】直接利用众数的定义分析得出答案.【解答】解:∵数据1,2,3,4,4,5中,4出现的次数最多,∴这组数据的众数是:4.故选:D.6.如图,AB∥CD,BP和CP分别平分∠ABC和∠DCB,AD过点P,且与AB垂直.若AD=8,则点P到BC的距离是()A.8 B.6 C.4 D.2【考点】角平分线的性质.【分析】过点P作PE⊥BC于E,根据角平分线上的点到角的两边的距离相等可得PA=PE,PD=PE,那么PE=PA=PD,又AD=8,进而求出PE=4.【解答】解:过点P作PE⊥BC于E,∵AB∥CD,PA⊥AB,∴PD⊥CD,∵BP和CP分别平分∠ABC和∠DCB,∴PA=PE,PD=PE,∴PE=PA=PD,∵PA+PD=AD=8,∴PA=PD=4,∴PE=4.故选C.7.有一枚均匀的正方体骰子,骰子各个面上的点数分别为1,2,3,4,5,6,若任意抛掷一次骰子,朝上的面的点数记为x,计算|x﹣4|,则其结果恰为2的概率是()A. B. C. D.【考点】列表法与树状图法;绝对值;概率的意义.【分析】先求出绝对值方程|x﹣4|=2的解,即可解决问题.【解答】解:∵|x﹣4|=2,∴x=2或6.∴其结果恰为2的概率==.故选C.8.如图,圆O是Rt△ABC的外接圆,∠ACB=90°,∠A=25°,过点C作圆O的切线,交AB 的延长线于点D,则∠D的度数是()A.25° B.40° C.50° D.65°【考点】切线的性质;圆周角定理.【分析】首先连接OC,由∠A=25°,可求得∠BOC的度数,由CD是圆O的切线,可得OC⊥CD,继而求得答案.【解答】解:连接OC,∵圆O是Rt△ABC的外接圆,∠ACB=90°,∴AB是直径,∵∠A=25°,∴∠BOC=2∠A=50°,∵CD是圆O的切线,∴OC⊥CD,∴∠D=90°﹣∠BOC=40°.故选B.9.定义:若点P(a,b)在函数y=的图象上,将以a为二次项系数,b为一次项系数构造的二次函数y=ax2+bx称为函数y=的一个“派生函数”.例如:点(2,)在函数y=的图象上,则函数y=2x2+称为函数y=的一个“派生函数”.现给出以下两个命题:(1)存在函数y=的一个“派生函数”,其图象的对称轴在y轴的右侧(2)函数y=的所有“派生函数”,的图象都进过同一点,下列判断正确的是()A.命题(1)与命题(2)都是真命题B.命题(1)与命题(2)都是假命题C.命题(1)是假命题,命题(2)是真命题D.命题(1)是真命题,命题(2)是假命题【考点】命题与定理.【分析】(1)根据二次函数y=ax2+bx的性质a、b同号对称轴在y轴左侧,a、b异号对称轴在y轴右侧即可判断.(2)根据“派生函数”y=ax2+bx,x=0时,y=0,经过原点,不能得出结论.【解答】解:(1)∵P(a,b)在y=上,∴a和b同号,所以对称轴在y轴左侧,∴存在函数y=的一个“派生函数”,其图象的对称轴在y轴的右侧是假命题.(2)∵函数y=的所有“派生函数”为y=ax2+bx,∴x=0时,y=0,∴所有“派生函数”为y=ax2+bx经过原点,∴函数y=的所有“派生函数”,的图象都进过同一点,是真命题.故选C.10.如图1,在等腰三角形ABC中,AB=AC=4,BC=7.如图2,在底边BC上取一点D,连结AD,使得∠DAC=∠ACD.如图3,将△ACD沿着AD所在直线折叠,使得点C落在点E处,连结BE,得到四边形ABED.则BE的长是()A.4 B. C.3D.2【考点】翻折变换(折叠问题);四点共圆;等腰三角形的性质;相似三角形的判定与性质.【分析】只要证明△ABD∽△MBE,得=,只要求出BM、BD即可解决问题.【解答】解:∵AB=AC,∴∠ABC=∠C,∵∠DAC=∠ACD,∴∠DAC=∠ABC,∵∠C=∠C,∴△CAD∽△CBA,∴=,∴=,∴CD=,BD=BC﹣CD=,∵∠DAM=∠DAC=∠DBA,∠ADM=∠ADB,∴△ADM∽△BDA,∴=,即=,∴DM=,MB=BD﹣DM=,∵∠ABM=∠C=∠MED,∴A、B、E、D四点共圆,∴∠ADB=∠BEM,∠EBM=∠EAD=∠ABD,∴△ABD∽△MBE,∴=,∴BE===.故选B.二、填空题(本题有6小题,每小题4分,共24分)11.数5的相反数是﹣5 .【考点】相反数.【分析】直接利用相反数的概念:只有符号不同的两个数叫做互为相反数,进而得出答案.【解答】解:数5的相反数是:﹣5.故答案为:﹣5.12.方程=1的根是x= ﹣2 .【考点】分式方程的解.【分析】把分式方程转化成整式方程,求出整式方程的解,再代入x﹣3进行检验即可.【解答】解:两边都乘以x﹣3,得:2x﹣1=x﹣3,解得:x=﹣2,检验:当x=﹣2时,x﹣3=﹣5≠0,故方程的解为x=﹣2,故答案为:﹣2.13.如图,在Rt△ABC中,∠ACB=90°,BC=6,AC=8,分别以点A,B为圆心,大于线段AB 长度一半的长为半径作弧,相交于点E,F,过点E,F作直线EF,交AB于点D,连结CD,则CD的长是 5 .【考点】作图—基本作图;直角三角形斜边上的中线;勾股定理.【分析】首先说明AD=DB,利用直角三角形斜边中线等于斜边一半,即可解决问题.【解答】解:由题意EF是线段AB的垂直平分线,∴AD=DB,Rt△ABC中,∵∠ACB=90°,BC=6,AC=8,∴AB===10,∵AD=DB,∠ACB=90°,∴CD=AB=5.故答案为5.14.如图1是我们常用的折叠式小刀,图2中刀柄外形是一个矩形挖去一个小半圆,其中刀片的两条边缘线可看成两条平行的线段,转动刀片时会形成如图2所示的∠1与∠2,则∠1与∠2的度数和是90 度.【考点】平行线的性质.【分析】如图2,AB∥CD,∠AEC=90°,作EF∥AB,根据平行线的传递性得到EF∥CD,则根据平行线的性质得∠1=∠AEF,∠2=∠CEF,所以∠1+∠2=∠AEC=90°【解答】解:如图2,AB∥CD,∠AEC=90°,作EF∥AB,则EF∥CD,所以∠1=∠AEF,∠2=∠CEF,所以∠1+∠2=∠AEF+∠CEF=∠AEC=90°.故答案为90.15.已知四个有理数a,b,x,y同时满足以下关系式:b>a,x+y=a+b,y﹣x<a﹣b.请将这四个有理数按从小到大的顺序用“<”连接起来是y<a<b<x .【考点】有理数大小比较.【分析】由x+y=a+b得出y=a+b﹣x,x=a+b﹣y,求出b<x,y<a,即可得出答案.【解答】解:∵x+y=a+b,∴y=a+b﹣x,x=a+b﹣y,把y=a=b﹣x代入y﹣x<a﹣b得:a+b﹣x﹣x<a﹣b,2b<2x,b<x①,把x=a+b﹣y代入y﹣x<a﹣b得:y﹣(a+b﹣y)<a﹣b,2y<2a,y<a②,∵b>a③,∴由①②③得:y<a<b<x,故答案为:y<a<b<x.16.已知点P在一次函数y=kx+b(k,b为常数,且k<0,b>0)的图象上,将点P向左平移1个单位,再向上平移2个单位得到点Q,点Q也在该函数y=kx+b的图象上.(1)k的值是﹣2 ;(2)如图,该一次函数的图象分别与x轴、y轴交于A,B两点,且与反比例函数y=图象交于C,D两点(点C在第二象限内),过点C作CE⊥x轴于点E,记S1为四边形CEOB的面积,S2为△OAB的面积,若=,则b的值是3.【考点】反比例函数与一次函数的交点问题;反比例函数系数k的几何意义.【分析】(1)设出点P的坐标,根据平移的特性写出点Q的坐标,由点P、Q均在一次函数y=kx+b(k,b为常数,且k<0,b>0)的图象上,即可得出关于k、m、n、b的四元一次方程组,两式做差即可得出k值;(2)根据BO⊥x轴,CE⊥x轴可以找出△AOB∽△AEC,再根据给定图形的面积比即可得出,根据一次函数的解析式可以用含b的代数式表示出来线段AO、BO,由此即可得出线段CE、AE的长度,利用OE=AE﹣AO求出OE的长度,再借助于反比例函数系数k的几何意义即可得出关于b的一元二次方程,解方程即可得出结论.【解答】解:(1)设点P的坐标为(m,n),则点Q的坐标为(m﹣1,n+2),依题意得:,解得:k=﹣2.故答案为:﹣2.(2)∵BO⊥x轴,CE⊥x轴,∴BO∥CE,∴△AOB∽△AEC.又∵=,∴==.令一次函数y=﹣2x+b中x=0,则y=b,∴BO=b;令一次函数y=﹣2x+b中y=0,则0=﹣2x+b,解得:x=,即AO=.∵△AOB∽△AEC,且=,∴.∴AE=AO=b,CE=BO=b,OE=AE﹣AO=b.∵OE•CE=|﹣4|=4,即b2=4,解得:b=3,或b=﹣3(舍去).故答案为:3.三、解答题(本题有8小题,共66分)17.计算:tan45°﹣sin30°+(2﹣)0.【考点】实数的运算;零指数幂;特殊角的三角函数值.【分析】直接利用特殊角的三角函数值以及零指数幂的性质分析得出答案.【解答】解:原式=1﹣+1=.18.当a=3,b=﹣1时,求下列代数式的值.(1)(a+b)(a﹣b);(2)a2+2ab+b2.【考点】代数式求值.【分析】(1)把a与b的值代入计算即可求出值;(2)原式利用完全平方公式变形,将a与b的值代入计算即可求出值.【解答】解:(1)当a=3,b=﹣1时,原式=2×4=8;(2)当a=3,b=﹣1时,原式=(a+b)2=22=4.19.湖州市菱湖镇某养鱼专业户准备挖一个面积为2000平方米的长方形鱼塘.(1)求鱼塘的长y(米)关于宽x(米)的函数表达式;(2)由于受场地的限制,鱼塘的宽最多只能挖20米,当鱼塘的宽是20米,鱼塘的长为多少米?【考点】反比例函数的应用.【分析】(1)根据矩形的面积=长×宽,列出y与x的函数表达式即可;(2)把x=20代入计算求出y的值,即可得到结果.【解答】解:(1)由长方形面积为2000平方米,得到xy=2000,即y=;(2)当x=20(米)时,y==100(米),则当鱼塘的宽是20米时,鱼塘的长为100米.20.如图,已知四边形ABCD内接于圆O,连结BD,∠BAD=105°,∠DBC=75°.(1)求证:BD=CD;(2)若圆O的半径为3,求的长.【考点】圆内接四边形的性质;弧长的计算.【分析】(1)直接利用圆周角定理得出∠DCB的度数,再利用∠DCB=∠DBC求出答案;(2)首先求出的度数,再利用弧长公式直接求出答案.【解答】(1)证明:∵四边形ABCD内接于圆O,∴∠DCB+∠BAD=180°,∵∠BAD=105°,∴∠DCB=180°﹣105°=75°,∵∠DBC=75°,∴∠DCB=∠DBC=75°,∴BD=CD;(2)解:∵∠DCB=∠DBC=75°,∴∠BDC=30°,由圆周角定理,得,的度数为:60°,故===π,答:的长为π.21.中华文明,源远流长;中华诗词,寓意深广.为了传承优秀传统文化,我市某校团委组织了一次全校2000名学生参加的“中国诗词大会”海选比赛,赛后发现所有参赛学生的成绩均不低于50分,为了更好地了解本次海选比赛的成绩分布情况,随机抽取了其中200名学生的海选比赛成绩(成绩x取整数,总分100分)作为样本进行整理,得到下列统计图表:请根据所给信息,解答下列问题:(1)请把图1中的条形统计图补充完整;(温馨提示:请画在答题卷相对应的图上)(2)在图2的扇形统计图中,记表示B组人数所占的百分比为a%,则a的值为15 ,表示C组扇形的圆心角θ的度数为72 度;(3)规定海选成绩在90分以上(包括90分)记为“优等”,请估计该校参加这次海选比赛的2000名学生中成绩“优等”的有多少人?【考点】条形统计图;用样本估计总体;扇形统计图.【分析】(1)用随机抽取的总人数减去A、B、C、E组的人数,求出D组的人数,从而补全统计图;(2)用B组抽查的人数除以总人数,即可求出a;用360乘以C组所占的百分比,求出C 组扇形的圆心角θ的度数;(3)用该校参加这次海选比赛的总人数乘以成绩在90分以上(包括90分)所占的百分比,即可得出答案.【解答】解:(1)D的人数是:200﹣10﹣30﹣40﹣70=50(人),补图如下:(2)B组人数所占的百分比是×100%=15%,则a的值是15;C组扇形的圆心角θ的度数为360×=72°;故答案为:15,72;(3)根据题意得:2000×=700(人),答:估计该校参加这次海选比赛的2000名学生中成绩“优等”的有700人.22.随着某市养老机构(养老机构指社会福利院、养老院、社区养老中心等)建设稳步推进,拥有的养老床位不断增加.(1)该市的养老床位数从2013年底的2万个增长到2015年底的2.88万个,求该市这两年(从2013年度到2015年底)拥有的养老床位数的平均年增长率;(2)若该市某社区今年准备新建一养老中心,其中规划建造三类养老专用房间共100间,这三类养老专用房间分别为单人间(1个养老床位),双人间(2个养老床位),三人间(3个养老床位),因实际需要,单人间房间数在10至30之间(包括10和30),且双人间的房间数是单人间的2倍,设规划建造单人间的房间数为t.①若该养老中心建成后可提供养老床位200个,求t的值;②求该养老中心建成后最多提供养老床位多少个?最少提供养老床位多少个?【考点】一次函数的应用;一元一次方程的应用;一元二次方程的应用.【分析】(1)设该市这两年(从2013年度到2015年底)拥有的养老床位数的平均年增长率为x,根据“2015年的床位数=2013年的床位数×(1+增长率)的平方”可列出关于x的一元二次方程,解方程即可得出结论;(2)①设规划建造单人间的房间数为t(10≤t≤30),则建造双人间的房间数为2t,三人间的房间数为100﹣3t,根据“可提供的床位数=单人间数+2倍的双人间数+3倍的三人间数”即可得出关于t的一元一次方程,解方程即可得出结论;②设该养老中心建成后能提供养老床位y个,根据“可提供的床位数=单人间数+2倍的双人间数+3倍的三人间数”即可得出y关于t的函数关系式,根据一次函数的性质结合t的取值范围,即可得出结论.【解答】解:(1)设该市这两年(从2013年度到2015年底)拥有的养老床位数的平均年增长率为x,由题意可列出方程:2(1+x)2=2.88,解得:x1=0.2=20%,x2=﹣2.2(不合题意,舍去).答:该市这两年拥有的养老床位数的平均年增长率为20%.(2)①设规划建造单人间的房间数为t(10≤t≤30),则建造双人间的房间数为2t,三人间的房间数为100﹣3t,由题意得:t+4t+3=200,解得:t=25.答:t的值是25.②设该养老中心建成后能提供养老床位y个,由题意得:y=t+4t+3=﹣4t+300(10≤t≤30),∵k=﹣4<0,∴y随t的增大而减小.当t=10时,y的最大值为300﹣4×10=260(个),当t=30时,y的最小值为300﹣4×30=180(个).答:该养老中心建成后最多提供养老床位260个,最少提供养老床位180个.23.如图,已知二次函数y=﹣x2+bx+c(b,c为常数)的图象经过点A(3,1),点C(0,4),顶点为点M,过点A作AB∥x轴,交y轴于点D,交该二次函数图象于点B,连结BC.(1)求该二次函数的解析式及点M的坐标;(2)若将该二次函数图象向下平移m(m>0)个单位,使平移后得到的二次函数图象的顶点落在△ABC的内部(不包括△ABC的边界),求m的取值范围;(3)点P是直线AC上的动点,若点P,点C,点M所构成的三角形与△BCD相似,请直接写出所有点P的坐标(直接写出结果,不必写解答过程).【考点】二次函数综合题.【分析】(1)将点A、点C的坐标代入函数解析式,即可求出b、c的值,通过配方法得到点M的坐标;(2)点M是沿着对称轴直线x=1向下平移的,可先求出直线AC的解析式,将x=1代入求出点M在向下平移时与AC、AB相交时y的值,即可得到m的取值范围;(3)由题意分析可得∠MCP=90°,则若△PCM与△BCD相似,则要进行分类讨论,分成△PCM∽△BDC或△PCM∽△CDB两种,然后利用边的对应比值求出点坐标.【解答】解:(1)把点A(3,1),点C(0,4)代入二次函数y=﹣x2+bx+c得,解得∴二次函数解析式为y=﹣x2+2x+4,配方得y=﹣(x﹣1)2+5,∴点M的坐标为(1,5);(2)设直线AC解析式为y=kx+b,把点A(3,1),C(0,4)代入得,解得∴直线AC的解析式为y=﹣x+4,如图所示,对称轴直线x=1与△ABC两边分别交于点E、点F把x=1代入直线AC解析式y=﹣x+4解得y=3,则点E坐标为(1,3),点F坐标为(1,1)∴1<5﹣m<3,解得2<m<4;(3)连接MC,作MG⊥y轴并延长交AC于点N,则点G坐标为(0,5)∵MG=1,GC=5﹣4=1∴MC==,把y=5代入y=﹣x+4解得x=﹣1,则点N坐标为(﹣1,5),∵NG=GC,GM=GC,∴∠NCG=∠GCM=45°,∴∠NCM=90°,由此可知,若点P在AC上,则∠MCP=90°,则点D与点C必为相似三角形对应点①若有△PCM∽△BDC,则有∵BD=1,CD=3,∴CP===,∵CD=DA=3,∴∠DCA=45°,若点P在y轴右侧,作PH⊥y轴,∵∠PCH=45°,CP=∴PH==把x=代入y=﹣x+4,解得y=,∴P1();同理可得,若点P在y轴左侧,则把x=﹣代入y=﹣x+4,解得y=∴P2();②若有△PCM∽△CDB,则有∴CP==3∴PH=3÷=3,若点P在y轴右侧,把x=3代入y=﹣x+4,解得y=1;若点P在y轴左侧,把x=﹣3代入y=﹣x+4,解得y=7∴P3(3,1);P4(﹣3,7).∴所有符合题意得点P坐标有4个,分别为P1(),P2(),P3(3,1),P4(﹣3,7).24.数学活动课上,某学习小组对有一内角为120°的平行四边形ABCD(∠BAD=120°)进行探究:将一块含60°的直角三角板如图放置在平行四边形ABCD所在平面内旋转,且60°角的顶点始终与点C重合,较短的直角边和斜边所在的两直线分别交线段AB,AD于点E,F (不包括线段的端点).(1)初步尝试如图1,若AD=AB,求证:①△BCE≌△ACF,②AE+AF=AC;(2)类比发现如图2,若AD=2AB,过点C作CH⊥AD于点H,求证:AE=2FH;(3)深入探究如图3,若AD=3AB,探究得:的值为常数t,则t= .【考点】几何变换综合题.【分析】(1)①先证明△ABC,△A CD都是等边三角形,再证明∠BCE=∠ACF即可解决问题.②根据①的结论得到BE=AF,由此即可证明.(2)设DH=x,由由题意,CD=2x,CH=x,由△ACE∽△HCF,得=由此即可证明.(3)如图3中,作CN⊥AD于N,CM⊥BA于M,CM与AD交于点H.先证明△CFN∽△CEM,得=,由AB•CM=AD•CN,AD=3AB,推出CM=3CN,所以==,设CN=a,FN=b,则CM=3a,EM=3b,想办法求出AC,AE+3AF即可解决问题.【解答】解;(1)①∵四边形ABCD是平行四边形,∠BAD=120°,∴∠D=∠B=60°,∵AD=AB,∴△ABC,△ACD都是等边三角形,∴∠B=∠CAD=60°,∠ACB=60°,BC=AC,∵∠ECF=60°,∴∠BCE+∠ACE=∠ACF+∠ACE=60°,∴∠BCE=∠ACF,在△BCE和△ACF中,∴△BCE≌△ACF.②∵△BCE≌△ACF,∴BE=AF,∴AE+AF=AE+BE=AB=AC.(2)设DH=x,由由题意,CD=2x,CH=x,∴AD=2AB=4x,∴AH=A D﹣DH=3x,∵CH⊥AD,∴AC==2x,∴AC2+CD2=AD2,∴∠ACD=90°,∴∠BAC=∠ACD=90°,∴∠CAD=30°,∴∠ACH=60°,∵∠ECF=60°,∴∠HCF=∠ACE,∴△ACE∽△HCF,∴==2,∴AE=2FH.(3)如图3中,作CN⊥AD于N,CM⊥BA于M,CM与AD交于点H.∵∠ECF+∠EAF=180°,∴∠AEC+∠AFC=180°,∵∠AFC+∠CFN=180°,∴∠CFN=∠AEC,∵∠M=∠CNF=90°,∴△CFN∽△CEM,∴=,∵AB•CM=AD•CN,AD=3AB,∴CM=3CN,∴==,设CN=a,FN=b,则CM=3a,EM=3b,∵∠MAH=60°,∠M=90°,∴∠AHM=∠CHN=30°,∴HC=2a,HM=a,HN=a,∴AM=a,AH=a,∴AC==a,AE+3AF=(EM﹣AM)+3(AH+HN﹣FN)=EM﹣AM+3AH+3HN﹣3FN=3AH+3HN﹣AM=a,∴==.故答案为.。
2016年数学中考试题及答案【篇一:2016年全国中考数学模拟卷及答案】=txt>数学试卷一、选择题下面各题均有四个选项,其中只有一个是符合题意的。
..1.截止到2016年6月1日,北京市已建成39个地下调蓄设施,蓄水能力达到2 40 000立方平米。
将1240 000用科学记数法表示应为2.实数a,b,c,d在数轴上的对应点的位置如图所示,这四个数中,绝对值最大的是a.a b.bc.cd.d3.一个不透明的盒子中装有3个红球,2个黄球和1个绿球,这些球除了颜色外无其他差别,从中随机摸出一个小球,恰好是黄球的概率为 a. b. c. d.4.剪纸是我国传统的民间艺术,下列剪纸作品中,是轴对称图形的为6.如图,公路ac,bc互相垂直,公路ab的中点m与点c被湖隔开,若测得am的长为1.2km,则m,c两点间的距离为a.0.5km b.0.6km c.0.9km d.1.2km7.某市6月份日平均气温统计如图所示,则在日平均气温这组数据中,众数和中位数分别是 a.21,21 b.21,21.5 c.21,22 d.22,228.右图是利用平面直角坐标系画出的故宫博物院的主要建筑分布图。
若这个坐标系分别以正东、正北方向为x轴、y轴的正方向。
表示太和门的点坐标为(0,-1),表示九龙壁的点的坐标为(4,1),则表示下列宫殿的点的坐标正确的是a.景仁宫(4,2)b.养心殿(-2,3) c.保和殿(1,0) d.武英殿(-3.5,-4)9.一家游泳馆的游泳收费标准为30元/次,若购买会员年卡,可享受如下优惠:a.购买a类会员年卡b.购买b类会员年卡 c.购买c类会员年卡d.不购买会员年卡10.一个寻宝游戏的寻宝通道如图1所示,通道由在同一平面内的ab,bc,ca,oa,ob,oc组成。
为记录寻宝者的进行路线,在bc的中点m处放置了一台定位仪器,设寻宝者行进的时间为x,寻宝者与定位仪器之间的距离为y,若寻宝者匀速行进,且表示y与x的函数关系的图象大致如图2所示,则寻宝者的行进路线可能为a.a→o→bb.b→a→cc.b→o→c d.c→b→o 二、填空题11.分解因式:5x2-10x2=5x=_________.12.右图是由射线ab,bc,cd,de,组成的平面图形,则∠1+∠2+∠3+∠4+∠5=_____.13.《九章算术》是中国传统数学最重要的著作,奠定了中国传统数学的基本框架。
2016年浙江省杭州市中考数学试卷一、填空题(每题3分)1.(3分)(2016•杭州)=()A.2 B.3 C.4 D.52.(3分)(2016•杭州)如图,已知直线a∥b∥c,直线m交直线a,b,c于点A,B,C,直线n交直线a,b,c于点D,E,F,若=,则=()A.B.C.D.13.(3分)(2016•杭州)下列选项中,如图所示的圆柱的三视图画法正确的是()A.B.C.D.4.(3分)(2016•杭州)如图是某市2016年四月每日的最低气温(℃)的统计图,则在四月份每日的最低气温这组数据中,中位数和众数分别是()A.14℃,14℃B.15℃,15℃C.14℃,15℃D.15℃,14℃5.(3分)(2016•杭州)下列各式变形中,正确的是()A.x2•x3=x6B.=|x|C.(x2﹣)÷x=x﹣1 D.x2﹣x+1=(x﹣)2+6.(3分)(2016•杭州)已知甲煤场有煤518吨,乙煤场有煤106吨,为了使甲煤场存煤是乙煤场的2倍,需要从甲煤场运煤到乙煤场,设从甲煤场运煤x吨到乙煤场,则可列方程为()A.518=2(106+x)B.518﹣x=2×106 C.518﹣x=2(106+x)D.518+x=2(106﹣x)7.(3分)(2016•杭州)设函数y=(k≠0,x>0)的图象如图所示,若z=,则z关于x 的函数图象可能为()A.B.C. D.8.(3分)(2016•杭州)如图,已知AC是⊙O的直径,点B在圆周上(不与A、C重合),点D在AC的延长线上,连接BD交⊙O于点E,若∠AOB=3∠ADB,则()A.DE=EB B.DE=EB C.DE=DO D.DE=OB9.(3分)(2016•杭州)已知直角三角形纸片的两条直角边长分别为m和n(m<n),过锐角顶点把该纸片剪成两个三角形,若这两个三角形都为等腰三角形,则()A.m2+2mn+n2=0 B.m2﹣2mn+n2=0 C.m2+2mn﹣n2=0 D.m2﹣2mn﹣n2=0 10.(3分)(2016•杭州)设a,b是实数,定义@的一种运算如下:a@b=(a+b)2﹣(a﹣b)2,则下列结论:①若a@b=0,则a=0或b=0②a@(b+c)=a@b+a@c③不存在实数a,b,满足a@b=a2+5b2④设a,b是矩形的长和宽,若矩形的周长固定,则当a=b时,a@b最大.其中正确的是()A.②③④ B.①③④ C.①②④ D.①②③二、填空题(每题4分)11.(4分)(2016•黔东南州)tan60°=.12.(4分)(2016•杭州)已知一包糖果共有5种颜色(糖果只有颜色差别),如图是这包糖果分布百分比的统计图,在这包糖果中任意取一粒,则取出糖果的颜色为绿色或棕色的概率是.13.(4分)(2016•杭州)若整式x2+ky2(k为不等于零的常数)能在有理数范围内因式分解,则k的值可以是(写出一个即可).14.(4分)(2016•杭州)在菱形ABCD中,∠A=30°,在同一平面内,以对角线BD为底边作顶角为120°的等腰三角形BDE,则∠EBC的度数为.15.(4分)(2016•杭州)在平面直角坐标系中,已知A(2,3),B(0,1),C(3,1),若线段AC与BD互相平分,则点D关于坐标原点的对称点的坐标为.16.(4分)(2016•杭州)已知关于x的方程=m的解满足(0<n<3),若y >1,则m的取值范围是.三、解答题17.(6分)(2016•杭州)计算6÷(﹣),方方同学的计算过程如下,原式=6+6=﹣12+18=6.请你判断方方的计算过程是否正确,若不正确,请你写出正确的计算过程.18.(8分)(2016•杭州)某汽车厂去年每个季度汽车销售数量(辆)占当季汽车产量(辆)百分比的统计图如图所示.根据统计图回答下列问题:(1)若第一季度的汽车销售量为2100辆,求该季的汽车产量;(2)圆圆同学说:“因为第二,第三这两个季度汽车销售数量占当季汽车产量是从75%降到50%,所以第二季度的汽车产量一定高于第三季度的汽车产量”,你觉得圆圆说的对吗?为什么?19.(8分)(2016•杭州)如图,在△ABC中,点D,E分别在边AB,AC上,∠AED=∠B,射线AG分别交线段DE,BC于点F,G,且.(1)求证:△ADF∽△ACG;(2)若,求的值.20.(10分)(2016•杭州)把一个足球垂直水平地面向上踢,时间为t(秒)时该足球距离地面的高度h(米)适用公式h=20t﹣5t2(0≤t≤4).(1)当t=3时,求足球距离地面的高度;(2)当足球距离地面的高度为10米时,求t;(3)若存在实数t1,t2(t1≠t2)当t=t1或t2时,足球距离地面的高度都为m(米),求m 的取值范围.21.(10分)(2016•杭州)如图,已知四边形ABCD和四边形DEFG为正方形,点E在线段DE上,点A,D,G在同一直线上,且AD=3,DE=1,连接AC,CG,AE,并延长AE 交CG于点H.(1)求sin∠EAC的值.(2)求线段AH的长.22.(12分)(2016•杭州)已知函数y1=ax2+bx,y2=ax+b(ab≠0).在同一平面直角坐标系中.(1)若函数y1的图象过点(﹣1,0),函数y2的图象过点(1,2),求a,b的值.(2)若函数y2的图象经过y1的顶点.①求证:2a+b=0;②当1<x<时,比较y1,y2的大小.23.(12分)(2016•杭州)在线段AB的同侧作射线AM和BN,若∠MAB与∠NBA的平分线分别交射线BN,AM于点E,F,AE和BF交于点P.如图,点点同学发现当射线AM,BN交于点C;且∠ACB=60°时,有以下两个结论:①∠APB=120°;②AF+BE=AB.那么,当AM∥BN时:(1)点点发现的结论还成立吗?若成立,请给予证明;若不成立,请求出∠APB的度数,写出AF,BE,AB长度之间的等量关系,并给予证明;(2)设点Q为线段AE上一点,QB=5,若AF+BE=16,四边形ABEF的面积为32,求AQ的长.2016年浙江省杭州市中考数学试卷参考答案与试题解析一、填空题(每题3分)1.(3分)(2016•杭州)=()A.2 B.3 C.4 D.5【分析】算术平方根的概念:一般地,如果一个正数x的平方等于a,即x2=a,那么这个正数x叫做a的算术平方根.依此即可求解.【解答】解:=3.故选:B.【点评】考查了算术平方根,注意非负数a的算术平方根a有双重非负性:①被开方数a 是非负数;②算术平方根a本身是非负数.2.(3分)(2016•杭州)如图,已知直线a∥b∥c,直线m交直线a,b,c于点A,B,C,直线n交直线a,b,c于点D,E,F,若=,则=()A.B.C.D.1【分析】直接根据平行线分线段成比例定理求解.【解答】解:∵a∥b∥c,∴==.故选B.【点评】本题考查了平行线分线段成比例定理:三条平行线截两条直线,所得的对应线段成比例.3.(3分)(2016•杭州)下列选项中,如图所示的圆柱的三视图画法正确的是()A.B.C.D.【分析】根据从正面看到的图叫做主视图,从左面看到的图叫做左视图,从上面看到的图叫做俯视图,可得答案.【解答】解:该圆柱体的主视图、俯视图均为矩形,左视图为圆,故选:A.【点评】本题考查实物体的三视图.在画图时一定要将物体的边缘、棱、顶点都体现出来,看得见的轮廓线都画成实线,看不见的画成虚线,不能漏掉.4.(3分)(2016•杭州)如图是某市2016年四月每日的最低气温(℃)的统计图,则在四月份每日的最低气温这组数据中,中位数和众数分别是()A.14℃,14℃B.15℃,15℃C.14℃,15℃D.15℃,14℃【分析】中位数,因图中是按从小到大的顺序排列的,所以只要找出最中间的一个数(或最中间的两个数)即可,本题是最中间的两个数;对于众数可由条形统计图中出现频数最大或条形最高的数据写出.【解答】解:由条形统计图中出现频数最大条形最高的数据是在第三组,14℃,故众数是14℃;因图中是按从小到大的顺序排列的,最中间的环数是14℃、14℃,故中位数是14℃.故选:A.【点评】本题属于基础题,考查了确定一组数据的中位数和众数的能力.注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求.如果是偶数个则找中间两位数的平均数.5.(3分)(2016•杭州)下列各式变形中,正确的是()A.x2•x3=x6B.=|x|C.(x2﹣)÷x=x﹣1 D.x2﹣x+1=(x﹣)2+【分析】直接利用二次根式的性质以及同底数幂的乘法运算法则和分式的混合运算法则分别化简求出答案.【解答】解:A、x2•x3=x5,故此选项错误;B、=|x|,正确;C、(x2﹣)÷x=x﹣,故此选项错误;D、x2﹣x+1=(x﹣)2+,故此选项错误;故选:B.【点评】此题主要考查了二次根式的性质以及同底数幂的乘法运算和分式的混合运算等知识,正确掌握相关运算法则是解题关键.6.(3分)(2016•杭州)已知甲煤场有煤518吨,乙煤场有煤106吨,为了使甲煤场存煤是乙煤场的2倍,需要从甲煤场运煤到乙煤场,设从甲煤场运煤x吨到乙煤场,则可列方程为()A.518=2(106+x)B.518﹣x=2×106 C.518﹣x=2(106+x)D.518+x=2(106﹣x)【分析】设从甲煤场运煤x吨到乙煤场,根据题意列出方程解答即可.【解答】解:设从甲煤场运煤x吨到乙煤场,可得:518﹣x=2(106+x),故选C.【点评】考查了由实际问题抽象出一元一次方程,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程,再求解.7.(3分)(2016•杭州)设函数y=(k≠0,x>0)的图象如图所示,若z=,则z关于x 的函数图象可能为()A.B.C.D.【分析】根据反比例函数解析式以及z=,即可找出z关于x的函数解析式,再根据反比例函数图象在第一象限可得出k>0,结合x的取值范围即可得出结论.【解答】解:∵y=(k≠0,x>0),∴z===(k≠0,x>0).∵反比例函数y=(k≠0,x>0)的图象在第一象限,∴k>0,∴>0.∴z关于x的函数图象为第一象限内,且不包括原点的正比例的函数图象.故选D.【点评】本题考查了反比例函数的图象以及正比例函数的图象,解题的关键是找出z关于x 的函数解析式.本题属于基础题,难度不大,解决该题型题目时,根据分式的变换找出z关于x的函数关系式是关键.8.(3分)(2016•杭州)如图,已知AC是⊙O的直径,点B在圆周上(不与A、C重合),点D在AC的延长线上,连接BD交⊙O于点E,若∠AOB=3∠ADB,则()A.DE=EB B.DE=EB C.DE=DO D.DE=OB【分析】连接EO,只要证明∠D=∠EOD即可解决问题.【解答】解:连接EO.∵OB=OE,∴∠B=∠OEB,∵∠OEB=∠D+∠DOE,∠AOB=3∠D,∴∠B+∠D=3∠D,∴∠D+∠DOE+∠D=3∠D,∴∠DOE=∠D,∴ED=EO=OB,故选D.【点评】本题考查圆的有关知识、三角形的外角等知识,解题的关键是添加除以辅助线,利用等腰三角形的判定方法解决问题,属于中考常考题型.9.(3分)(2016•杭州)已知直角三角形纸片的两条直角边长分别为m和n(m<n),过锐角顶点把该纸片剪成两个三角形,若这两个三角形都为等腰三角形,则()A.m2+2mn+n2=0 B.m2﹣2mn+n2=0 C.m2+2mn﹣n2=0 D.m2﹣2mn﹣n2=0【分析】如图,根据等腰三角形的性质和勾股定理可得m2+m2=(n﹣m)2,整理即可求解【解答】解:如图,m2+m2=(n﹣m)2,2m2=n2﹣2mn+m2,m2+2mn﹣n2=0.故选:C.【点评】考查了等腰直角三角形,等腰三角形的性质,勾股定理,关键是熟练掌握等腰三角形的性质,根据勾股定理得到等量关系.10.(3分)(2016•杭州)设a,b是实数,定义@的一种运算如下:a@b=(a+b)2﹣(a﹣b)2,则下列结论:①若a@b=0,则a=0或b=0②a@(b+c)=a@b+a@c③不存在实数a,b,满足a@b=a2+5b2④设a,b是矩形的长和宽,若矩形的周长固定,则当a=b时,a@b最大.其中正确的是()A.②③④ B.①③④ C.①②④ D.①②③【分析】根据新定义可以计算出啊各个小题中的结论是否成立,从而可以判断各个小题中的说法是否正确,从而可以得到哪个选项是正确的.【解答】解:①根据题意得:a@b=(a+b)2﹣(a﹣b)2∴(a+b)2﹣(a﹣b)2=0,整理得:(a+b+a﹣b)(a+b﹣a+b)=0,即4ab=0,解得:a=0或b=0,正确;②∵a@(b+c)=(a+b+c)2﹣(a﹣b﹣c)2=4ab+4aca@b+a@c=(a+b)2﹣(a﹣b)2+(a+c)2﹣(a﹣c)2=4ab+4ac,∴a@(b+c)=a@b+a@c正确;③a@b=a2+5b2,a@b=(a+b)2﹣(a﹣b)2,令a2+5b2=(a+b)2﹣(a﹣b)2,解得,a=0,b=0,故错误;④∵a@b=(a+b)2﹣(a﹣b)2=4ab,(a﹣b)2≥0,则a2﹣2ab+b2≥0,即a2+b2≥2ab,∴a2+b2+2ab≥4ab,∴4ab的最大值是a2+b2+2ab,此时a2+b2+2ab=4ab,解得,a=b,∴a@b最大时,a=b,故④正确,故选C.【点评】本题考查因式分解的应用、整式的混合运算、二次函数的最值,解题的关键是明确题意,找出所求问题需要的条件.二、填空题(每题4分)11.(4分)(2016•黔东南州)tan60°=.【分析】根据特殊角的三角函数值直接得出答案即可.【解答】解:tan60°的值为.故答案为:.【点评】本题考查的是特殊角的三角函数值,熟记各特殊角的三角函数值是解答此题的关键.12.(4分)(2016•杭州)已知一包糖果共有5种颜色(糖果只有颜色差别),如图是这包糖果分布百分比的统计图,在这包糖果中任意取一粒,则取出糖果的颜色为绿色或棕色的概率是.【分析】先求出棕色所占的百分比,再根据概率公式列式计算即可得解.【解答】解:棕色所占的百分比为:1﹣20%﹣15%﹣30%﹣15%=1﹣80%=20%,所以,P(绿色或棕色)=30%+20%=50%=.故答案为:.【点评】本题考查了概率的知识.用到的知识点为:概率=所求情况数与总情况数之比.13.(4分)(2016•杭州)若整式x2+ky2(k为不等于零的常数)能在有理数范围内因式分解,则k的值可以是﹣1(写出一个即可).【分析】令k=﹣1,使其能利用平方差公式分解即可.【解答】解:令k=﹣1,整式为x2﹣y2=(x+y)(x﹣y),故答案为:﹣1.【点评】此题考查了因式分解﹣运用公式法,熟练掌握平方差公式是解本题的关键.14.(4分)(2016•杭州)在菱形ABCD中,∠A=30°,在同一平面内,以对角线BD为底边作顶角为120°的等腰三角形BDE,则∠EBC的度数为45°或105°.【分析】如图当点E在BD右侧时,求出∠EBD,∠DBC即可解决问题,当点E在BD左侧时,求出∠DBE′即可解决问题.【解答】解:如图,∵四边形ABCD是菱形,∴AB=AD=BC=CD,∠A=∠C=30°,∠ABC=∠ADC=150°,∴∠DBA=∠DBC=75°,∵ED=EB,∠DEB=120°,∴∠EBD=∠EDB=30°,∴∠EBC=∠EBD+∠DBC=105°,当点E′在BD左侧时,∵∠DBE′=30°,∴∠E′BC=∠DBC﹣∠DBE′=45°,∴∠EBC=105°或45°,故答案为105°或45°.【点评】本题考查菱形的性质、等腰三角形的性质等知识,解题的关键是正确画出图形,考虑问题要全面,属于中考常考题型.15.(4分)(2016•杭州)在平面直角坐标系中,已知A(2,3),B(0,1),C(3,1),若线段AC与BD互相平分,则点D关于坐标原点的对称点的坐标为(﹣5,﹣3).【分析】直接利用平行四边形的性质得出D点坐标,进而利用关于原点对称点的性质得出答案.【解答】解:如图所示:∵A(2,3),B(0,1),C(3,1),线段AC与BD互相平分,∴D点坐标为:(5,3),∴点D关于坐标原点的对称点的坐标为:(﹣5,﹣3).故答案为:(﹣5,﹣3).【点评】此题主要考查了平行四边形的性质以及关于原点对称点的性质,正确得出D点坐标是解题关键.16.(4分)(2016•杭州)已知关于x的方程=m的解满足(0<n<3),若y >1,则m的取值范围是<m<.【分析】先解方程组,求得x和y,再根据y>1和0<n<3,求得x的取值范围,最后根据=m,求得m的取值范围.【解答】解:解方程组,得∵y>1∴2n﹣1>1,即n>1又∵0<n<3∴1<n<3∵n=x﹣2∴1<x﹣2<3,即3<x<5∴<<∴<<又∵=m∴<m<故答案为:<m<【点评】本题主要考查了分式方程的解以及二元一次方程组的解,解题时需要掌握解二元一次方程和一元一次不等式的方法.根据x取值范围得到的取值范围是解题的关键.三、解答题17.(6分)(2016•杭州)计算6÷(﹣),方方同学的计算过程如下,原式=6+6=﹣12+18=6.请你判断方方的计算过程是否正确,若不正确,请你写出正确的计算过程.【分析】根据有理数的混合运算顺序,先算括号里面的,再根据除法法则进行计算即可.【解答】解:方方的计算过程不正确,正确的计算过程是:原式=6÷(﹣+)=6÷(﹣)=6×(﹣6)=﹣36.【点评】此题考查了有理数的除法,用到的知识点是有理数的除法、通分、有理数的加法,关键是掌握运算顺序和结果的符号.18.(8分)(2016•杭州)某汽车厂去年每个季度汽车销售数量(辆)占当季汽车产量(辆)百分比的统计图如图所示.根据统计图回答下列问题:(1)若第一季度的汽车销售量为2100辆,求该季的汽车产量;(2)圆圆同学说:“因为第二,第三这两个季度汽车销售数量占当季汽车产量是从75%降到50%,所以第二季度的汽车产量一定高于第三季度的汽车产量”,你觉得圆圆说的对吗?为什么?【分析】(1)根据每个季度汽车销售数量(辆)占当季汽车产量(辆)百分比的统计图,可以求得第一季度的汽车销售量为2100辆时,该季的汽车产量;(2)首先判断圆圆的说法错误,然后说明原因即可解答本题.【解答】解:(1)由题意可得,2100÷70%=3000(辆),即该季的汽车产量是3000辆;(2)圆圆的说法不对,因为百分比仅能够表示所要考查的数据在总量中所占的比例,并不能反映总量的大小.【点评】本题考查折线统计图,解题的关键是明确题意,找出所求问题需要的条件.19.(8分)(2016•杭州)如图,在△ABC中,点D,E分别在边AB,AC上,∠AED=∠B,射线AG分别交线段DE,BC于点F,G,且.(1)求证:△ADF∽△ACG;(2)若,求的值.【分析】(1)欲证明△ADF∽△ACG,由可知,只要证明∠ADF=∠C即可.(2)利用相似三角形的性质得到=,由此即可证明.【解答】(1)证明:∵∠AED=∠B,∠DAE=∠DAE,∴∠ADF=∠C,∵=,∴△ADF∽△ACG.(2)解:∵△ADF∽△ACG,∴=,又∵=,∴=,∴=1.【点评】本题考查相似三角形的性质和判定、三角形内角和定理等知识,记住相似三角形的判定方法是解决问题的关键,属于基础题中考常考题型.20.(10分)(2016•杭州)把一个足球垂直水平地面向上踢,时间为t(秒)时该足球距离地面的高度h(米)适用公式h=20t﹣5t2(0≤t≤4).(1)当t=3时,求足球距离地面的高度;(2)当足球距离地面的高度为10米时,求t;(3)若存在实数t1,t2(t1≠t2)当t=t1或t2时,足球距离地面的高度都为m(米),求m 的取值范围.【分析】(1)将t=3代入解析式可得;(2)根据h=10可得关于t的一元二次方程,解方程即可;(3)由题意可得方程20t﹣t2=m 的两个不相等的实数根,由根的判别式即可得m的范围.【解答】解:(1)当t=3时,h=20t﹣5t2=20×3﹣5×9=15(米),∴当t=3时,足球距离地面的高度为15米;(2)∵h=10,∴20t﹣5t2=10,即t2﹣4t+2=0,解得:t=2+或t=2﹣,故经过2+或2﹣时,足球距离地面的高度为10米;(3)∵m≥0,由题意得t1,t2是方程20t﹣5t2=m 的两个不相等的实数根,∴b2﹣4ac=202﹣20m>0,∴m<20,故m的取值范围是0≤m<20.【点评】本题主要考查二次函数背景下的求值及一元二次方程的应用、根的判别式,根据题意得到相应的方程及将实际问题转化为方程问题是解题的关键.21.(10分)(2016•杭州)如图,已知四边形ABCD和四边形DEFG为正方形,点E在线段DE上,点A,D,G在同一直线上,且AD=3,DE=1,连接AC,CG,AE,并延长AE 交CG于点H.(1)求sin∠EAC的值.(2)求线段AH的长.【分析】(1)作EM⊥AC于M,根据sin∠EAM=求出EM、AE即可解决问题.(2)先证明△GDC≌△EDA,得∠GCD=∠EAD,推出AH⊥GC,再根据S△AGC=•AG•DC=•GC•AH,即可解决问题.【解答】解:(1)作EM⊥AC于M.∵四边形ABCD是正方形,∴∠ADC=90°,AD=DC=3,∠DCA=45°,∴在RT△ADE中,∵∠ADE=90°,AD=3,DE=1,∴AE==,在RT△EMC中,∵∠EMC=90°,∠ECM=45°,EC=2,∴EM=CM=,∴在RT△AEM中,sin∠EAM===.(2)在△GDC和△EDA中,,∴△GDC≌△EDA,∴∠GCD=∠EAD,GC=AE=,∵∠EHC=∠EDA=90°,∴AH⊥GC,∵S△AGC=•AG•DC=•GC•AH,∴×4×3=××AH,∴AH=.【点评】本题考查正方形的性质、全等三角形的判定和性质、勾股定理、三角形面积等知识,添加常用辅助线是解决问题的关键,学会用面积法求线段,属于中考常考题型.22.(12分)(2016•杭州)已知函数y1=ax2+bx,y2=ax+b(ab≠0).在同一平面直角坐标系中.(1)若函数y1的图象过点(﹣1,0),函数y2的图象过点(1,2),求a,b的值.(2)若函数y2的图象经过y1的顶点.①求证:2a+b=0;②当1<x<时,比较y1,y2的大小.【分析】(1)结合点的坐标利用待定系数法即可得出关于a、b的二元一次方程组,解方程组即可得出结论;(2)①将函数y1的解析式配方,即可找出其顶点坐标,将顶点坐标代入函数y2的解析式中,即可的出a、b的关系,再根据ab≠0,整理变形后即可得出结论;②由①中的结论,用a表示出b,两函数解析式做差,即可得出y1﹣y2=a(x﹣2)(x﹣1),根据x的取值范围可得出(x﹣2)(x﹣1)<0,分a>0或a<0两种情况考虑,即可得出结论.【解答】解:(1)由题意得:,解得:,故a=1,b=1.(2)①证明:∵y1=ax2+bx=a,∴函数y1的顶点为(﹣,﹣),∵函数y2的图象经过y1的顶点,∴﹣=a(﹣)+b,即b=﹣,∵ab≠0,∴﹣b=2a,∴2a+b=0.②∵b=﹣2a,∴y1=ax2﹣2ax=ax(x﹣2),y2=ax﹣2a,∴y1﹣y2=a(x﹣2)(x﹣1).∵1<x<,∴x﹣2<0,x﹣1>0,(x﹣2)(x﹣1)<0.当a>0时,a(x﹣2)(x﹣1)<0,y1<y2;当a<0时,a(x﹣1)(x﹣1)>0,y1>y2.【点评】本题考查了二次函数的综合应用,解题的关键是:(1)结合点的坐标利用待定系数法求出函数系数;(2)①函数y1的顶点坐标代入y2中,找出a、b间的关系;②分a>0或a<0两种情况考虑.本题属于中档题,难度不大,解决该题时,利用配方法找出函数y1的顶点坐标,再代入y2中找出a、b间的关系是关键.23.(12分)(2016•杭州)在线段AB的同侧作射线AM和BN,若∠MAB与∠NBA的平分线分别交射线BN,AM于点E,F,AE和BF交于点P.如图,点点同学发现当射线AM,BN交于点C;且∠ACB=60°时,有以下两个结论:①∠APB=120°;②AF+BE=AB.那么,当AM∥BN时:(1)点点发现的结论还成立吗?若成立,请给予证明;若不成立,请求出∠APB的度数,写出AF,BE,AB长度之间的等量关系,并给予证明;(2)设点Q为线段AE上一点,QB=5,若AF+BE=16,四边形ABEF的面积为32,求AQ的长.【分析】(1)由角平分线和平行线整体求出∠MAB+∠NBA,从而得到∠APB=90°,最后用等边对等角,即可.(2)先根据条件求出AF,FG,求出∠FAG=60°,最后分两种情况讨论计算.【解答】解:(1)原命题不成立,新结论为:∠APB=90°,AF+BE=2AB(或AF=BE=AB),理由:∵AM∥BN,∴∠MAB+∠NBA=180°,∵AE,BF分别平分∠MAB,NBA,∴∠EAB=∠MAB,∠FBA=∠NBA,∴∠EAB+∠FBA=(∠MAB+∠NBA)=90°,∴∠APB=90°,∵AE平分∠MAB,∴∠MAE=∠BAE,∵AM∥BN,∴∠MAE=∠BAE,∴∠BAE=∠BEA,∴AB=BE,同理:AF=AB,∴AF=+BE=2AB(或AF=BE=AB);(2)如图1,过点F作FG⊥AB于G,∵AF=BE,AF∥BE,∴四边形ABEF是平行四边形,∵AF+BE=16,∴AB=AF=BE=8,∵32=8×FG,∴FG=4,在Rt△FAG中,AF=8,∴∠FAG=60°,当点G在线段AB上时,∠FAB=60°,当点G在线段BA延长线时,∠FAB=120°,①如图2,当∠FAB=60°时,∠PAB=30°,∴PB=4,PA=4,∵BQ=5,∠BPA=90°,∴PQ=3,∴AQ=4﹣3或AQ=4+3.②如图3,当∠FAB=120°时,∠PAB=60°,∠FBG=30°,∴PB=4,∵PB=4>5,∴线段AE上不存在符合条件的点Q,∴当∠FAB=60°时,AQ=4﹣3或4+3.【点评】此题是四边形综合题,主要考查了平行线的性质,角平分线的性质,直角三角形的性质,勾股定理,解本题的关键是用勾股定理计算线段.参与本试卷答题和审题的老师有:HJJ;gsls;三界无我;sjzx;sd2011;1987483819;曹先生;弯弯的小河;zgm666;lantin;星期八;sks;szl;星月相随(排名不分先后)菁优网2016年9月8日。
反比例函数一、单选题(共12题;共24分)1、(2016•龙东)已知反比例函数y= ,当1<x<3时,y的最小整数值是()A、3B、4C、5D、62、如果等腰三角形的底边长为x,底边上的高为y,则它的面积为定植S时,则x与y的函数关系式为()A、y=B、y=C、y=D、y=3、(2016•大庆)已知A(x1, y1)、B(x2, y2)、C(x3, y3)是反比例函数y= 上的三点,若x1<x2<x3, y2<y1<y3,则下列关系式不正确的是()A、x1•x2<0B、x1•x3<0C、x2•x3<0D、x1+x2<04、将一次函数y=x图象向下平移b个单位,与双曲线y=交于点A,与x轴交于点B,则OA2-OB2=( )A、-2B、2C、-D 、5、如图所示,点P(3a,a)是反比例函数y=(k>0)与⊙O的一个交点,图中阴影部分的面积为10π,则反比例函数的解析式为()A、y=B、y=C、y=D、y=6、如图,△AOB为等边三角形,点A在第四象限,点B的坐标为(4,0),过点C(4,0)作直线l交AO于D,交AB于E,且点E在某反比例函数y=(k≠0)图象上,当△ADE和△DCO的面积相等时,k的值为()A、-B、-C、-3D、-67、教室里的饮水机接通电源就进入自动程序,开机加热时每分钟上升10℃,加热到100℃,停止加热,水温开始下降,此时水温(℃)与开机后用时(min)成反比例关系.直至水温降至30℃,饮水机关机.饮水机关机后即刻自动开机,重复上述自动程序.若在水温为30℃时,接通电源后,水温y(℃)和时间(min)的关系如图,为了在上午第一节下课时(8:45)能喝到不超过50℃的水,则接通电源的时间可以是当天上午的()A、7:20B、7:30C、7:45D、7:508、(2015•玉林)如图,反比例函数y=的图象经过二次函数y=ax2+bx 图象的顶点(﹣,m)(m >0),则有()A、a=b+2kB、a=b﹣2kC、k<b<0D、a<k<09、如图,在平面直角坐标系中,矩形ABOC的两边在坐标轴上,OB=1,点A在函数y=﹣(x<0)的图象上,将此矩形向右平移3个单位长度到A1B1O1C1的位置,此时点A1在函数y= (x>0)的图象上,C1O1与此图象交于点P,则点P的纵坐标是()A 、B 、C 、D 、10、(2016•济宁)如图,O为坐标原点,四边形OACB是菱形,OB在x轴的正半轴上,sin∠AOB= ,反比例函数y= 在第一象限内的图象经过点A,与BC交于点F,则△AOF的面积等于()A、60B、80C、30D、4011、(2016•湖北)一次函数y=ax+b和反比例函数y= 在同一平面直角坐标系中的图象如图所示,则二次函数y=ax2+bx+c的图象大致为()A 、B 、C 、D 、12、(2016•天津)若点A(﹣5,y1),B(﹣3,y2),C(2,y3)在反比例函数y= 的图象上,则y1, y2, y3的大小关系是()A、y1<y3<y2B、y1<y2<y3C、y3<y2<y1D、y2<y1<y3二、填空题(共5题;共6分)13、如果函数y=x2m-1为反比例函数,则m的值是________.14、(2015•黄石)反比例函数y=的图象有一支位于第一象限,则常数a的取值范围是________ .15、(2016•宁波)如图,点A为函数y= (x>0)图象上一点,连结OA,交函数y= (x>0)的图象于点B,点C是x轴上一点,且AO=AC,则△ABC的面积为________.16、(2016•丽水)如图,一次函数y=﹣x+b与反比例函数y= (x>0)的图象交于A,B两点,与x轴、y轴分别交于C,D两点,连结OA,OB,过A作AE⊥x轴于点E,交OB于点F,设点A的横坐标为m.(1)b=________(用含m的代数式表示);(2)若S△OAF+S四边形EFBC=4,则m的值是________.17、(2016•绍兴)如图,已知直线l:y=﹣x,双曲线y= ,在l上取一点A(a,﹣a)(a>0),过A作x轴的垂线交双曲线于点B,过B作y轴的垂线交l于点C,过C作x轴的垂线交双曲线于点D,过D作y轴的垂线交l于点E,此时E与A重合,并得到一个正方形ABCD,若原点O在正方形ABCD的对角线上且分这条对角线为1:2的两条线段,则a的值为________.三、解答题(共3题;共15分)18、当m 取何值时,函数是反比例函数?19、(2016•苏州)如图,一次函数y=kx+b的图象与x轴交于点A,与反比例函数y= (x>0)的图象交于点B(2,n),过点B作BC⊥x轴于点C,点P(3n﹣4,1)是该反比例函数图象上的一点,且∠PBC=∠ABC,求反比例函数和一次函数的表达式.20、已知与是反比例函数图象上的两个点.(1)求m和k的值(2)若点C(-1,0),连结AC,BC,求△ABC的面积(3)根据图象直接写出一次函数的值大于反比例函数的值的的取值范围.四、综合题(共4题;共45分)21、(2016•曲靖)在平面直角坐标系中,把横纵坐标都是整数的点称为“整点”.(1)直接写出函数y= 图象上的所有“整点”A1, A2, A3,…的坐标;(2)在(1)的所有整点中任取两点,用树状图或列表法求出这两点关于原点对称的概率.22、(2015•广州)已知反比例函数y=的图象的一支位于第一象限.(1)判断该函数图象的另一支所在的象限,并求m的取值范围;(2)如图,O为坐标原点,点A在该反比例函数位于第一象限的图象上,点B与点A关于x轴对称,若△OAB的面积为6,求m的值.23、(2016•枣庄)如图,在矩形OABC中,OA=3,OC=2,F是AB上的一个动点(F不与A,B重合),过点F的反比例函数y= (k>0)的图象与BC边交于点E.(1)当F为AB的中点时,求该函数的解析式;(2)当k为何值时,△EFA的面积最大,最大面积是多少?24、(2016•雅安)已知直线l1:y=x+3与x轴交于点A,与y轴交于点B,且与双曲线y= 交于点C(1,a).(1)试确定双曲线的函数表达式;(2)将l1沿y轴翻折后,得到l2,画出l2的图象,并求出l2的函数表达式;(3)在(2)的条件下,点P是线段AC上点(不包括端点),过点P作x轴的平行线,分别交l2于点M,交双曲线于点N,求S△AMN的取值范围.答案解析部分一、单选题【答案】A【考点】反比例函数的性质【解析】【解答】解:在反比例函数y= 中k=6>0,∴该反比例函数在x>0内,y随x的增大而减小,当x=3时,y= =2;当x=1时,y= =6.∴当1<x<3时,2<y<6.∴y的最小整数值是3.故选A.【分析】根据反比例函数系数k>0,结合反比例函数的性质即可得知该反比例函数在x>0中单调递减,再结合x的取值范围,可得出y的取值范围,取其内的最小整数,本题得解.本题考查了反比例函数的性质,解题的关键是找出反比例函数y= 在1<x<3中y的取值范围.本题属于基础题,难度不大,解决该题型题目时,根据反比例函数的系数结合反比例函数的性质得出该反比例函数的单调性是关键.【答案】C【考点】根据实际问题列反比例函数关系式,三角形的面积【解析】【解答】∵S=xy,∴y=.故选C.【分析】考查列反比例函数关系式,得到三角形高的等量关系是解决本题的关键.三角形的面积= 1 2 底×高,那么高=,把相关数值代入即可求解.【答案】A【考点】反比例函数图象上点的坐标特征【解析】【解答】解:∵反比例函数y= 中,2>0,∴在每一象限内,y随x的增大而减小,∵x1<x2<x3, y2<y1<y3,∴点A,B在第三象限,点C在第一象限,∴x1<x2<0<x3,∴x1•x2<0,故选A.【分析】根据反比例函数y= 和x1<x2<x3, y2<y1<y3,可得点A,B在第三象限,点C在第一象限,得出x1<x2<0<x3,再选择即可.本题考查了反比例函数图象上点的坐标特征,解答此题的关键是熟知反比例函数的增减性,本题是逆用,难度有点大.【答案】B【考点】一次函数图象与几何变换,反比例函数与一次函数的交点问题【解析】【解答】∵平移后解析式是y=x+b,代入y=得:x+b=,即x2+bx=,y=x+b与x轴交点B的坐标是(-b,0),设A的坐标是(x,y),∴OA2-OB2=x2+y2+(-b)2=x2+(x+b)2-b2=2x2+2xb=2(x2+xb)=2×=2,故选B.【分析】本题考查了一次函数和反比例函数的交点问题的应用,主要考查学生的计算能力的能力.【答案】D【考点】反比例函数图象的对称性【解析】【解答】由于函数图象关于原点对称,所以阴影部分面积为圆面积,则圆的面积为10π×4=40π.因为P(3a,a)在第一象限,则a>0,3a>0,根据勾股定理,OP=于是π=40π,a=±2,(负值舍去),故a=2.P点坐标为(6,2).将P(6,2)代入y=,得:k=6×2=12.反比例函数解析式为:y=.故选D.【分析】根据P(3a,a)和勾股定理,求出圆的半径,进而表示出圆的面积,再根据圆的面积等于阴影部分面积的四倍,求出圆的面积,建立等式即可求出a的值,从而得出反比例函数的解析式.【点评】此题是一道综合题,既要能熟练正确求出圆的面积,又要会用待定系数法求函数的解析式.【答案】C【考点】反比例函数系数k的几何意义,待定系数法求反比例函数解析式,三角形的面积【解析】【解答】如图,连接AC,∵点B的坐标为(4,0),△AO B为等边三角形,∴AO=OB=4.∴点A的坐标为(2,-2).∵C(4,0),∴AO=OC=4,∴∠OCA=∠OAC.∵∠AOB=60°,∴∠ACO=30°.又∵∠B="60°." ∴∠BAC=90°.∵S△ADE=S△DCO, S△AEC=S△ADE+S△ADC, S△AOC=S△DCO+S△ADC,∴∴S△AEC=S△AOC =×AE•AC=•CO•2,即•AE•2=×2×2,∴E点为AB的中点(3,-).把E点(3,-)代入y=中得:k=-3故选C.【分析】连接AC,由B的坐标得到等边三角形AOB的边长,得到AO与CO,得到AO=OC,利用等边对等角得到一对角相等,再由∠AOB=60°,得到∠ACO=30°,可得出∠BAC为直角,可得出A的坐标,由三角形ADE与三角形DCO面积相等,且三角形AEC面积等于三角形AED与三角形ADC面积之和,三角形AOC面积等于三角形DCO面积与三角形ADC面积之和,得到三角形AEC与三角形AOC面积相等,进而确定出AE的长,可得出E为AB中点,得出E的坐标,将E坐标代入反比例解析式中求出k的值,即可确定出反比例解析式。
2016年四川省泸州市中考数学试题及答案解析整理人:泸州市,护国中学,龙易老师一、选择题:本大题共12小题,每小题3分,共36分1.6的相反数为( )A.﹣6 B.6 C.﹣ D.2.计算3a2﹣a2的结果是()A.4a2B.3a2C.2a2D.33.下列图形中不是轴对称图形的是( )A.B. C.D.4.将5570000用科学记数法表示正确的是( )A.5.57×105B.5.57×106C.5.57×107D.5.57×1085.下列立体图形中,主视图是三角形的是()A.B.C. D.6.数据4,8,4,6,3的众数和平均数分别是( )A.5,4 B.8,5C.6,5 D.4,57.在一个布口袋里装有白、红、黑三种颜色的小球,它们除颜色外没有任何区别,其中白球2只,红球6只,黑球4只,将袋中的球搅匀,闭上眼睛随机从袋中取出1只球,则取出黑球的概率是()A.B. C.D.8.如图,▱ABCD的对角线AC、BD相交于点O,且AC+BD=16,CD=6,则△ABO的周长是()A.10 B.14C.20D.229.若关于x的一元二次方程x2+2(k﹣1)x+k2﹣1=0有实数根,则k的取值范围是()A.k≥1 B.k>1C.k<1 D.k≤110.以半径为1的圆的内接正三角形、正方形、正六边形的边心距为三边作三角形,则该三角形的面积是( )A.B. C.11.如图,矩形ABCD的边长AD=3,AB=2,E为AB的中点,F在边BC上,且BF=2FC,AF分别与DE、DB相交于点M,N,则MN的长为()A. B.C.D.12.已知二次函数y=ax2﹣bx﹣2(a≠0)的图象的顶点在第四象限,且过点(﹣1,0),当a﹣b为整数时,ab的值为()A.或1 B.或1C.或D.或二、填空题:本大题共4小题,每小题3分,共12分13.分式方程﹣=0的根是.14.分解因式:2a2+4a+2=.15.若二次函数y=2x2﹣4x﹣1的图象与x轴交于A(x1,0)、B(x2,0)两点,则+的值为.16.如图,在平面直角坐标系中,已知点A(1,0),B(1﹣a,0),C(1+a,0)(a>0),点P在以D(4,4)为圆心,1为半径的圆上运动,且始终满足∠BPC=90°,则a的最大值是.三、本大题共3小题,每小题6分,共18分17.计算:(﹣1)0﹣×sin60°+(﹣2)2.18.如图,C是线段AB的中点,CD=BE,CD∥BE.求证:∠D=∠E.19.化简:(a+1﹣).四.本大题共2小题,每小题7分,共14分。
2016年宁夏中考数学试卷参考答案与试题解析一、选择题1.某地一天的最高气温是8℃,最低气温是﹣2℃,则该地这天的温差是()A.10℃ B.﹣10℃ C.6℃ D.﹣6℃【考点】有理数的减法.【专题】应用题;实数.【分析】根据题意算式,计算即可得到结果.【解答】解:根据题意得:8﹣(﹣2)=8+2=10,则该地这天的温差是10℃,故选A【点评】此题考查了有理数的减法,熟练掌握减法法则是解本题的关键.2.下列计算正确的是()A.+=B.(﹣a2)2=﹣a4C.(a﹣2)2=a2﹣4 D.÷=(a≥0,b>0)【考点】二次根式的混合运算;幂的乘方与积的乘方;完全平方公式.【分析】分别利用二次根式混合运算法则以及积的乘方运算法则以及幂的乘方运算法则、完全平方公式计算得出答案.【解答】解:A、+无法计算,故此选项错误;B、(﹣a2)2=a4,故此选项错误;C、(a﹣2)2=a2﹣4a+4,故此选项错误;D、÷=(a≥0,b>0),正确.故选:D.【点评】此题主要考查了二次根式混合运算以及积的乘方运算以及幂的乘方运算、完全平方公式等知识,正确掌握相关运算法则是解题关键.3.已知x,y满足方程组,则x+y的值为()A.9 B.7 C.5 D.3【考点】二元一次方程组的解.【专题】计算题;一次方程(组)及应用.【分析】方程组两方程相加求出x+y的值即可.【解答】解:,①+②得:4x+4y=20,则x+y=5,故选C【点评】此题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程都成立的未知数的值.4.为响应“书香校响园”建设的号召,在全校形成良好的阅读氛围,随机调查了部分学生平均每天阅读时间,统计结果如图所示,则本次调查中阅读时间为的众数和中位数分别是()A.2和1 B.1.25和1 C.1和1 D.1和1.25【考点】众数;条形统计图;中位数.【分析】由统计图可知阅读时间为1小数的有19人,人数最多,所以众数为1小时;总人数为40,得到中位数应为第20与第21个的平均数,而第20个数和第21个数都是1(小时),即可确定出中位数为1小时.【解答】解:由统计图可知众数为1小时;共有:8+19+10+3=40人,中位数应为第20与第21个的平均数,而第20个数和第21个数都是1(小时),则中位数是1小时.故选C.【点评】此题考查中位数、众数的求法:①给定n个数据,按从小到大排序,如果n为奇数,位于中间的那个数就是中位数;如果n为偶数,位于中间两个数的平均数就是中位数.任何一组数据,都一定存在中位数的,但中位数不一定是这组数据里的数.②给定一组数据,出现次数最多的那个数,称为这组数据的众数.如果一组数据存在众数,则众数一定是数据集里的数.5.菱形ABCD的对角线AC,BD相交于点O,E,F分别是AD,CD边上的中点,连接EF.若EF=,BD=2,则菱形ABCD的面积为()A.2B.C.6D.8【考点】菱形的性质;三角形中位线定理.【分析】根据中位线定理可得对角线AC的长,再由菱形面积等于对角线乘积的一半可得答案.【解答】解:∵E,F分别是AD,CD边上的中点,EF=,∴AC=2EF=2,又∵BD=2,∴菱形ABCD的面积S=×AC×BD=×2×2=2,故选:A.【点评】本题主要考查菱形的性质与中位线定理,熟练掌握中位线定理和菱形面积公式是关键.6.由若干个相同的小正方体组合而成的一个几何体的三视图如图所示,则组成这个几何体的小正方形个数是()A.3 B.4 C.5 D.6【考点】由三视图判断几何体.【分析】利用主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形,进而判断图形形状,即可得出小正方体的个数.【解答】解:综合三视图,我们可以得出,这个几何模型的底层有3+1=4个小正方体,第二有1个小正方体,因此搭成这个几何体模型所用的小正方体的个数是4+1=5个.故选:C.【点评】本题考查了学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.掌握口诀“俯视图打地基,正视图疯狂盖,左视图拆违章”是解题的关键.7.某校要从甲、乙、丙、丁四名学生中选一名参加“汉字听写”大赛,选拔中每名学生的平均成绩及其方差s2如表所示,如果要选拔一名成绩高且发挥稳定的学生参赛,则应选择的学生是()甲乙丙丁8.9 9.5 9.5 8.9s20.92 0.92 1.01 1.03A.甲B.乙C.丙D.丁【考点】方差.【分析】从平均成绩分析乙和丙要比甲和丁好,从方差分析甲和乙的成绩比丙和丁稳定,综合两个方面可选出乙.【解答】解:根据平均成绩可得乙和丙要比甲和丁好,根据方差可得甲和乙的成绩比丙和丁稳定,因此要选择一名成绩高且发挥稳定的学生参赛,因选择乙;故选B.【点评】此题主要考查了方差和平均数,关键是掌握方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.8.正比例函数y1=k1x的图象与反比例函数y2=的图象相交于A,B两点,其中点B的横坐标为﹣2,当y1<y2时,x的取值范围是()A.x<﹣2或x>2 B.x<﹣2或0<x<2C.﹣2<x<0或0<x<2 D.﹣2<x<0或x>2【考点】反比例函数与一次函数的交点问题.【分析】由正、反比例函数的对称性结合点B的横坐标,即可得出点A的横坐标,再根据两函数图象的上下关系结合交点的横坐标,即可得出结论.【解答】解:∵正比例和反比例均关于原点O对称,且点B的横坐标为﹣2,∴点A的横坐标为2.观察函数图象,发现:当x<﹣2或0<x<2时,一次函数图象在反比例函数图象的下方,∴当y1<y2时,x的取值范围是x<﹣2或0<x<2.故选B.【点评】本题考查了反比例函数与一次函数交点的问题、反比例函数的性质以及正比例函数的性质,解题的关键是求出点A的横坐标.本题属于基础题,难度不大,根据正、反比例的对称性求出点A 的横坐标,再根据两函数的上下位置关系结合交点坐标即可求出不等式的解集.二、填空题(本题共8小题,每小题3分,共24分)9.分解因式:mn2﹣m=m(n+1)(n﹣1).【考点】提公因式法与公式法的综合运用.【分析】先提取公因式m,再利用平方差公式进行二次分解.平方差公式:a2﹣b2=(a+b)(a﹣b).【解答】解:mn2﹣m,=m(n2﹣1),=m(n+1)(n﹣1).【点评】本题考查了提公因式法,公式法分解因式,提取公因式后再利用平方差公式进行二次分解因式,也是难点所在.10.若二次函数y=x2﹣2x+m的图象与x轴有两个交点,则m的取值范围是m<1.【考点】抛物线与x轴的交点.【分析】根据△>0⇔抛物线与x轴有两个交点,列出不等式即可解决问题.【解答】解:∵二次函数y=x2﹣2x+m的图象与x轴有两个交点,∴△>0,∴4﹣4m>0,∴m<1.故答案为m<1【点评】本题考查抛物线与x轴的交点,解题的关键是记住△=0⇔抛物线与x轴只有一个交点,△>0⇔抛物线与x轴有两个交点,△<0⇔抛物线与x轴没有交点,属于中考常考题型.11.实数a在数轴上的位置如图,则|a﹣3|=3﹣a.【考点】实数与数轴.【分析】根据数轴上的点表示的数右边的总比左边的大,可得a与3的关系,根据差的绝对值是大数减小数,可得答案.【解答】解:由数轴上点的位置关系,得a<3.|a﹣3|=3﹣a,故答案为:3﹣a.【点评】本题考查了实数与数轴,利用数轴上的点表示的数右边的总比左边的大得出a与3的关系是解题关键,注意差的绝对值是大数减小数.12.用一个圆心角为180°,半径为4的扇形围成一个圆锥的侧面,则这个圆锥的底面圆的半径为2.【考点】圆锥的计算.【分析】设这个圆锥的底面圆的半径为R,根据扇形的弧长等于这个圆锥的底面圆的周长,列出方程即可解决问题【解答】解:设这个圆锥的底面圆的半径为R,由题意:2πR=,解得R=2.故答案为2.【点评】本题考查圆锥的计算、扇形的弧长公式、圆的周长公式等知识,解题的关键是理解扇形的弧长等于这个圆锥的底面圆的周长,学会用方程的思想解决问题,属于中考常考题型.13.在平行四边形ABCD中,∠BAD的平分线AE交BC于点E,且BE=3,若平行四边形ABCD 的周长是16,则EC等于2.【考点】平行四边形的性质.【分析】由平行四边形的性质和已知条件证出∠BAE=∠BEA,证出AB=BE=3;求出AB+BC=8,得出BC=5,即可得出EC的长.【解答】解:∵四边形ABCD是平行四边形,∴AD∥BC,AB=CD,AD=BC,∴∠AEB=∠DAE,∵平行四边形ABCD的周长是16,∴AB+BC=8,∵AE是∠BAD的平分线,∴∠BAE=∠DAE,∴∠BAE=∠AEB,∴AB=BE=3,∴BC=5,∴EC=BC﹣BE=5﹣3=2;故答案为:2.【点评】此题考查了平行四边形的性质、等腰三角形的判定;熟练掌握平行四边形的性质,证出AB=BE是解决问题的关键.14.如图,Rt△AOB中,∠AOB=90°,OA在x轴上,OB在y轴上,点A,B的坐标分别为(,0),(0,1),把Rt△AOB沿着AB对折得到Rt△AO′B,则点O′的坐标为(,)..【考点】翻折变换(折叠问题);坐标与图形性质.【分析】作O′C⊥y轴于点C,首先根据点A,B的坐标分别为(,0),(0,1)得到∠BAO=30°,从而得出∠OBA=60°,然后根据Rt△AOB沿着AB对折得到Rt△AO′B,得到∠CBO′=60°,最后设BC=x,则OC′=x,利用勾股定理求得x的值即可求解.【解答】解:如图,作O′C⊥y轴于点C,∵点A,B的坐标分别为(,0),(0,1),∴OB=1,OA=,∴tan∠BAO==,∴∠BAO=30°,∴∠OBA=60°,∵Rt△AOB沿着AB对折得到Rt△AO′B,∴∠CBO′=60°,∴设BC=x,则OC′=x,∴x2+(x)2=1,解得:x=(负值舍去),∴OC=OB+BC=1+=,∴点O′的坐标为(,).故答案为:(,).【点评】本题考查了翻折变换及坐标与图形的性质的知识,解题的关键是根据点A和点B的坐标确定三角形为特殊三角形,难度不大.15.已知正△ABC的边长为6,那么能够完全覆盖这个正△ABC的最小圆的半径是2.【考点】三角形的外接圆与外心;等边三角形的性质.【分析】能够完全覆盖这个正△ABC的最小圆的半径是△ABC外接圆的半径,求出△ABC外接圆的半径即可解决问题.【解答】解:如图,那么能够完全覆盖这个正△ABC的最小圆的半径就是△ABC外接圆的半径,设⊙O是△ABC的外接圆,连接OB,OC,作OE⊥BC于E,∵△ABC是等边三角形,∴∠A=60°,∠BOC=2∠A=120°,∵OB=OC,OE⊥BC,∴∠BOE=60°,BE=EC=3,∴sin60°=,∴OB=2,故答案为2.【点评】本题考查等边三角形的性质、三角形外接圆的性质、锐角三角函数等知识,解题的关键是理解题意,学会转化的思想解决问题,属于中考常考题型.16.如图,在平面直角坐标系xOy中,△A′B′C′由△ABC绕点P旋转得到,则点P的坐标为(1,﹣1).【考点】坐标与图形变化-旋转.【分析】连接AA′,CC′,线段AA′、CC′的垂直平分线的交点就是点P.【解答】解:连接AA′、CC′,作线段AA′的垂直平分线MN,作线段CC′的垂直平分线EF,直线MN和直线EF的交点为P,点P就是旋转中心.∵直线MN为:x=1,设直线CC′为y=kx+b,由题意:,∴,∴直线CC′为y=x+,∵直线EF⊥CC′,经过CC′中点(,),∴直线EF为y=﹣3x+2,由得,∴P(1,﹣1).故答案为(1,﹣1).【点评】本题考查旋转的性质,掌握对应点连线段的垂直平分线的交点就是旋转中心,是解题的关键.三、解答题(本题共6道题,每题6分,共36分)17.解不等式组.【考点】解一元一次不等式组.【分析】分别求出各不等式的解集,再求出其公共解集即可.【解答】解:,由①得,x<3,由②得,x≥2,故不等式组的解集为:2≤x<3.【点评】本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.18.化简求值:(),其中a=2+.【考点】实数的运算.【专题】计算题;分式.【分析】原式第一项括号中两项通分并利用同分母分式的加法法则计算,同时利用除法法则变形,约分后两项化简得到最简结果,把a的值代入计算即可求出值.【解答】解:原式=[+]•+=•+==,当a=2+时,原式=+1.【点评】此题考查了分式的混合运算,熟练掌握运算法则是解本题的关键.19.在平面直角坐标系中,△ABC的三个顶点坐标分别为A(2,﹣1),B(3,﹣3),C(0,﹣4)(1)画出△ABC关于原点O成中心对称的△A1B1C1;(2)画出△A1B1C1关于y轴对称的△A2B2C2.【考点】作图-旋转变换;作图-轴对称变换.【专题】作图题.【分析】(1)根据网格结构找出点A、B、C关于原点对称的点A1、B1、C1的位置,然后顺次连接即可;(2)根据网格结构找出点A1、B1、C1关于y轴对称的点A2、B2、C2的位置,然后顺次连接即可.【解答】解:(1)△A1B1C1如图所示;(2)△A2B2C2如图所示.【点评】本题考查了利用旋转变换作图,利用轴对称变换作图,熟练掌握网格结构准确找出对应点的位置是解题的关键.20.为了解学生的体能情况,随机选取了1000名学生进行调查,并记录了他们对长跑、短跑、跳绳、跳远四个项目的喜欢情况,整理成以下统计表,其中“√”表示喜欢,“×”表示不喜欢.长跑短跑跳绳跳远200 √×√√300 ×√×√150 √√√×200 √×√×150 √×××(1)估计学生同时喜欢短跑和跳绳的概率;(2)估计学生在长跑、短跑、跳绳、跳远中同时喜欢三个项目的概率;(3)如果学生喜欢长跑、则该同学同时喜欢短跑、跳绳、跳远中哪项的可能性大?【考点】利用频率估计概率;列表法与树状图法.【分析】(1)根据求概率的公式即可得到结论;(2)根据求概率的公式即可得到结论;(3)根据求概率的公式求得各项概率进行比较即可得到结论.【解答】解:(1)同时喜欢短跑和跳绳的概率==;(2)同时喜欢三个项目的概率==;(3)同时喜欢短跑的概率==,同时喜欢跳绳的概率==,同时喜欢跳远的概率==,∵,∴同时喜欢跳绳的可能性大.【点评】本题考查了利用频率估计概率,求概率,正确的理解题意是解题的关键.21.在等边△ABC中,点D,E分别在边BC、AC上,若CD=2,过点D作DE∥AB,过点E作EF⊥DE,交BC的延长线于点F,求EF的长.【考点】等边三角形的性质.【分析】先证明△DEC是等边三角形,再在RT△DEC中求出EF即可解决问题.【解答】解:∵△ABC是等边三角形,∴∠B=∠ACB=60°,∵DE∥AB,∴∠EDC=∠B=60°,∴△EDC是等边三角形,∴DE=DC=2,在RT△DEC中,∵∠DEC=90°,DE=2,∴DF=2DE=4,∴EF===2.【点评】不同考查等边三角形的性质、直角三角形中30度角所对的直角边等于斜边的一半,勾股定理等知识,解题的关键是利用特殊三角形解决问题,属于中考常考题型.22.某种型号油电混合动力汽车,从A地到B地燃油行驶纯燃油费用76元,从A地到B地用电行驶纯电费用26元,已知每行驶1千米,纯燃油费用比纯用电费用多0.5元.(1)求每行驶1千米纯用电的费用;(2)若要使从A地到B地油电混合行驶所需的油、电费用合计不超过39元,则至少用电行驶多少千米?【考点】分式方程的应用;一元一次不等式的应用.【专题】方程与不等式.【分析】(1)根据某种型号油电混合动力汽车,从A地到B地燃油行驶纯燃油费用76元,从A地到B地用电行驶纯电费用26元,已知每行驶1千米,纯燃油费用比纯用电费用多0.5元,可以列出相应的分式方程,然后解分式方程即可解答本题;(2)根据(1)中用电每千米的费用和本问中的信息可以列出相应的不等式,解不等式即可解答本题.【解答】解:(1)设每行驶1千米纯用电的费用为x元,=解得,x=0.26经检验,x=0.26是原分式方程的解,即每行驶1千米纯用电的费用为0.26元;(2)从A地到B地油电混合行驶,用电行驶y千米,0.26y+(﹣y)×(0.26+0.50)≤39解得,y≥74,即至少用电行驶74千米.【点评】本题考查分式方程的应用、一元一次不等式的应用,解题的关键是明确题意,列出相应的分式方程与不等式,注意分式方程在最后要检验.四、解答题(本题共4道题,其中23题、24题每题8分,25题、26题每题10分,共36分)23.已知△ABC,以AB为直径的⊙O分别交AC于D,BC于E,连接ED,若ED=EC.(1)求证:AB=AC;(2)若AB=4,BC=2,求CD的长.【考点】圆周角定理;等腰三角形的判定与性质;勾股定理.【分析】(1)由等腰三角形的性质得到∠EDC=∠C,由圆外接四边形的性质得到∠EDC=∠B,由此推得∠B=∠C,由等腰三角形的判定即可证得结论;(2)连接AE,由AB为直径,可证得AE⊥BC,由(1)知AB=AC,由“三线合一”定理得到BE=CE= BC=,由割线定理可证得结论.【解答】(1)证明:∵ED=EC,∴∠EDC=∠C,∵∠EDC=∠B,∴∠B=∠C,∴AB=AC;(2)解:连接AE,∵AB为直径,∴AE⊥BC,由(1)知AB=AC,∴BE=CE=BC=,∵CE•CB=CD•CA,AC=AB=4,∴•2=4CD,∴CD=.【点评】本题考查了圆周角定理,等腰三角形的判定和性质,勾股定理,正确的作出辅助线是解题的关键.24.如图,Rt△ABO的顶点O在坐标原点,点B在x轴上,∠ABO=90°,∠AOB=30°,OB=2,反比例函数y=(x>0)的图象经过OA的中点C,交AB于点D.(1)求反比例函数的关系式;(2)连接CD,求四边形CDBO的面积.【考点】待定系数法求反比例函数解析式;反比例函数系数k的几何意义.【分析】(1)解直角三角形求得AB,作CE⊥OB于E,根据平行线分线段成比例定理和三角形中位线的性质求得C的坐标,然后根据待定系数法即可求得反比例函数的解析式;=S△AOB﹣S△ACD (2)求得D的坐标,进而求得AD的长,得出△ACD的面积,然后根据S四边形CDBO即可求得.【解答】解:(1)∵∠ABO=90°,∠AOB=30°,OB=2,∴AB=OB=2,作CE⊥OB于E,∵∠ABO=90°,∴CE∥AB,∴OC=AC,∴OE=BE=OB=,CE=AB=1,∴C(,1),∵反比例函数y=(x>0)的图象经过OA的中点C,∴1=,∴k=,∴反比例函数的关系式为y=;(2)∵OB=2,∴D的横坐标为2,代入y=得,y=,∴D(2,),∴BD=,∵AB=2,∴AD=,∴S△ACD=AD•BE=××=,∴S=S△AOB﹣S△ACD=OB•AB﹣=×2×2﹣=.四边形CDBO【点评】本题考查待定系数法求反比例函数的解析式,解决本题的关键是明确反比例函数图象上点的坐标特征.25.某种水彩笔,在购买时,若同时额外购买笔芯,每个优惠价为3元,使用期间,若备用笔芯不足时需另外购买,每个5元.现要对在购买水彩笔时应同时购买几个笔芯作出选择,为此收集了这种水彩笔在使用期内需要更换笔芯个数的30组数据,整理绘制出下面的条形统计图:设x表示水彩笔在使用期内需要更换的笔芯个数,y表示每支水彩笔在购买笔芯上所需要的费用(单位:元),n表示购买水彩笔的同时购买的笔芯个数.(1)若n=9,求y与x的函数关系式;(2)若要使这30支水彩笔“更换笔芯的个数不大于同时购买笔芯的个数”的频率不小于0.5,确定n 的最小值;(3)假设这30支笔在购买时,每支笔同时购买9个笔芯,或每支笔同时购买10个笔芯,分别计算这30支笔在购买笔芯所需费用的平均数,以费用最省作为选择依据,判断购买一支水彩笔的同时应购买9个还是10个笔芯.【考点】一次函数的应用;频数与频率;条形统计图.【分析】(1)根据题意列出函数关系式;(2)由条形统计图得到需要更换笔芯的个数为7个对应的频数为4,8个对应的频数为6,9个对应的频数为8,即可.(3)分两种情况计算【解答】解:(1)当n=9时,y==;(2)根据题意,“更换笔芯的个数不大于同时购买笔芯的个数”的频率不小于0.5,则“更换笔芯的个数不大于同时购买笔芯的个数”的频数大于30×0.5=15,根据统计图可得,需要更换笔芯的个数为7个对应的频数为4,8个对应的频数为6,9个对应的频数为8,因此当n=9时,“更换笔芯的个数不大于同时购买笔芯的个数”的频数=4+6+8=18>15.因此n的最小值为9.(3)若每支笔同时购买9个笔芯,则所需费用总和=(4+6+8)×3×9+7×(3×9+5×1)+5×(3×9+5×2)=895,若每支笔同时购买10个笔芯,则所需费用总和=(4+6+8+7)×3×10+5×(3×10+5×1)=925,因此应购买9个笔芯.【点评】此题是一次函数的应用,主要考查了一次函数的性质,统计图,解本题的关键是统计图的分析.26.在矩形ABCD中,AB=3,AD=4,动点Q从点A出发,以每秒1个单位的速度,沿AB向点B 移动;同时点P从点B出发,仍以每秒1个单位的速度,沿BC向点C移动,连接QP,QD,PD.若两个点同时运动的时间为x秒(0<x≤3),解答下列问题:(1)设△QPD的面积为S,用含x的函数关系式表示S;当x为何值时,S有最大值?并求出最小值;(2)是否存在x的值,使得QP⊥DP?试说明理由.【考点】四边形综合题.【分析】(1)可用x表示出AQ、BQ、BP、CP,从而可表示出S△ADQ、S△BPQ、S△PCD的面积,则可表示出S,再利用二次函数的增减性可求得是否有最大值,并能求得其最小值;(2)用x表示出BQ、BP、PC,当QP⊥DP时,可证明△BPQ∽△CDP,利用相似三角形的性质可得到关于x的方程,可求得x的值.【解答】解:(1)∵四边形ABCD为矩形,∴BC=AD=4,CD=AB=3,当运动x秒时,则AQ=x,BP=x,∴BQ=AB﹣AQ=3﹣x,CP=BC﹣BP=4﹣x,∴S△ADQ=AD•AQ=×4x=2x,S△BPQ=BQ•BP=(3﹣x)x=x﹣x2,S△PCD=PC•CD=•(4﹣x)•3=6﹣x,=AB•BC=3×4=12,又S矩形ABCD西藏历年中考真题 全国各省市历年中考真题 ∴S=S 矩形ABCD ﹣S △ADQ ﹣S △BPQ ﹣S △PCD =12﹣2x ﹣(x ﹣x 2)﹣(6﹣x )=x 2﹣2x+6=(x ﹣2)2+4,即S=(x ﹣2)2+4,∴S 为开口向上的二次函数,且对称轴为x=2,∴当0<x <2时,S 随x 的增大而减小,当2<x ≤3时,S 随x 的增大而增大,又当x=0时,S=5,当S=3时,S=,但x 的范围内取不到x=0,∴S 不存在最大值,当x=2时,S 有最小值,最小值为4;(2)存在,理由如下:由(1)可知BQ=3﹣x ,BP=x ,CP=4﹣x ,当QP ⊥DP 时,则∠BPQ+∠DPC=∠DPC+∠PDC ,∴∠BPQ=∠PDC ,且∠B=∠C ,∴△BPQ ∽△PCD ,∴=,即=,解得x=(舍去)或x=, ∴当x=时QP ⊥DP . 【点评】本题为四边形的综合应用,涉及知识点有矩形的性质、二次函数的最值、相似三角形的判定和性质及方程思想等.在(1)中求得S 关于x 的关系式后,求S 的最值时需要注意x 的范围,在(2)中证明三角形相似是解题的关键.本题考查知识点较多,综合性较强,难度适中.。
2016年湖南省湘西州中考数学试卷、填空题(共8小题,每小题4分,满分32 分) 1. ________________________ 2的相反数是 .2. _______________________________________________ 使代数式: ']有意义的x 取值范围是 .3. 四边形ABCD 是某个圆的内接四边形,若/A=100 °则/ C= _____________ .4. _______________________________________________________________________________________ 如图,直线 CD // BF ,直线AB 与CD 、EF 分别相交于点 M 、N ,若/仁30 °则/ 2= _____________________5•某地区今年参加初中毕业学业考试的九年级考生人数为 人.26•分解因式:x - 4x+4= _____________7.如图,在O O 中,圆心角/ AOB=70 °那么圆周角/ C=8如图,已知菱形ABCD 的两条对角线长分别为 AC=8和BD=6,那么,菱形ABCD 的面积为 _________________二、选择题(共10小题,每小题4分,满分40分) 9. 一组数据1 , 8, 5, 3, 3的中位数是( )A . 3B . 3.5C . 4D . 5 10.下列图形中,是轴对称图形但不是中心对称图形的是()A .平行四边形B .等腰三角形C .矩形D .正方形31000人,数据31000人用科学记数法表示为11 .下列说法错误的是(A •对角线互相平分的四边形是平行四边形B •两组对边分别相等的四边形是平行四边形C . 一组对边平行且相等的四边形是平行四边形D •一组对边相等,另一组对边平行的四边形是平行四边形12 •计算 二-〔的结果精确到0.01是(可用科学计算器计算或笔算)( A • 0.30 B • 0.31 C • 0.32 D . 0.33A • x > 1B • 1v x<2C • x 毛D .无解14 • 一个等腰三角形一边长为 4cm ,另一边长为5cm ,那么这个等腰三角形的周长是( )A • 13cmB • 14cmC . 13cm 或 14cmD .以上都不对15 •在一个不透明的口袋中装有 6个红球,2个绿球,这些球除颜色外无其他差别,从这个袋子中随机摸 出一个球,摸到红球的概率为()A . 'B . .C .D . 118 .在RT △ ABC 中,/ C=90 ° BC=3cm , AC=4cm ,以点C 为圆心,以 2.5cm 为半径画圆,则O C 与直 线AB 的位置关系是()A .相交B .相切C .相离D .不能确定三、解答题(共8小题,满分78分) 19 .计算:(』莎J -3) 0- 2sin30°-匚.20 .先化简,再求值:(a+b )( a - b )- b ( a - b ),其中,a= - 2, b=1 . 21. 如图,点O 是线段AB 和线段CD 的中点. (1) 求证:△ AOD BOC ;13.不等式组f2x- 1<3| 耳+3>4'4 ' 4216 . 一次函数 y= - 2x+3的图象不经过的象限是( )A .第一象限B .第二象限C .第三象限D .第四象限的解集是17 .如图,在 △ ABC 中,DE // BC , DB=2AD , △ ADE 的面积为1,则四边形 DBCE 的面积为((2) 求证:AD // BC .22. 如图,已知反比例函数y=—的图象与直线y= - x+b 都经过点A (1, 4),且该直线与x 轴的交点为B . (1) 求反比例函数和直线的解析式;23.某校为了了解学生家长对孩子用手机的态度问题,随机抽取了100名家长进行问卷调查,每位学生家长只有一份问卷,且每份问卷仅表明一种态度(这 100名家长的问卷真实有效),将这100份问卷进行回收整理后,绘制了如下两幅不完整的统计图.55 ................. .....(1) 若已知CD=20米,求建筑物 BC 的高度;(2) 若已知旗杆的高度 AB=5米,求建筑物BC 的高度.50 4520干涉蓊」(1)从来不管”的问卷有____________ 份,在扇形图中 严加干涉”的问卷对应的圆心角为(2) 请把条形图补充完整.(3) 若该校共有学生 2000名,请估计该校对手机问题严加干涉”的家长有多少人.24. 测量计算是日常生活中常见的问题,如图,建筑物 BC 的屋顶有一根旗杆 AB ,从地面上D 点处观测旗杆顶点A 的仰角为50°观测旗杆底部 B 点的仰角为45°(可用的参考数据:sin50 ° 0.8, tan50° 核)硝M 询问不管25. 某商店购进甲乙两种商品,甲的进货单价比乙的进货单价高20元,已知20个甲商品的进货总价与25个乙商品的进货总价相同.(1)求甲、乙每个商品的进货单价;(2)若甲、乙两种商品共进货100件,要求两种商品的进货总价不高于9000元,同时甲商品按进价提高10%后的价格销售,乙商品按进价提高25%后的价格销售,两种商品全部售完后的销售总额不低于10480元,问有哪几种进货方案?(3)在条件(2)下,并且不再考虑其他因素,若甲乙两种商品全部售完,哪种方案利润最大?最大利润是多少?226•如图,长方形OABC的OA边在x轴的正半轴上,OC在y轴的正半轴上,抛物线y=ax +bx经过点B (1,4)和点E(3,0)两点.(1)求抛物线的解析式;(2)若点D在线段OC上,且BD丄DE , BD=DE,求D点的坐标;(3)在条件(2 )下,在抛物线的对称轴上找一点M,使得△ BDM的周长为最小,并求△ BDM周长的最小值及此时点M的坐标;(4)在条件(2)下,从B点到E点这段抛物线的图象上,是否存在一个点P,使得△ PAD的面积最大?若存在,请求出△ PAD面积的最大值及此时P点的坐标;若不存在,请说明理由.2016年湖南省湘西州中考数学试卷参考答案与试题解析一、填空题(共8小题,每小题4分,满分32分)1. 2的相反数是-2 .【考点】相反数.【分析】根据相反数的定义可知.【解答】解:-2的相反数是2.【点评】主要考查相反数的定义:只有符号相反的两个数互为相反数. 0的相反数是其本身.2. 使代数式归- 1有意义的x取值范围是x昌.【考点】二次根式有意义的条件.【分析】根据二次根式有意义的条件:被开方数为非负数求解即可.【解答】解:T代数式 -.有意义,x - 1 ^0,解得:x .故答案为:x N.【点评】本题考查了二次根式有意义的条件,解答本题的关键是掌握被开方数为非负数.3. 四边形ABCD是某个圆的内接四边形,若/ A=100 °则/ C= 80° .【考点】圆内接四边形的性质.【分析】直接根据圆内接四边形的性质进行解答即可.【解答】解:•••四边ABCD是圆的内接四边形,/ A=100 °•••/ C=180 °- 100°80 °故答案为:80 °【点评】本题考查的是圆内接四边形的性质,熟知圆内接四边形的对角互补是解答此题的关键.4. 如图,直线CD // BF,直线AB与CD、EF分别相交于点M、N,若/仁30 °则/ 2= 30°【考点】平行线的性质.【分析】直接利用对顶角的定义得出/ DMN的度数,再利用平行线的性质得出答案.【解答】解:•••/ 仁30°•••/ DMN=30 °•/ CD // BF,•••/ 2= / DMN=30 °故答案为:30 °【点评】此题主要考查了平行线的性质,正确得出/ 2= / DMN是解题关键.5•某地区今年参加初中毕业学业考试的九年级考生人数为31000人,数据31000人用科学记数法表示为.4 .3.1 X10 人.【考点】科学记数法一表示较大的数.【分析】科学记数法的表示形式为axi0n的形式,其中1哼a|v 10, n为整数•确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值〉1时,n是正数;当原数的绝对值v 1时,n是负数.【解答】解:31000=3.1 X104,故答案为:3.1 X104.【点评】此题考查科学记数法的表示方法•科学记数法的表示形式为a X0n的形式,其中1弓a V 10, n为整数,表示时关键要正确确定a的值以及n的值.6.分解因式:x2- 4x+4= ( x- 2) 2【考点】因式分解-运用公式法.【分析】直接用完全平方公式分解即可.【解答】解:x2- 4x+4= (x - 2)2.【点评】本题主要考查利用完全平方公式分解因式•完全平方公式:(a-b)2=a2- 2ab+b2.7.如图,在O O中,圆心角/ AOB=70 °那么圆周角/ C= 35°【考点】圆周角定理;圆心角、弧、弦的关系.【分析】根据在同圆或等圆中,同弧所对的圆周角等于圆心角的一半列式计算即可得解.【解答】解:•••圆心角/ AOB=70 °•••/ C=—/ AOB=— >70°=35 °2 2故答案为:35 °【点评】本题利用了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.&如图,已知菱形ABCD的两条对角线长分别为AC=8和BD=6,那么,菱形ABCD的面积为24【考点】菱形的性质.【分析】直接根据菱形面积等于两条对角线的长度的乘积的一半进行计算即可.【解答】解:菱形的面积=,:>5^8=24,故答案为:24.【点评】本题考查了菱形的性质:菱形具有平行四边形的一切性质;菱形的四条边都相等;菱形的两条对角线互相垂直,并且每一条对角线平分一组对角;菱形是轴对称图形,它有2条对称轴,分别是两条对角线所在直线.菱形面积等于两条对角线的长度的乘积的一半.二、选择题(共10小题,每小题4分,满分40分)9.一组数据1 , 8, 5, 3, 3的中位数是()A . 3 B. 3.5 C . 4 D . 5【考点】中位数.【分析】根据中位数计算:将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.【解答】解:把这组数据按照从小到大的顺序排列为:1,3,3,5,8,故这组数据的中位数是3.故选: A .【点评】本题考查了中位数的定义,解题的关键是牢记定义,此题比较简单,易于掌握.10.下列图形中,是轴对称图形但不是中心对称图形的是()A •平行四边形B •等腰三角形C•矩形D •正方形【考点】中心对称图形;轴对称图形.【分析】根据轴对称图形的概念先求出图形中轴对称图形,再根据中心对称图形的概念得出其中不是中心对称的图形.【解答】解:A、平行四边形不是轴对称图形,是中心对称图形•故本选项错误;B、等腰三角形是轴对称图形,不是中心对称图形•故本选项正确.C、矩形是轴对称图形,也是中心对称图形•故本选项错误;D、正方形是轴对称图形,也是中心对称图形•故本选项错误;故选B •【点评】本题考查了中心对称图形与轴对称图形的概念,轴对称图形:如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形;中心对称图形:在同一平面内,如果把一个图形绕某一点旋转180°,旋转后的图形能和原图形完全重合,那么这个图形就叫做中心对称图形,熟练掌握概念是解答此题的关键.11.下列说法错误的是()A •对角线互相平分的四边形是平行四边形B・两组对边分别相等的四边形是平行四边形C・一组对边平行且相等的四边形是平行四边形D •一组对边相等,另一组对边平行的四边形是平行四边形【考点】平行四边形的判定.【分析】根据平行四边形的判定定理进行分析即可.【解答】解:A 、两条对角线互相平分的四边形是平行四边形,故本选项说法正确; B 、 两组对边分别相等的四边形是平行四边形,故本选项说法正确; C 、 一组对边平行且相等的四边形是平行四边形,故本选项说法正确;D 、 一组对边相等,另一组对边平行的四边形不一定是平行四边形,例如:等腰梯形,故本选项说法错误; 故选:D .【点评】此题主要考查了平行四边形的判定:( 1两组对边分别平行的四边形是平行四边形.(2) 两组对边分别相等的四边形是平行四边形. (3) —组对边平行且相等的四边形是平行四边形. (4) 两组对角分别相等的四边形是平行四边形. (5) 对角线互相平分的四边形是平行四边形.12.计算 二-三的结果精确到0.01是(可用科学计算器计算或笔算)( )A . 0.30B . 0.31C . 0.32D . 0.33【考点】计算器一数的开方.【分析】首先得出 应F .732,心勺.414,进一步代入求得答案即可. 【解答】解:T 灵勺.732,占勺.414, •••占—近羽.732— 1.414=0.318 P.32. 故选:C .【点评】此题主要考查了利用计算器求数的开方运算,解题首先注意要让学生能够熟练运用计算器计算实 数的四则混合运算,同时也要求学生会根据题目要求取近似值.A . x > 1B . 1v x<2C . x 电D .无解 【考点】解一元一次不等式组.【专题】计算题;一元一次不等式 (组)及应用.【分析】分别求出不等式组中两不等式的解集,找出解集的公共部分即可.由①得:x^2,13.不等式组 px- 1<3 |x+3>4【解答】解:1<3 ①耳+3>4②的解集是由②得:x > 1 ,则不等式组的解集为 1v x 电, 故选B【点评】此题考查了解一元一次不等式组,熟练掌握运算法则是解本题的关键.14. 一个等腰三角形一边长为 4cm ,另一边长为5cm ,那么这个等腰三角形的周长是( )A . 13cmB . 14cmC . 13cm 或 14cmD .以上都不对【考点】等腰三角形的性质;三角形三边关系.【分析】分4cm 为等腰三角形的腰和 5cm 为等腰三角形的腰,先判断符合不符合三边关系,再求出周长. 【解答】解:当4cm 为等腰三角形的腰时,三角形的三边分别是 4cm , 4cm , 5cm 符合三角形的三边关系, •••周长为13cm ;当5cm 为等腰三角形的腰时,三边分别是,5cm , 5cm , 4cm ,符合三角形的三边关系, •周长为14cm , 故选C【点评】此题是等腰三角形的性质题,主要考查了等腰三角形的性质,三角形的三边关系,分类考虑是解 本题的关键.6个红球,2个绿球,这些球除颜色外无其他差别,从这个袋子中随机摸)A —B 丄C 丄D 1 .. ,1 . 一 . 【考点】概率公式.【分析】先求出总的球的个数,再根据概率公式即可得出摸到红球的概率. 【解答】解:•••袋中装有 6个红球,2个绿球, •共有8个球,•摸到红球的概率为 三斗;8 4:故选A .【点评】本题考查了概率公式,用到的知识点为:概率=所求情况数与总情况数之比.15.在一个不透明的口袋中装有 出一个球,摸到红球的概率为(16. —次函数y - 2x+3的图象不经过的象限是()A .第一象限B .第二象限C.第三象限D .第四象限【考点】一次函数的性质.【分析】首先确定k, k> 0,必过第二、四象限,再确定b,看与y轴交点,即可得到答案.【解答】解:••• y= - 2x+3 中,k= - 2 v 0,•••必过第二、四象限,•/ b=3,•••交y轴于正半轴.•过第一、二、四象限,不过第三象限,故选:C.【点评】此题主要考查了一次函数的性质,直线所过象限,受k,b的影响.17. 如图,在△ ABC中,DE // BC,DB=2AD,△ ADE的面积为1,则四边形DBCE的面积为()A . 3 B. 5 C. 6 D . 8【考点】相似三角形的判定与性质.【分析】根据相似三角形的判定与性质,可得△ ABC的面积,根据面积的和差,可得答案.【解答】解:由DE // BC,DB=2AD,得in 1△ ADE ABC,=:.由,△ ADE的面积为1,得S AABC得5△ABC=9 .S D BCE=S A BC- S A ADE=8,故选:D.【点评】本题考查了相似三角形的判定与性质,利用相似三角形面积的比等于相似比的平方得出S^A B C=9是解题关键.18. 在RT△ ABC中,/ C=90 ° BC=3cm , AC=4cm,以点C为圆心,以2.5cm为半径画圆,则O C与直线AB的位置关系是()A .相交B .相切C.相离D .不能确定【考点】直线与圆的位置关系.【分析】过C作CD丄AB于D,根据勾股定理求出AB,根据三角形的面积公式求出CD,得出d v r,根据直线和圆的位置关系即可得出结论.【解答】解:过C作CD丄AB于D,如图所示:•••在Rt△ ABC 中,/ C=90, AC=4 , BC=3 ,二AB= £山IK "=5,•/△ ABC 的面积= AC XBC= AB >CD ,2 2:.3>4=5CD ,••• CD=2.4 v 2.5,即 d v r,•••以2.5为半径的O C与直线AB的关系是相交;故选A.【点评】本题考查了直线和圆的位置关系,用到的知识点是勾股定理,三角形的面积公式;解此题的关键是能正确作出辅助线,并进一步求出CD的长,注意:直线和圆的位置关系有:相离,相切,相交.三、解答题(共8小题,满分78分)19•计算:(唔可三-3)0- 2sin30°- ■!.【考点】实数的运算;零指数幕;特殊角的三角函数值.【专题】计算题.【分析】根据实数的运算顺序,首先计算乘方、开方和乘法,然后从左向右依次计算,求出算式(穆五叵-3)0- 2sin30 °- 打的值是多少即可.【解答】解:(心:飞-3)0- 2sin30°-匚=1 - 2X - 22=1 - 1 - 2 =-2【点评】(1)此题主要考查了实数的运算,要熟练掌握,解答此题的关键是要明确:在进行实数运算时, 和有理数运算一样,要从高级到低级,即先算乘方、开方,再算乘除,最后算加减,有括号的要先算括号 里面的,同级运算要按照从左到有的顺序进行•另外,有理数的运算律在实数范围内仍然适用. (2)此题还考查了零指数幕的运算,要熟练掌握,解答此题的关键是要明确: ①a °=1( a 用);②0°詞•(3)此题还考查了特殊角的三角函数值,要牢记 30° 45° 60°角的各种三角函数值.20•先化简,再求值:(a+b )( a - b )- b ( a - b ),其中,a= - 2, b=1 • 【考点】整式的混合运算一化简求值. 【专题】计算题;整式.【分析】原式利用平方差公式,单项式乘以多项式法则计算,去括号合并得到最简结果,把 入计算即可求出值.【解答】解:原式=a 2- b 2- ab+b 2=a 2- ab , 当 a= - 2, b=1 时,原式=4+2=6 •【点评】此题考查了整式的混合运算-化简求值,熟练掌握运算法则是解本题的关键.21 •如图,点O 是线段AB 和线段CD 的中点. (1) 求证:△ AOD ◎△ BOC ; (2) 求证:AD // BC •【考点】全等三角形的判定与性质. 【专题】证明题.【分析】(1)由点O 是线段AB 和线段CD 的中点可得出AO=BO , CO=DO ,结合对顶角相等,即可利 用全等三角形的判定定理( SAS )证出△ AOD BOC ;(2)结合全等三角形的性质可得出/ A= / B ,依据 内错角相等,两直线平行”即a 与b 的值代可证出结论.【解答】证明:(1)v点o是线段AB和线段CD的中点,••• AO=BO , CO=DO .r AO=BO在厶AOD和厶BOC中,有Z AOD=Z BOC,CO=DO•••△ AOD BOC ( SAS).(2)v^ AOD ◎△ BOC ,•••/ A= / B,• AD // BC.【点评】本题考查了全等三角形的判定与性质以及平行线的判定定理,解题的关键是:( 1)利用SAS证出厶AOD ◎△ BOC ; ( 2)找出/ A= / B .本题属于基础题,难度不大,解决该题型题目时,根据全等三角形的判定定理证出两三角形全等,结合全等三角形的性质找出相等的角,再依据平行线的判定定理证出两直线平行即可.22.如图,已知反比例函数y=—的图象与直线y= - x+b都经过点A (1, 4),且该直线与x轴的交点为B .(1)求反比例函数和直线的解析式;【专题】计算题.【分析】(1 )把A点坐标分别代入y=—和y= - x+b中分别求出k和b即可得到两函数解析式;x(2)利用一次函数解析式求出B点坐标,然后根据三角形面积公式求解.【解答】解:(1)把A (1, 4)代入y=—得k=1 ><4=4,X4所以反比例函数的解析式为y=;x把 A (1, 4)代入y= - x+b 得-1+b=4,解得b=5, 所以直线解析式为y= - x+5 ;(2)当 y=0 时,-x+5=0,解得 x=5,则 B (5, 0), 所以△ AOB 的面积= X5曲=10 .2【点评】本题考查了反比例函数与一次函数的交点问题:反比例函数与一次函数的交点问题( 1)求反比例函数与一次函数的交点坐标,把两个函数关系式联立成方程组求解,若方程组有解则两者有交点,方程 组无解,则两者无交点23•某校为了了解学生家长对孩子用手机的态度问题,随机抽取了 100名家长进行问卷调查,每位学生家长只有一份问卷,且每份问卷仅表明一种态度(这 100名家长的问卷真实有效),将这100份问卷进行回收整理后,绘制了如下两幅不完整的统计图.55 50 45 40 35 30 25 20(1)从来不管”的问卷有 25份,在扇形图中 严加干涉”的问卷对应的圆心角为 (2)请把条形图补充完整.(3)若该校共有学生 2000名,请估计该校对手机问题 严加干涉”的家长有多少人.【考点】条形统计图;用样本估计总体;扇形统计图.【分析】(1)用问卷数从来不管”所占百分比即可;用严加干涉”部分占问卷总数的百分比乘以 360。
2016年江苏省南京市中考数学试卷一、选择题(本大题共6小题,每小题2分,共12分,在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置上)1.(2分)为了方便市民出行,提倡低碳交通,近几年南京市大力发展公共自行车系统,根据规划,全市公共自行车总量明年将达70000辆,用科学记数法表示70000是()A.0.7×105B.7×104C.7×105D.70×1032.(2分)数轴上点A、B表示的数分别是5、﹣3,它们之间的距离可以表示为()A.﹣3+5 B.﹣3﹣5 C.|﹣3+5| D.|﹣3﹣5|3.(2分)下列计算中,结果是a6的是()A.a2+a4B.a2•a3C.a12÷a2D.(a2)34.(2分)下列长度的三条线段能组成钝角三角形的是()A.3,4,4 B.3,4,5 C.3,4,6 D.3,4,75.(2分)已知正六边形的边长为2,则它的内切圆的半径为()A.1 B.C.2 D.26.(2分)若一组数据2,3,4,5,x的方差与另一组数据5,6,7,8,9的方差相等,则x的值为()A.1 B.6 C.1或6 D.5或6二、填空题(本大题共10小题,每小题2分,共20分,不需写出解答过程,请把答案直接填写在答题卡相应位置上)7.(2分)化简:=;=.8.(2分)若式子在实数范围内有意义,则x的取值范围是.9.(2分)分解因式:2a(b+c)﹣3(b+c)=.10.(2分)比较大小:﹣3.11.(2分)分式方程的解是.12.(2分)设x1、x2是方程x2﹣4x+m=0的两个根,且x1+x2﹣x1x2=1,则x1+x2=,m=.13.(2分)如图,扇形OAB的圆心角为122°,C是上一点,则∠ACB=°.14.(2分)如图,四边形ABCD的对角线AC、BD相交于点O,△ABO≌△ADO.下列结论:①AC⊥BD;②CB=CD;③△ABC≌△ADC;④DA=DC.其中所有正确结论的序号是.15.(2分)如图,AB、CD相交于点O,OC=2,OD=3,AC∥BD,EF是△ODB的中位线,且EF=2,则AC的长为.16.(2分)如图,菱形ABCD的面积为120cm2,正方形AECF的面积为50cm2,则菱形的边长为cm.三、解答题(本大题共11小题,共88分,请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)17.(7分)解不等式组,并写出它的整数解.18.(7分)计算﹣.19.(7分)某校九年级有24个班,共1000名学生,他们参加了一次数学测试,学校统计了所有学生的成绩,得到下列统计图.(1)求该校九年级学生本次数学测试成绩的平均数;(2)下列关于本次数学测试说法正确的是()A.九年级学生成绩的众数与平均数相等B.九年级学生成绩的中位数与平均数相等C.随机抽取一个班,该班学生成绩的平均数等于九年级学生成绩的平均数D.随机抽取300名学生,可以用他们成绩的平均数估计九年级学生成绩的平均数20.(8分)我们在学完“平移、轴对称、旋转”三种图形的变化后,可以进行进一步研究,请根据示例图形,完成下表.21.(8分)用两种方法证明“三角形的外角和等于360°”.如图,∠BAE、∠CBF、∠ACD是△ABC的三个外角.求证∠BAE+∠CBF+∠ACD=360°.证法1:∵,∴∠BAE+∠1+∠CBF+∠2+∠ACD+∠3=180°×3=540°∴∠BAE+∠CBF+∠ACD=540°﹣(∠1+∠2+∠3).∵,∴∠BAE+∠CBF+∠ACD=540°﹣180°=360°.请把证法1补充完整,并用不同的方法完成证法2.22.(8分)某景区7月1日﹣7月7日一周天气预报如图,小丽打算选择这期间的一天或两天去该景区旅游,求下列事件的概率:(1)随机选择一天,恰好天气预报是晴;(2)随机选择连续的两天,恰好天气预报都是晴.23.(8分)如图中的折线ABC表示某汽车的耗油量y(单位:L/km)与速度x (单位:km/h)之间的函数关系(30≤x≤120),已知线段BC表示的函数关系中,该汽车的速度每增加1km/h,耗油量增加0.002L/km.(1)当速度为50km/h、100km/h时,该汽车的耗油量分别为L/km、L/km.(2)求线段AB所表示的y与x之间的函数表达式.(3)速度是多少时,该汽车的耗油量最低?最低是多少?24.(7分)如图,在▱ABCD中,E是AD上一点,延长CE到点F,使∠FBC=∠DCE.(1)求证:∠D=∠F;(2)用直尺和圆规在AD上作出一点P,使△BPC∽△CDP(保留作图的痕迹,不写作法).25.(9分)图中是抛物线拱桥,P处有一照明灯,水面OA宽4m,从O、A两处观测P处,仰角分别为α、β,且tanα=,tan,以O为原点,OA所在直线为x轴建立直角坐标系.(1)求点P的坐标;(2)水面上升1m,水面宽多少(取1.41,结果精确到0.1m)?26.(8分)如图,O是△ABC内一点,⊙O与BC相交于F、G两点,且与AB、AC分别相切于点D、E,DE∥BC,连接DF、EG.(1)求证:AB=AC.(2)已知AB=10,BC=12,求四边形DFGE是矩形时⊙O的半径.27.(11分)如图,把函数y=x的图象上各点的纵坐标变为原来的2倍,横坐标不变,得到函数y=2x的图象;也可以把函数y=x的图象上各点的横坐标变为原来的倍,纵坐标不变,得到函数y=2x的图象.类似地,我们可以认识其他函数.(1)把函数y=的图象上各点的纵坐标变为原来的倍,横坐标不变,得到函数y=的图象;也可以把函数y=的图象上各点的横坐标变为原来的倍,纵坐标不变,得到函数y=的图象.(2)已知下列变化:①向下平移2个单位长度;②向右平移1个单位长度;③向右平移个单位长度;④纵坐标变为原来的4倍,横坐标不变;⑤横坐标变为原来的倍,纵坐标不变;⑥横坐标变为原来的2倍,纵坐标不变.(Ⅰ)函数y=x2的图象上所有的点经过④→②→①,得到函数的图象;(Ⅱ)为了得到函数y=﹣(x﹣1)2﹣2的图象,可以把函数y=﹣x2的图象上所有的点.A.①→⑤→③B.①→⑥→③C.①→②→⑥D.①→③→⑥(3)函数y=的图象可以经过怎样的变化得到函数y=﹣的图象?(写出一种即可)2016年江苏省南京市中考数学试卷参考答案与试题解析一、选择题(本大题共6小题,每小题2分,共12分,在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置上)1.(2分)为了方便市民出行,提倡低碳交通,近几年南京市大力发展公共自行车系统,根据规划,全市公共自行车总量明年将达70000辆,用科学记数法表示70000是()A.0.7×105B.7×104C.7×105D.70×103【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于10时,n是正数;当原数的绝对值小于1时,n是负数.【解答】解:70000=7×104,故选:B.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.2.(2分)数轴上点A、B表示的数分别是5、﹣3,它们之间的距离可以表示为()A.﹣3+5 B.﹣3﹣5 C.|﹣3+5| D.|﹣3﹣5|【分析】由距离的定义和绝对值的关系容易得出结果.【解答】解:∵点A、B表示的数分别是5、﹣3,∴它们之间的距离=|﹣3﹣5|=8,故选:D.【点评】本题考查绝对值的意义、数轴上两点间的距离;理解数轴上两点间的距离与绝对值的关系是解决问题的关键.3.(2分)下列计算中,结果是a6的是()A.a2+a4B.a2•a3C.a12÷a2D.(a2)3【分析】A:根据合并同类项的方法判断即可.B:根据同底数幂的乘法法则计算即可.C:根据同底数幂的除法法则计算即可.D:幂的乘方的计算法则:(a m)n=a mn(m,n是正整数),据此判断即可.【解答】解:∵a2+a4≠a6,∴选项A的结果不是a6;∵a2•a3=a5,∴选项B的结果不是a6;∵a12÷a2=a10,∴选项C的结果不是a6;∵(a2)3=a6,∴选项D的结果是a6.故选:D.【点评】(1)此题主要考查了同底数幂的除法法则:同底数幂相除,底数不变,指数相减,要熟练掌握,解答此题的关键是要明确:①底数a≠0,因为0不能做除数;②单独的一个字母,其指数是1,而不是0;③应用同底数幂除法的法则时,底数a可是单项式,也可以是多项式,但必须明确底数是什么,指数是什么.(2)此题还考查了幂的乘方和积的乘方,要熟练掌握,解答此题的关键是要明确:①(a m)n=a mn(m,n是正整数);②(ab)n=a n b n(n是正整数).(3)此题还考查了同底数幂的乘法法则:同底数幂相乘,底数不变,指数相加,要熟练掌握,解答此题的关键是要明确:①底数必须相同;②按照运算性质,只有相乘时才是底数不变,指数相加.(4)此题还考查了合并同类项的方法,要熟练掌握.4.(2分)下列长度的三条线段能组成钝角三角形的是()A.3,4,4 B.3,4,5 C.3,4,6 D.3,4,7【分析】在能够组成三角形的条件下,如果满足较小两边平方的和等于最大边的平方是直角三角形;满足较小两边平方的和大于最大边的平方是锐角三角形;满足较小两边平方的和小于最大边的平方是钝角三角形,依此求解即可.【解答】解:A、因为32+42>42,所以三条线段能组锐角三角形,不符合题意;B、因为32+42=52,所以三条线段能组成直角三角形,不符合题意;C、因为3+4>6,且32+42<62,所以三条线段能组成钝角三角形,符合题意;D、因为3+4=7,所以三条线段不能组成三角形,不符合题意.故选:C.【点评】本题考查了勾股定理的逆定理:如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形.掌握组成钝角三角形的条件是解题的关键.5.(2分)已知正六边形的边长为2,则它的内切圆的半径为()A.1 B.C.2 D.2【分析】根据题意画出图形,利用正六边形中的等边三角形的性质求解即可.【解答】解:如图,连接OA、OB,OG;∵六边形ABCDEF是边长为2的正六边形,∴△OAB是等边三角形,∴OA=AB=2,∴OG=OA•sin60°=2×=,∴边长为2的正六边形的内切圆的半径为.故选B.【点评】本题考查学生对正多边形的概念掌握和计算的能力.解答这类题往往一些学生因对正多边形的基本知识不明确,将多边形的半径与内切圆的半径相混淆而造成错误计算,记住基本概念是解题的关键,属于中考常考题型.6.(2分)若一组数据2,3,4,5,x的方差与另一组数据5,6,7,8,9的方差相等,则x的值为()A.1 B.6 C.1或6 D.5或6【分析】根据数据x1,x2,…x n与数据x1+a,x2+a,…,x n+a的方差相同这个结论即可解决问题.【解答】解:∵一组数据2,3,4,5,x的方差与另一组数据5,6,7,8,9的方差相等,∴这组数据可能是2,3,4,5,6或1,2,3,4,5,∴x=1或6,故选C.【点评】本题考查方差、平均数等知识,解题的关键利用结论:数据x1,x2,…x n 与数据x1+a,x2+a,…,x n+a的方差相同解决问题,属于中考常考题型.二、填空题(本大题共10小题,每小题2分,共20分,不需写出解答过程,请把答案直接填写在答题卡相应位置上)7.(2分)化简:=2;=2.【分析】根据二次根式的性质和立方根的定义化简即可.【解答】解:==2;=2.故答案为:2;2.【点评】本题考查了二次根式的性质与化简,立方根的定义,是基础题,熟记概念是解题的关键.8.(2分)若式子在实数范围内有意义,则x的取值范围是x≥1.【分析】先根据二次根式有意义的条件列出关于x的不等式,求出x的取值范围即可.【解答】解:∵式子在实数范围内有意义,∴x﹣1≥0,解得x≥1.故答案为:x≥1.【点评】本题考查的是二次根式有意义的条件,即被开方数大于等于0.9.(2分)分解因式:2a(b+c)﹣3(b+c)=(b+c)(2a﹣3).【分析】直接提取公因式b+c即可.【解答】解:原式=(b+c)(2a﹣3),故答案为:(b+c)(2a﹣3).【点评】此题主要考查了提公因式法分解因式,关键是正确找出公因式.10.(2分)比较大小:﹣3<.【分析】先判断出﹣3与﹣2的符号,进而可得出结论.【解答】解:∵4<5<9,∴2<<3,∴﹣3<0,﹣2>0,∴﹣3<.故答案为:<.【点评】本题考查的是实数的大小比较,熟知正数与负数比较大小的法则是解答此题的关键.11.(2分)分式方程的解是3.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:去分母得:x=3(x﹣2),去括号得:x=3x﹣6,解得:x=3,经检验x=3是分式方程的解.【点评】此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.12.(2分)设x1、x2是方程x2﹣4x+m=0的两个根,且x1+x2﹣x1x2=1,则x1+x2= 4,m=3.【分析】根据根与系数的关系找出x1+x2=﹣=4,x1x2==m,将其代入等式x1+x2﹣x1x2=1中得出关于m的一元一次方程,解方程即可得出m的值,从而此题得解.【解答】解:∵x1、x2是方程x2﹣4x+m=0的两个根,∴x1+x2=﹣=4,x1x2==m.∵x1+x2﹣x1x2=4﹣m=1,∴m=3.故答案为:4;3.【点评】本题考查了根与系数的关系,解题的关键是找出x1+x2=4,x1x2=m.本题属于基础题,难度不大,解决该题型题目时,根据根与系数的关系找出两根之和与两根之积是关键.13.(2分)如图,扇形OAB的圆心角为122°,C是上一点,则∠ACB=119°.【分析】在⊙O上取点D,连接AD,BD,根据圆周角定理求出∠D的度数,由圆内接四边形的性质即可得出结论.【解答】解:如图所示,在⊙O上取点D,连接AD,BD,∵∠AOB=122°,∴∠ADB=∠AOB=×122°=61°.∵四边形ADBC是圆内接四边形,∴∠ACB=180°﹣61°=119°.故答案为:119.【点评】本题考查的是圆周角定理,根据题意作出辅助线,构造出圆周角是解答此题的关键.14.(2分)如图,四边形ABCD的对角线AC、BD相交于点O,△ABO≌△ADO.下列结论:①AC⊥BD;②CB=CD;③△ABC≌△ADC;④DA=DC.其中所有正确结论的序号是①②③.【分析】根据全等三角形的性质得出∠AOB=∠AOD=90°,OB=OD,再根据全等三角形的判定定理得出△ABC≌△ADC,进而得出其它结论.【解答】解:∵△ABO≌△ADO,∴∠AOB=∠AOD=90°,OB=OD,∴AC⊥BD,故①正确;∵四边形ABCD的对角线AC、BD相交于点O,∴∠COB=∠COD=90°,在△ABC和△ADC中,,∴△ABC≌△ADC(SAS),故③正确∴BC=DC,故②正确;故答案为①②③.【点评】本题考查了全等三角形的判定和性质,掌握全等三角形的判定方法:SSS,SAS,ASA,AAS,以及HL,是解题的关键.15.(2分)如图,AB、CD相交于点O,OC=2,OD=3,AC∥BD,EF是△ODB的中位线,且EF=2,则AC的长为.【分析】根据三角形的中位线平行于第三边并且等于第三边的一半求出DB,再根据相似三角形对应边成比例列式计算即可得解.【解答】解:∵EF是△ODB的中位线,∴DB=2EF=2×2=4,∵AC∥BD,∴△AOC∽△BOD,∴=,即=,解得AC=.故答案为:.【点评】本题考查了三角形的中位线平行于第三边并且等于第三边的一半,相似三角形的判定与性质,熟记定理与性质是解题的关键.16.(2分)如图,菱形ABCD的面积为120cm2,正方形AECF的面积为50cm2,则菱形的边长为13cm.【分析】根据正方形的面积可用对角线进行计算解答即可.【解答】解:因为正方形AECF的面积为50cm2,所以AC=cm,因为菱形ABCD的面积为120cm2,所以BD=cm,所以菱形的边长=cm.故答案为:13.【点评】此题考查正方形的性质,关键是根据正方形和菱形的面积进行解答.三、解答题(本大题共11小题,共88分,请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)17.(7分)解不等式组,并写出它的整数解.【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集,最后求其整数解即可.【解答】解:解不等式3x+1≤2(x+1),得:x≤1,解不等式﹣x<5x+12,得:x>﹣2,则不等式组的解集为:﹣2<x≤1,则不等式组的整数解为﹣1、0、1.【点评】本题考查不等式组的解法及整数解的确定.求不等式组的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.18.(7分)计算﹣.【分析】首先进行通分运算,进而合并分子,进而化简求出答案.【解答】解:﹣=﹣==.【点评】此题主要考查了分式的加减运算,正确进行通分运算是解题关键.19.(7分)某校九年级有24个班,共1000名学生,他们参加了一次数学测试,学校统计了所有学生的成绩,得到下列统计图.(1)求该校九年级学生本次数学测试成绩的平均数;(2)下列关于本次数学测试说法正确的是()A.九年级学生成绩的众数与平均数相等B.九年级学生成绩的中位数与平均数相等C.随机抽取一个班,该班学生成绩的平均数等于九年级学生成绩的平均数D.随机抽取300名学生,可以用他们成绩的平均数估计九年级学生成绩的平均数【分析】(1)用九年级学生的总分除以总人数即可得出答案;(2)根据条形统计图和扇形统计图不能求出众数和中位数,从而得出答案.【解答】解:(1)根据题意得:(80×1000×60%+82.5×1000×40%)÷1000=81(分),答:该校九年级学生本次数学测试成绩的平均数是81分;(2)A、根据统计图不能求出九年级学生成绩的众数,故本选项错误;B.根据统计图不能求出九年级学生成绩的中位数,故本选项错误;C.随机抽取一个班,该班学生成绩的平均数不一定等于九年级学生成绩的平均数,故本选项错误;D.随机抽取300名学生,可以用他们成绩的平均数估计九年级学生成绩的平均数,故本选项正确;故选D.【点评】本题考查了众数、平均数和中位数的定义.一组数据中出现次数最多的数据叫做这组数据的众数.将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.平均数是指在一组数据中所有数据之和再除以数据的个数.20.(8分)我们在学完“平移、轴对称、旋转”三种图形的变化后,可以进行进一步研究,请根据示例图形,完成下表.【分析】(1)根据平移的性质即可得到结论;(2)根据轴对称的性质即可得到结论;(3)同(2);(4)由旋转的性质即可得到结论.【解答】解:(1)平移的性质:平移前后的对应线段相等且平行.所以与对应线段有关的结论为:AB=A′B′,AB∥A′B′;(2)轴对称的性质:AB=A′B′;对应线段AB和A′B′所在的直线如果相交,交点在对称轴l上.(3)轴对称的性质:轴对称图形对称轴是任何一对对应点所连线段的垂直平分线.所以与对应点有关的结论为:l垂直平分AA′.(4)OA=OA′,∠AOA′=∠BOB′.故答案为:(1)AB=A′B′,AB∥A′B′;(2)AB=A′B′;对应线段AB和A′B′所在的直线如果相交,交点在对称轴l上.;(3)l垂直平分AA′;(4)OA=OA′,∠AOA′=∠BOB′.【点评】本题考查了旋转的性质,平移的性质,轴对称的性质,余角和补角的性质,熟练掌握各性质是解题的关键.21.(8分)用两种方法证明“三角形的外角和等于360°”.如图,∠BAE、∠CBF、∠ACD是△ABC的三个外角.求证∠BAE+∠CBF+∠ACD=360°.证法1:∵平角等于180°,∴∠BAE+∠1+∠CBF+∠2+∠ACD+∠3=180°×3=540°∴∠BAE+∠CBF+∠ACD=540°﹣(∠1+∠2+∠3).∵∠1+∠2+∠3=180°,∴∠BAE+∠CBF+∠ACD=540°﹣180°=360°.请把证法1补充完整,并用不同的方法完成证法2.【分析】证法1:根据平角的定义得到∠BAE+∠1+∠CBF+∠2+∠ACD+∠3=540°,再根据三角形内角和定理和角的和差关系即可得到结论;证法2:要求证∠BAE+∠CBF+∠ACD=360°,根据三角形外角性质得到∠BAE=∠2+∠3,∠CBF=∠1+∠3,∠ACD=∠1+∠2,则∠BAE+∠CBF+∠ACD=2(∠1+∠2+∠3),然后根据三角形内角和定理即可得到结论.【解答】证明:证法1:∵平角等于180°,∴∠BAE+∠1+∠CBF+∠2+∠ACD+∠3=180°×3=540°,∴∠BAE+∠CBF+∠ACD=540°﹣(∠1+∠2+∠3).∵∠1+∠2+∠3=180°,∴∠BAE+∠CBF+∠ACD=540°﹣180°=360°.证法2:∵∠BAE=∠2+∠3,∠CBF=∠1+∠3,∠ACD=∠1+∠2,∴∠BAE+∠CBF+∠ACD=2(∠1+∠2+∠3),∵∠1+∠2+∠3=180°,∴∠BAE+∠CBF+∠ACD=360°.故答案为:平角等于180°,∠1+∠2+∠3=180°.【点评】本题考查了多边形的外角和:n边形的外角和为360°.也考查了三角形内角和定理和外角性质.22.(8分)某景区7月1日﹣7月7日一周天气预报如图,小丽打算选择这期间的一天或两天去该景区旅游,求下列事件的概率:(1)随机选择一天,恰好天气预报是晴;(2)随机选择连续的两天,恰好天气预报都是晴.【分析】(1)由天气预报是晴的有4天,直接利用概率公式求解即可求得答案;(2)首先利用列举法可得:随机选择连续的两天等可能的结果有:晴晴,晴雨,雨阴,阴晴,晴晴,晴阴,然后直接利用概率公式求解即可求得答案.【解答】解:(1)∵天气预报是晴的有4天,∴随机选择一天,恰好天气预报是晴的概率为:;(2)∵随机选择连续的两天等可能的结果有:晴晴,晴雨,雨阴,阴晴,晴晴,晴阴,∴随机选择连续的两天,恰好天气预报都是晴的概率为:=.【点评】此题考查了列举法求概率的知识.用到的知识点为:概率=所求情况数与总情况数之比.23.(8分)如图中的折线ABC表示某汽车的耗油量y(单位:L/km)与速度x (单位:km/h)之间的函数关系(30≤x≤120),已知线段BC表示的函数关系中,该汽车的速度每增加1km/h,耗油量增加0.002L/km.(1)当速度为50km/h、100km/h时,该汽车的耗油量分别为0.13L/km、0.14 L/km.(2)求线段AB所表示的y与x之间的函数表达式.(3)速度是多少时,该汽车的耗油量最低?最低是多少?【分析】(1)和(2):先求线段AB的解析式,因为速度为50km/h的点在AB上,所以将x=50代入计算即可,速度是100km/h的点在线段BC上,可由已知中的“该汽车的速度每增加1km/h,耗油量增加0.002L/km”列式求得,也可以利用解析式求解;(3)观察图形发现,两线段的交点即为最低点,因此求两函数解析式组成的方程组的解即可.【解答】解:(1)设AB的解析式为:y=kx+b,把(30,0.15)和(60,0.12)代入y=kx+b中得:解得∴AB:y=﹣0.001x+0.18,当x=50时,y=﹣0.001×50+0.18=0.13,由线段BC上一点坐标(90,0.12)得:0.12+(100﹣90)×0.002=0.14,∴当x=100时,y=0.14,故答案为:0.13,0.14;(2)由(1)得:线段AB的解析式为:y=﹣0.001x+0.18;(3)设BC的解析式为:y=kx+b,把(90,0.12)和(100,0.14)代入y=kx+b中得:解得,∴BC:y=0.002x﹣0.06,根据题意得解得,答:速度是80km/h时,该汽车的耗油量最低,最低是0.1L/km.【点评】本题考查了一次函数的应用,正确求出两线段的解析式是解好本题的关键,因为系数为小数,计算要格外细心,容易出错;另外,此题中求最值的方法:两图象的交点,方程组的解;同时还有机地把函数和方程结合起来,是数学解题方法之一,应该熟练掌握.24.(7分)如图,在▱ABCD中,E是AD上一点,延长CE到点F,使∠FBC=∠DCE.(1)求证:∠D=∠F;(2)用直尺和圆规在AD上作出一点P,使△BPC∽△CDP(保留作图的痕迹,不写作法).【分析】(1)BF交AD于G,先利用AD∥BC得到∠FBC=∠FGE,加上∠FBC=∠DCE,所以∠FGE=∠DCE,然后根据三角形内角和定理易得∠D=∠F;(2)分别作BC和BF的垂直平分线,它们相交于点O,然后以O为圆心,OC 为半径作△BCF的外接圆⊙O,⊙O交AD于P,连结BP、CP,则根据圆周角定理得到∠F=∠BPC,而∠F=∠D,所以∠D=∠BPC,接着可证明∠PCD=∠APB=∠PBC,于是可判断△BPC∽△CDP.【解答】(1)证明:BF交AD于G,如图,∵四边形ABCD为平行四边形,∴AD∥BC,∴∠FBC=∠FGE,而∠FBC=∠DCE,∴∠FGE=∠DCE,∵∠GEF=∠DEC,∴∠D=∠F;(2)解:如图,点P为所作.【点评】本题考查了作图﹣相似变换:两个图形相似,其中一个图形可以看作由另一个图形放大或缩小得到.也考查了平行四边形的性质.解决(2)小题的关键是利用圆周角定理作∠BPC=∠F.25.(9分)图中是抛物线拱桥,P处有一照明灯,水面OA宽4m,从O、A两处观测P处,仰角分别为α、β,且tanα=,tan,以O为原点,OA所在直线为x轴建立直角坐标系.(1)求点P的坐标;(2)水面上升1m,水面宽多少(取1.41,结果精确到0.1m)?【分析】(1)过点P作PH⊥OA于H,如图,设PH=3x,运用三角函数可得OH=6x,AH=2x,根据条件OA=4可求出x,即可得到点P的坐标;(2)若水面上升1m后到达BC位置,如图,运用待定系数法可求出抛物线的解析式,然后求出y=1时x的值,就可解决问题.【解答】解:(1)过点P作PH⊥OA于H,如图.设PH=3x,在Rt△OHP中,∵tanα==,∴OH=6x.在Rt△AHP中,∵tanβ==,∴AH=2x,∴OA=OH+AH=8x=4,∴x=,∴OH=3,PH=,∴点P的坐标为(3,);(2)若水面上升1m后到达BC位置,如图,过点O(0,0),A(4,0)的抛物线的解析式可设为y=ax(x﹣4),∵P(3,)在抛物线y=ax(x﹣4)上,∴3a(3﹣4)=,解得a=﹣,∴抛物线的解析式为y=﹣x(x﹣4).当y=1时,﹣x(x﹣4)=1,解得x1=2+,x2=2﹣,∴BC=(2+)﹣(2﹣)=2=2×1.41=2.82≈2.8.答:水面上升1m,水面宽约为2.8米.【点评】本题主要考查了三角函数、运用待定系数法求抛物线的解析式、解一元二次方程等知识,出现角的度数(30°、45°或60°)或角的三角函数值,通常放到直角三角形中通过解直角三角形来解决问题.26.(8分)如图,O是△ABC内一点,⊙O与BC相交于F、G两点,且与AB、AC分别相切于点D、E,DE∥BC,连接DF、EG.(1)求证:AB=AC.(2)已知AB=10,BC=12,求四边形DFGE是矩形时⊙O的半径.【分析】(1)由切线长定理可知AD=AE,易得∠ADE=∠AED,因为DE∥BC,由平行线的性质得∠ADE=∠B,∠AED=∠C,可得∠B=∠C,易得AB=AC;(2)如图,连接AO,交DE于点M,延长AO交BC于点N,连接OE、DG,设⊙O半径为r,由△AOD∽△ABN得=,得到AD=r,再由△GBD∽△ABN 得=,列出方程即可解决问题.【解答】(1)证明:∵AD、AE是⊙O的切线,∴AD=AE,∴∠ADE=∠AED,∵DE∥BC,∴∠ADE=∠B,∠AED=∠C,∴∠B=∠C,∴AB=AC;(2)解:如图,连接AO,交DE于点M,延长AO交BC于点N,连接OE、DG,设⊙O半径为r,∵四边形DFGE是矩形,∴∠DFG=90°,∴DG是⊙O直径,∵⊙O与AB、AC分别相切于点D、E,∴OD⊥AB,OE⊥AC,∵OD=OE,OE⊥AC,∵OD=OE.∴AN平分∠BAC,∵AB=AC,∴AN⊥BC,BN=BC=6,在RT△ABN中,AN===8,∵OD⊥AB,AN⊥BC,∴∠ADO=∠ANB=90°,∵∠OAD=∠BAN,∴△AOD∽△ABN,∴=,即=,∴AD=r,∴BD=AB﹣AD=10﹣r,∵OD⊥AB,∴∠GDB=∠ANB=90°,∵∠B=∠B,∴△GBD∽△ABN,∴=,即=,∴r=,∴四边形DFGE是矩形时⊙O的半径为.【点评】本题考查圆、切线的性质、矩形的性质、相似三角形的判定和性质、勾股定理等知识,解题的关键是利用参数解决问题,学会用方程的思想思考问题,属于中考压轴题.27.(11分)如图,把函数y=x的图象上各点的纵坐标变为原来的2倍,横坐标不变,得到函数y=2x的图象;也可以把函数y=x的图象上各点的横坐标变为原来的倍,纵坐标不变,得到函数y=2x的图象.类似地,我们可以认识其他函数.(1)把函数y=的图象上各点的纵坐标变为原来的6倍,横坐标不变,得到函数y=的图象;也可以把函数y=的图象上各点的横坐标变为原来的6倍,纵坐标不变,得到函数y=的图象.(2)已知下列变化:①向下平移2个单位长度;②向右平移1个单位长度;③向右平移个单位长度;④纵坐标变为原来的4倍,横坐标不变;⑤横坐标变为原来的倍,纵坐标不变;⑥横坐标变为原来的2倍,纵坐标不变.(Ⅰ)函数y=x2的图象上所有的点经过④→②→①,得到函数y=4(x﹣1)2﹣2的图象;(Ⅱ)为了得到函数y=﹣(x﹣1)2﹣2的图象,可以把函数y=﹣x2的图象上所有的点D.A.①→⑤→③B.①→⑥→③C.①→②→⑥D.①→③→⑥(3)函数y=的图象可以经过怎样的变化得到函数y=﹣的图象?(写出一种即可)。
一、选择题(本大题共6个小题,每小题3分,共18分,每小题只有一个正确选项)1.下列四个数中,最大的一个数是().A.2 B.C.0 D.-2【答案】 A.2.将不等式的解集表示在数轴上,正确的是().【答案】D.3.下列运算正确的是是().A.B.C.D.【答案】 B.4.有两个完全相同的长方体,按下面右图方式摆放,其主视图是().【答案】 C.5.设是一元二次方程的两个根,则的值是().A. 2B. 1C. -2D. -1【答案】 D.6.如图,在正方形网格中,每个小正方形的边长均相等,网格中三个多边形(分别标记为○1,○2,○3)的顶点都在网格上,被一个多边形覆盖的网格线......中,竖直部分线段长度之和为,水平部分线段长度之和为,则这三个多边形满足的是( )A.只有○2B.只有○3C.○2○3D.○1○2○3【答案】 C.二、填空题(本大题共6小题,每小题3分,共18分)7.计算:-3+2= ___ ____.【答案】 -1.8.分解因式____ ____.【答案】 .9.如图所示,中,绕点A 按顺时针方向旋转50°,得到,则∠的度数是___ _____.第9题 第10题 第11题第6题【答案】17°.10.如图所示,在,过点D作AD的垂线,交AB于点E,交CB的延长线于点F,则∠BEF的度数为____ ___.【答案】50°.11.如图,直线于点P,且与反比例函数及的图象分别交于点A,B,连接OA,OB,已知的面积为2,则__ ____.【答案】 4.12.如图,是一长方形纸片ABCD,已知AB=8,AD=7,E为AB上一点,AE=5,现要剪下一等腰三角形纸片(AEP),使点P落在长方形ABCD的某一条边上,则等腰三角形AEP 的底边长...是___ ____.【答案】5,5, .如下图所示:三、(本大题共5小题,每小题6分,共30分)13.(本题共2小题,每小题3分)(1)解方程组【解析】由○1得:,代入○2得:,解得把代入○1得:,CAEB∴原方程组的解是.(2)如图,Rt中,∠ACB=90°,将Rt向下翻折,使点A与点C重合,折痕为DE,求证:DE∥BC.【解析】由折叠知:,∴∠∠,又点A与点C重合,∴∠,∴∠∠,∴∠,∵∠,∴∠,∴∠,∴DE∥BC.14.先化简,再求值:+ )÷ ,其中.【解析】原式=+ )=+ )=-=把代入得:原式= .15.如图,过点A(2,0)的两条直线分别交轴于B,C,其中点B在原点上方,点C在原点下方,已知AB=.(1)求点B的坐标;(2)若【解析】(1) 在Rt ,∴∴∴点B的坐标是(0,3) .(2) ∵∴∴∴设, 把(2,0),代入得:∴∴的解析式是 .16.为了了解家长关注孩子成长方面的情况,学校开展了针对学生家长的“你最关注孩子哪方面成长”的主题调查,调查设置了“健康安全”,“日常学习”,“习惯养成”,“情感品质”四个项目,并随机抽取甲,乙两班共100位学生家长进行调查,根据调查结果,绘制了如下不完整的条形统计图. x项目家长人数乙甲情感品质日常学习习惯养成健康安全475172320182420161284O(1)补全条形统计图;(2)若全校共有3600位家长,据此估计,有多少位家长最关心孩子“情感品质”方面的成长?(3)综合以上主题调查结果,结合自身现状,你更希望得到以上四个项目中哪方面的关注和指导?【解析】(1)如下图所示:项目家长人数6乙甲情感品质日常学习习惯养成健康安全475172320182420161284O(2) (4+6) ÷100×3600=360∴约有360位家长最关心孩子“情感品质”方面的成长.(3) 没有确定答案,说的有道理即可.17.如图,六个完全相同的小长方形拼成一个大长方形,AB 是其中一个小长方形的对角线,请在大长方形中完成下列画图,要求:○1仅用无刻度直尺,○2保留必要的画图痕迹.(1)在图(1)中画一个45°角,使点A 或点B 是这个角的顶点,且AB 为这个角的一边;(2)在图(2)中画出线段AB 的垂直平分线.【解析】 如图所示:(1) ∠BAC=45º ; (2)OH 是AB 的垂直平分线.四、(本大题共4小题,每小题8分,共32分)18.如图,AB 是⊙O 的直径,点P 是弦AC 上一动点(不与A 、C 重合),过点P 作PE ⊥AB,垂足为E , 射线EP 交 于点F ,交过点C 的切线于点D.(1)求证DC=DP(2)若∠CAB=30°,当F 是 的中点时,判断以A 、O 、C 、F 为顶点的四边形是什么特殊四边形?说明理由;AC ACB【解析】 (1) 如图1连接OC, ∵CD 是⊙O 的切线,∴ OC ⊥CD ∴∠OCD=90º,∴∠DCA= 90º-∠OCA .又PE ⊥AB ,点D 在EP 的延长线上,∴∠DEA=90º ,∴∠DPC=∠APE=90º-∠OAC.∵OA=OC , ∴∠OCA=∠OAC.∴∠DCA=∠DPC ,∴DC=DP.(2) 如图2 四边形AOCF 是菱形. 图1 连接CF 、AF , ∵F 是 的中点,∴∴ AF=FC . ∵∠BAC=30º ,∴ =60º , 又AB 是⊙O 的直径, ∴ =120º, ∴ = 60º ,∴∠ACF=∠FAC =30º .∵OA=OC, ∴∠OCA=∠BAC=30º,BBA C =C F A F B CA CB =C F A F∴⊿OAC ≌⊿FAC (ASA) , ∴AF=OA ,∴AF=FC=OC=OA , ∴四边形AOCF 是菱形.19.如图是一根可伸缩的鱼竿,鱼竿是用10节大小不同的空心套管连接而成,闲置时鱼竿可收缩,完全收缩后,鱼竿的长度的长度即为第1节套管的长度(如图1所示),使用时,可将鱼竿的每一节套管都完全拉伸(如图2所示),图3是这根鱼竿所有套管都处于完全拉伸状态下的平面示意图,已知第1节套管长50cm ,第2节套管长46cm ,以此类推,每一节套管都比前一节套管少4cm ,完全拉伸时,为了使相邻两节套管连接并固定,每相邻两节套管间均有相同长度的重叠,设其长度为cm .(1)请直接写出第5节套管的长度;(2)当这根鱼竿完全拉伸时,其长度为311cm ,求的值 .图2图1xx• • •第2节x x第1节图3【解析】 (1) 第5节的套管的长是34cm . (注:50-(5-1)×4 )(2) (50+46+…+14) -9x =311∴320-9x =311 , ∴x=1∴x的值是1.20.甲、乙两人利用扑克牌玩“10点”游戏,游戏规则如下:○1将牌面数字作为“点数”,如红桃6的“点数”就是6(牌面点数与牌的花色无关);○2两人摸牌结束时,将所得牌的“点数”相加,若“点数”之和小于或等于10,此时“点数”之和就是“最终点数”,若“点数”之和大于10,则“最终点数”是0;○3游戏结束之前双方均不知道对方“点数”;○4判定游戏结果的依据是:“最终点数”大的一方获胜,“最终点数”相等时不分胜负.现甲、乙均各自摸了两牌,数字之和都是5,这时桌上还有四背面朝上的扑克牌,牌面数字分别是4,5,6,7.(1)若甲从桌上继续摸一扑克牌,乙不再摸牌,则甲获胜的概率为.(2)若甲先从桌上继续摸一扑克牌,接着乙从剩下的扑克牌中摸出一牌,然后双方不再摸牌,请用树状图或表格表示出这次摸牌后所有可能的结果,再列表呈现甲、乙的“最终点数”,并求乙获胜的概率.【解析】(1) .(2) 如图:754654764765乙甲7654开始∴所有可能的结果是(4,5)(4,6)(4,7)(5,4)(5,6)(5,7)(6,4)(6,5)(6,7)(7,4)(7,5)(7,6) 共12种.甲5[4567甲“最终点数” 9 10 11 12乙5567467457456乙“最终点数” 10 11 12 9 11 12 9 10 12 9 10 11获胜情况乙胜甲胜甲胜甲胜甲胜甲胜乙胜乙胜平 乙胜乙胜平∴21.如图1是一副创意卡通圆规,图2是其平面示意图,OA 是支撑臂,OB 是旋转臂,使用时,以点A 为支撑点,铅笔芯B端点B可以绕点A旋转作出圆.已知OA=OB=10cm.(1)当∠AOB=18º时,求所作圆的半径;(结果精确到0.01cm)(2)保持∠AOB=18º不变,在旋转臂OB末端的铅笔芯折断了一截的情况下,作出的圆与(1)中所作圆的大小相等,求铅笔芯折断部分的长度.(结果精确到0.01cm)(参考数据:sin9º≈0.1564,com9º≈0.9877º,sin18º≈0.3090, com18º≈0.9511,可使用科学计算器)【解析】(1) 图1,作OC⊥AB,∵OA=OB, OC⊥AB,∴AC=BC, ∠AOC=∠BOC=∠AOB=9°,在Rt⊿AOC 中,sin∠AOC = , ∴AC≈0.1564×10=1.564,∴AB=2AC=3.128≈3.13.∴所作圆的半径是3.13cm.(2)图2,以点A为圆心,AB长为半径画弧,交OB于点C,作AD⊥BC于点D;∵AC=AB, AD⊥BC,∴BD=CD, ∠BAD=∠CAD=∠BAC,∵∠AOB=18°,OA=OB ,AB=AC,CBDB∴∠BAC=18°, ∴∠BAD=9°,在Rt⊿BAD 中,sin∠BAD = ,∴BD≈0.1564×3.128≈0.4892,∴BC=2BD=0.9784≈0.98∴铅笔芯折断部分的长度约为0.98cm. 图2五、(本大题共10分)22.【图形定义】如图,将正n边形绕点A顺时针旋转60°后,发现旋转前后两图形有另一交点O,连接AO,我们称AO 为“叠弦”;再将“叠弦”AO所在的直线绕点A逆时针旋转60°后,交旋转前的图形于点P,连接PO,我们称∠OAB为“叠弦角”,⊿AOP为“叠弦三角形”.【探究证明】(1)请在图1和图2中选择其中一个证明:“叠弦三角形”(即⊿AOP)是等边三角形;(2)如图2,求证:∠OAB=∠OAE'.【归纳猜想】(3)图1、图2中“叠弦角”的度数分别为,;(4)图n中,“叠弦三角形”等边三角形(填“是”或“不是”);【解析】 (1) 如图1 ∵四ABCD 是正方形,由旋转知:AD=AD ',∠D=∠D '=90°, ∠DAD '=∠OAP=60°∴∠DAP=∠D 'AO ,∴⊿APD ≌⊿AOD '(ASA )∴AP=AO ,又∠OAP=60°, ∴⊿AOP 是等边三角形.(2)如右图,作AM ⊥DE 于M, 作AN ⊥CB 于N.∵五ABCDE 是正五边形,MD'由旋转知:AE=AE',∠E=∠E'=108°,∠EAE'=∠OAP=60°∴∠EAP=∠E'AO ,∴⊿APE≌⊿AOE'(ASA)∴∠OAE'=∠PAE.在Rt⊿AEM和Rt⊿ABN中,∴Rt⊿AEM≌Rt⊿ABN (AAS)∴∠EAM=∠BAN , AM=AN.在Rt⊿APM和Rt⊿AON中,∴Rt⊿APM≌Rt⊿AON (HL).∴∠PAM=∠OAN,∴∠PAE=∠OAB∴∠OAE'=∠OAB (等量代换).(3) 15°, 24°(4) 是(5) ∠OAB= ÷2=60°-六、(本大题共共12分)23.设抛物线的解析式为y = a x2 , 过点B1 (1, 0 )作x轴的垂线,交抛物线于点A1 (1, 2);过点B2 (1, 0 )作x 轴的垂线,交抛物线于点A 2 ,… ;过点B n (, 0 ) (n 为正整数 )作x 轴的垂线,交抛物线于点A n , 连接A n B n+1 , 得直角三角形A n B n B n+1 .(1)求a 的值;(2)直接写出线段A n B n ,B n B n+1 的长(用含n 的式子表示);(3)在系列Rt ⊿A n B n B n+1 中,探究下列问题:○1当n 为何值时,Rt ⊿A n B n B n+1 是等腰直角三角形? ○2设1≤k <m ≤n (k , m 均为正整数) ,问是否存在Rt ⊿A k B k B k+1 与Rt ⊿A m B m B m+1 相似?若存在,求出其相似比;若不存在,说明理由.xyO【解析】 (1) 把A(1 , 2)代入 得: 2= , ∴ .(2) 2× ==- =(3) ○1 若Rt ⊿A n B n B n+1 是等腰直角三角形 ,则. ∴ , ∴n=3.○2 若Rt ⊿A k B k B k+1 与Rt ⊿A m B m B m+1相似,则或,∴或,∴m=k (舍去) 或k+m=6∵m>k ,且m , k都是正整数,∴,∴相似比= ,或.∴相似比是8:1或64:1。
专题一经典母题30题一、选择题1.﹣2的相反数是()A.2 B.﹣2 C.12D.12【答案】A.【解析】试题分析:﹣2的相反数是2,故选A.考点:相反数.2.下列图形中,是轴对称图形的是()A. B. C. D.【答案】C.考点:轴对称图形.3.已知四边形ABCD,下列说法正确的是()A.当AD=BC,AB∥DC时,四边形ABCD是平行四边形B.当AD=BC,AB=DC时,四边形ABCD是平行四边形C.当AC=BD,AC平分BD时,四边形ABCD是矩形D.当AC=BD,AC⊥BD时,四边形ABCD是正方形【答案】B.【解析】试题分析:∵一组对边平行且相等的四边形是平行四边形,∴A不正确;∵两组对边分别相等的四边形是平行四边形,∴B正确;∵对角线互相平分且相等的四边形是矩形,∴C不正确;∵对角线互相垂直平分且相等的四边形是正方形,∴D不正确;故选B.考点:平行四边形的判定;矩形的判定;正方形的判定.4.某小组5名同学在一周内参加家务劳动的时间如下表所示,关于“劳动时间”的这组数据,以下说法正确的是()A.中位数是4,平均数是3.75 B.众数是4,平均数是3.75C.中位数是4,平均数是3.8 D.众数是2,平均数是3.8【答案】C.考点:中位数;加权平均数;众数.5.如图,在半径为5cm的⊙O中,弦AB=6cm,OC⊥AB于点C,则OC=()A.3cm B.4cm C.5cm D.6cm【答案】B.【解析】试题分析:连接OA,∵AB=6cm,OC⊥AB于点C,∴AC=12AB=12×6=3cm,∵⊙O的半径为5cm,∴OC cm,故选B.考点:垂径定理;勾股定理.6.如图所示的几何体的俯视图是( )A .B .C .D .【答案】D . 【解析】试题分析:从上面看是一个大正方形,大正方形内部的左下角是一个小正方形,故选D . 考点:简单组合体的三视图.7.不等式组2260x x --⎧⎨⎩<≤的解集,在数轴上表示正确的是( )A .B .C .D .【答案】C . 【解析】试题分析:2620x x --⎧⎨⎩<①②≤,由①得,x >﹣3,由②得,x ≤2,故不等式组的解集为:﹣3<x ≤2.在数轴上表示为:.故选C.考点:在数轴上表示不等式的解集;解一元一次不等式组.8.要将抛物线223y x x=++平移后得到抛物线2y x=,下列平移方法正确的是()A.向左平移1个单位,再向上平移2个单位B.向左平移1个单位,再向下平移2个单位C.向右平移1个单位,再向上平移2个单位D.向右平移1个单位,再向下平移2个单位【答案】D.考点:二次函数图象与几何变换.9.一个不透明的盒子中装有3个红球,2个黄球和1个绿球,这些球除了颜色外无其他差别,从中随机摸出一个小球,恰好是黄球的概率为()A.16B.13C.12D.23【答案】B.【解析】试题分析:从中随机摸出一个小球,恰好是黄球的概率=2321++=13.故选B.考点:概率公式.10.小亮的妈妈用28元钱买了甲、乙两种水果,甲种水果每千克4元,乙种水果每千克6元,且乙种水果比甲种水果少买了2千克,求小亮妈妈两种水果各买了多少千克?设小亮妈妈买了甲种水果x千克,乙种水果y千克,则可列方程组为()A.46282x yx y+=⎧⎨=+⎩B.46282y xx y+=⎧⎨=+⎩C.46282x yx y+=⎧⎨=-⎩D.46282y xx y+=⎧⎨=-⎩【答案】A.【解析】试题分析:设小亮妈妈买了甲种水果x千克,乙种水果y千克,由题意得46282x yx y+=⎧⎨=+⎩.故选A.考点:由实际问题抽象出二元一次方程组.11.如图,在边长为2的正方形ABCD中剪去一个边长为1的小正方形CEFG,动点P从点A出发,沿A→D→E→F→G→B的路线绕多边形的边匀速运动到点B时停止(不含点A和点B),则△ABP的面积S随着时间t变化的函数图象大致是()A. B. C. D.【答案】B.【解析】考点:动点问题的函数图象;分段函数;分类讨论;压轴题.12.如图,在△ABC中,∠ACB=90°,AC=BC=1,E、F为线段AB上两动点,且∠ECF=45°,过点E、F分别作BC、AC的垂线相交于点M,垂足分别为H、G.现有以下结论:①AB②当点E与点B重合时,MH=12;③AF+BE=EF;④MG•MH=12,其中正确结论为()A.①②③ B.①③④ C.①②④ D.①②③④【答案】C.【解析】试题分析:①由题意知,△ABC是等腰直角三角形,∴AB②如图1,当点E与点B重合时,点H与点B重合,∴MB⊥BC,∠MBC=90°,∵MG⊥AC,∴∠MGC=90°=∠C=∠MBC,∴MG∥BC,四边形MGCB是矩形,∴MH=MB=CG,∵∠FCE=45°=∠ABC,∠A=∠ACF=45°,∴CE=AF=BF,∴FG是△ACB的中位线,∴GC=12AC=MH,故②正确;③如图2所示,∵AC=BC,∠ACB=90°,∴∠A=∠5=45°.将△ACF顺时针旋转90°至△BCD,则CF=CD,∠1=∠4,∠A=∠6=45°;BD=AF;∵∠2=45°,∴∠1+∠3=∠3+∠4=45°,∴∠DCE=∠2,在△ECF和△ECD 中,∵CF=CD,∠2=∠DCE,CE=CE,∴△ECF≌△ECD(SAS),∴EF=DE,∵∠5=45°,∴∠BDE=90°,∴222DE BD BE=+,即222EF AF BE=+2,故③错误;考点:相似形综合题;综合题;压轴题. 二、填空题13.分解因式:22()4a b b --= . 【答案】()(3)a b a b +-. 【解析】试题分析:22()4a b b --=(2)(2)a b b a b b -+--=()(3)a b a b +-.故答案为:()(3)a b a b +-. 考点:因式分解-运用公式法.14.函数y =x 的取值范围是 . 【答案】12x ≤且0x ≠. 【解析】试题分析:根据题意得x ≠0且1﹣2x ≥0,所以12x ≤且0x ≠.故答案为:12x ≤且0x ≠. 考点:函数自变量的取值范围.15的平方根是 . 【答案】±2. 【解析】考点:平方根;算术平方根.16.如图,在平面直角坐标系中,点M 为x 轴正半轴上一点,过点M 的直线l ∥y 轴,且直线l 分别与反比例函数8y x =(0x >)和ky x=(0x >)的图象交于P 、Q 两点,若ΔPOQ S =14,则k 的值为 .【答案】-20.考点:反比例函数与一次函数的交点问题;反比例函数系数k 的几何意义;综合题.17.一台电视机原价是2500元,现按原价的8折出售,则购买a 台这样的电视机需要 元. 【答案】2000a . 【解析】试题分析:2500a ×80%=2000a (元).故答案为:2000a 元. 考点:列代数式.18.如图,圆O 的直径AB =8,AC =3CB ,过C 作AB 的垂线交圆O 于M ,N 两点,连结MB ,则∠MBA 的余弦值为 .【答案】12. 【解析】试题分析:如图,连接AM ;∵AB =8,AC =3CB ,∴BC =14AB =2:∵AB 为⊙O 的直径,∴∠AMB =90°;由射影定理得:2BM AB CB =⋅,∴BM =4,cos ∠MBA =BM AB =12,故答案为:12.考点:垂径定理;解直角三角形;综合题.19.如图,已知Rt △ABC 中,∠ACB =90°,AC =6,BC =4,将△ABC 绕直角顶点C 顺时针旋转90°得到△DEC .若点F 是DE 的中点,连接AF ,则AF = .【答案】5. 【解析】试题分析:作FG ⊥AC ,根据旋转的性质,EC =BC =4,DC =AC =6,∠ACD =∠ACB =90°,∵点F 是DE 的中点,∴FG ∥CD ,∴GF =12CD =12AC =3,EG =12EC =12BC =2,∵AC =6,EC =BC =4,∴AE =2,∴AG =4,根据勾股定理,AF =5.考点:旋转的性质. 20.方程0223=--x x 的解是 . 【答案】x =6. 【解析】试题分析:去分母得:3(x ﹣2)﹣2x =0,去括号得:3x ﹣6﹣2x =0,整理得:x =6,经检验得x =6是方程的根.故答案为:x =6. 考点:解分式方程.21.已知二次函数2(2)3y x =-+,当x 时,y 随x 的增大而减小.【答案】<2(或x ≤2).考点:二次函数的性质.22.如图,直线22y x =-+与两坐标轴分别交于A 、B 两点,将线段OA 分成n 等份,分点分别为P 1,P 2,P 3,…,P n ﹣1,过每个分点作x 轴的垂线分别交直线AB 于点T 1,T 2,T 3,…,T n ﹣1,用S 1,S 2,S 3,…,S n ﹣1分别表示Rt △T 1OP 1,Rt △T 2P 1P 2,…,Rt △T n ﹣1P n ﹣2P n ﹣1的面积,则当n =2015时,S 1+S 2+S 3+…+S n ﹣1= .【答案】10072015. 【解析】考点:一次函数图象上点的坐标特征;规律型;综合题. 三、解答题23.(1)计算:8)21(45tan )20143(1+-︒-+--;(2)解方程:31112=-+-xx x .【答案】(1)(2)x =2. 【解析】考点:实数的运算;零指数幂;负整数指数幂;解分式方程;特殊角的三角函数值.24.如图,在边长为1个单位长度的小正方形组成的网格中,给出了格点三角形ABC(项点是网格线的交点).(1)先将△ABC竖直向上平移6个单位,再水平向右平移3个单位得到△A1B1C1,请画出△A1B1C1;(2)将△A1B1C1绕B1点顺时针旋转90°,得△A2B1C2,请画出△A2B1C2;(3)线段B1C1变换到B1C2的过程中扫过区域的面积为.【答案】(1)作图见试题解析;(2)作图见试题解析;(3)94π.【解析】试题分析:(1)根据图形平移的性质画出△A1B1C1;(2)根据旋转的性质画出△A2B1C2;(3)利用扇形面积公式求出即可.试题解析:(1)如图;(2)如图;(3)∵BC=3,∴线段B1C1变换到B1C2的过程中扫过区域的面积为:2903360π⨯=94π.故答案为:94π.考点:作图-旋转变换;作图-平移变换.25.随着我市社会经济的发展和交通状况的改善,我市的旅游业得到了高速发展,某旅游公司对我市一企业旅游年消费情况进行了问卷调查,随机抽取部分员工,记录每个人消费金额,并将调查数据适当调整,绘制成如图两幅尚不完整的表和图.根据以上信息回答下列问题:(1)a= ,b= ,c= .并将条形统计图补充完整;(2)这次调查中,个人年消费金额的中位数出现在组;(3)若这个企业有3000多名员工,请你估计个人旅游年消费金额在6000元以上的人数.【答案】(1)36,0.30,120,作图见试题解析;(2)C;(3)900.试题解析:(1)观察频数分布表知:A组有18人,频率为0.15,∴c=18÷0.15=120,∵a=36,∴b=36÷120=0.30;∴C组的频数为120﹣18﹣36﹣24﹣12=30,补全统计图为:故答案为:36,0.30,120;(2)∵共120人,∴中位数为第60和第61人的平均数,∴中位数应该落在C小组内;(3)个人旅游年消费金额在6000元以上的人数3000×(0.10+0.20)=900人.考点:频数(率)分布表;用样本估计总体;条形统计图;中位数.26.为加强公民的节水意识,合理利用水资源.某市对居民用水实行阶梯水价,居民家庭每月用水量划分为三个阶梯,一、二、三级阶梯用水的单价之比等于1:1.5:2.如图折线表示实行阶梯水价后每月水费y (元)与用水量xm3之间的函数关系.其中线段AB表示第二级阶梯时y与x之间的函数关系.(1)写出点B的实际意义;(2)求线段AB所在直线的表达式;(3)某户5月份按照阶梯水价应缴水费102元,其相应用水量为多少立方米?【答案】(1)图中B点的实际意义表示当用水25m3时,所交水费为90元;(2)94522y x=-;(3)27.【解析】试题分析:(1)根据图象的信息得出即可;(2)首先求出第一、二阶梯单价,再设出解析式,代入求出即可;(3)因为102>90,求出第三阶梯的单价,得出方程,求出即可.(3)设该户5月份用水量为xm3(x>90),由第(2)知第二阶梯水的单价为4.5元/m3,第三阶梯水的单价为6元/m3,则根据题意得90+6(x﹣25)=102,解得,x=27.答:该用户5月份用水量为27m3.考点:一次函数的应用;分段函数;综合题.27.一水果经销商购进了A,B两种水果各10箱,分配给他的甲、乙两个零售店(分别简称甲店、乙店)销售,预计每箱水果的盈利情况如下表:(1)如果甲、乙两店各配货10箱,其中A种水果两店各5箱,B种水果两店各5箱,请你计算出经销商能盈利多少元?(2)在甲、乙两店各配货10箱(按整箱配送),且保证乙店盈利不小于100元的条件下,请你设计出使水果经销商盈利最大的配货方案,并求出最大盈利为多少?【答案】(1)250;(2)甲店配A种水果3箱,B种水果7箱.乙店配A种水果7箱,B种水果3箱.最大盈利:254(元).【解析】试题分析:(1)经销商能盈利=水果箱数×每箱水果的盈利;(2)设甲店配A种水果x箱,分别表示出配给乙店的A水果,B水果的箱数,根据盈利不小于110元,列不等式求解,再根据经销商盈利=A种水果甲店盈利×x+B种水果甲店盈利×(10﹣x)+A种水果乙店盈利×(10﹣x)+B种水果甲店盈利×x;列出函数解析式利用函数性质求得答案即可.考点:一元一次不等式的应用;方案型;最值问题;综合题.28.如图,△ABC 中,AB =AC ,以AB 为直径的⊙O 与BC 相交于点D ,与CA 的延长线相交于点E ,过点D 作DF ⊥AC 于点F .(1)试说明DF 是⊙O 的切线; (2)若AC =3AE ,求tanC .【答案】(1)证明见试题解析;(2试题解析:(1)连接OD ,∵OB =OD ,∴∠B =∠ODB ,∵AB =AC ,∴∠B =∠C ,∴∠ODB =∠C ,∴OD ∥AC ,∵DF ⊥AC ,∴OD ⊥DF ,∴DF 是⊙O 的切线;(2)连接BE ,∵AB 是直径,∴∠AEB =90°,∵AB =AC ,AC =3AE ,∴AB =3AE ,CE =4AE ,∴BE =,在RT △BEC 中,tanC =4BE CE AE ==2.考点:切线的判定.29.某网店打出促销广告:最潮新款服装30件,每件售价300元.若一次性购买不超过10件时,售价不变;若一次性购买超过10件时,每多买1件,所买的每件服装的售价均降低3元.已知该服装成本是每件200元,设顾客一次性购买服装x 件时,该网店从中获利y 元. (1)求y 与x 的函数关系式,并写出自变量x 的取值范围; (2)顾客一次性购买多少件时,该网店从中获利最多?【答案】(1)y =2100 (010)3130 (1030)x x x x x x x ≤≤⎧⎪⎨-+<≤⎪⎩,且为整数,且为整数;(2)22. 【解析】试题分析:(1)根据题意可得出销量乘以每台利润进而得出总利润,进而得出答案; (2)根据销量乘以每台利润进而得出总利润,即可求出即可. 试题解析:(1)y =2300200100 (010)[3003(10)200]3130 (1030)x x x x x x x x x x x -=≤≤⎧⎪⎨---=-+<≤⎪⎩,且为整数,且为整数, (2)在0≤x ≤10时,y =100x ,当x =10时,y 有最大值1000;在10<x ≤30时,23130y x x =-+,当2213x =时,y 取得最大值,∵x 为整数,根据抛物线的对称性得x =22时,y 有最大值1408,∵1408>1000,∴顾客一次购买22件时,该网站从中获利最多.考点:二次函数的应用;二次函数的最值;最值问题;分段函数;综合题.30.已知二次函数n mx x y ++=2的图象经过点P (﹣3,1),对称轴是经过(﹣1,0)且平行于y 轴的直线.(1)求m 、n 的值;(2)如图,一次函数b kx y +=的图象经过点P ,与x 轴相交于点A ,与二次函数的图象相交于另一点B ,点B 在点P 的右侧,PA :PB =1:5,求一次函数的表达式.【答案】(1)m =2,n =-2;(2)一次函数的表达式为4y x =+. 【解析】试题分析:(1)利用对称轴公式求得m ,把P (﹣3,1)代入二次函数n mx x y ++=2得出n =3m ﹣8,进而就可求得n ;(2)根据(1)得出二次函数的解析式,根据已知条件,利用平行线分线段成比例定理求得B 的纵坐标,代入二次函数的解析式中求得B 的坐标,然后利用待定系数法就可求得一次函数的表达式. 试题解析:∵对称轴是经过(﹣1,0)且平行于y 轴的直线,∴121m-=-⨯,∴m =2,∵二次函数n mx x y ++=2的图象经过点P (﹣3,1),∴9﹣3m +n =1,得出n =3m ﹣8.∴n =3m ﹣8=﹣2;(2)∵m =2,n =﹣2,∴二次函数为222y x x =+-,作PC ⊥x 轴于C ,BD ⊥x 轴于D ,则PC ∥BD ,∴PC PABD AB=,∵P (﹣3,1),∴PC =1,∵PA :PB =1:5,∴116BD =,∴BD =6,∴B 的纵坐标为6,代入二次函数为222y x x =+-得,2622x x =+-,解得12x =,24x =-(舍去),∴B (2,6),∴3126k b k b ⎩-+⎨+⎧==,解得14k b ⎧⎨⎩==,∴一次函数的表达式为4y x =+.考点:待定系数法求二次函数解析式;待定系数法求一次函数解析式.。
2016年北京市中考数学试卷一、选择题1.如图所示,用量角器度量∠AOB,可以读出∠AOB的度数为()A.45°B.55°C.125°D.135°2.神舟十号飞船是我国“神州”系列飞船之一,每小时飞行约28000公里,将28000用科学记数法表示应为()A.2.8× ꆈ B.28× ꆈ C.2.8× ꆈ D.0.28× ꆈ3.实数a,b在数轴上的对应点的位置如图所示,则正确的结论是()A.a>﹣2B.a<﹣3C.a>﹣b D.a<﹣b4.内角和为540°的多边形是()A.B.C.D.5.如图是某个几何体的三视图,该几何体是()A.圆锥B.三棱锥C.圆柱D.三棱柱6.如果a+b=2,那么代数(a﹣ )• 的值是()A.2B.﹣2C. D.﹣7.甲骨文是我国的一种古代文字,是汉字的早期形式,下列甲骨文中,不是轴对称的是()A.B.C.D.8.在1﹣7月份,某种水果的每斤进价与出售价的信息如图所示,则出售该种水果每斤利润最大的月份是()A.3月份B.4月份C.5月份D.6月份9.如图,直线m⊥n,在某平面直角坐标系中,x轴∥m,y轴∥n,点A的坐标为(﹣4,2),点B的坐标为(2,﹣4),则坐标原点为()A.O1B.O2C.O3D.O4第9题图第10题图10.为了节约水资源,某市准备按照居民家庭年用水量实行阶梯水价.水价分档递增,计划使第一档、第二档和第三档的水价分别覆盖全市居民家庭的80%,15%和5%,为合理确定各档之间的界限,随机抽查了该市5万户居民家庭上一年的年用水量(单位:m3),绘制了统计图.如图所示,下面四个推断()①年用水量不超过180m3的该市居民家庭按第一档水价交费;②年用水量超过240m3的该市居民家庭按第三档水价交费;③该市居民家庭年用水量的中位数在150﹣180之间;④该市居民家庭年用水量的平均数不超过180.A.①③B.①④C.②③D.②④二、填空题11.如果分式 有意义,那么x的取值范围是.12.如图中的四边形均为矩形,根据图形,写出一个正确的等式.13.林业部门要考察某种幼树在一定条件下的移植成活率,下表是这种幼树在移植过程中的一组数据:移植的棵数n10001500250040008000150002000030000成活的棵数m8651356222035007056131701758026430成活的频率 0.8650.9040.8880.8750.8820.8780.8790.881估计该种幼树在此条件下移植成活的概率为.14.如图,小军、小珠之间的距离为2.7m,他们在同一盏路灯下的影长分别为1.8m,1.5m,已知小军、小珠的身高分别为1.8m,1.5m,则路灯的高为m.第12题图第14题图15.百子回归图是由1,2,3…,100无重复排列而成的正方形数表,它是一部数化的澳门简史,如:中央四位“19991220”标示澳门回归日期,最后一行中间两位“2350”标示澳门面积,…,同时它也是十阶幻方,其每行10个数之和,每列10个数之和,每条对角线10个数之和均相等,则这个和为.16.下面是“经过已知直线外一点作这条直线的垂线”的尺规作图过程:已知:直线l和l外一点P.(如图1)求作:直线l的垂线,使它经过点P.作法:如图2(1)在直线l上任取两点A,B;(2)分别以点A,B为圆心,AP,BP长为半径作弧,两弧相交于点Q;(3)作直线PQ.所以直线PQ就是所求的垂线.请回答:该作图的依据是三、解答题17.计算:(3﹣π)0+4sin45°﹣ +|1﹣ |.18.解不等式组: h thh .19.如图,四边形ABCD是平行四边形,AE平分∠BAD,交DC的延长线于点E.求证:DA=DE.20.关于x的一元二次方程x2+(2m+1)x+m2﹣1=0有两个不相等的实数根.(1)求m的取值范围;(2)写出一个满足条件的m的值,并求此时方程的根.21.如图,在平面直角坐标系xOy中,过点A(﹣6,0)的直线l1与直线l2:y=2x相交于点B(m,4).(1)求直线l1的表达式;(2)过动点P(n,0)且垂于x轴的直线与l1,l2的交点分别为C,D,当点C位于点D上方时,写出n的取值范围.22.调查作业:了解你所在小区家庭5月份用气量情况:小天、小东和小芸三位同学住在同一小区,该小区共有300户家庭,每户家庭人数在2﹣5之间,这300户家庭的平均人数均为3.4.小天、小东和小芸各自对该小区家庭5月份用气量情况进行了抽样调查,将收集的数据进行了整理,绘制的统计表分别为表1,表2和表3.表1抽样调查小区4户家庭5月份用气量统计表(单位:m3)家庭人数2345用气量14192126表2抽样调查小区15户家庭5月份用气量统计表(单位:m3)家庭人数222333333333334用气量101115131415151717181818182022表3抽样调查小区15户家庭5月份用气量统计表(单位:m3)家庭人数222333333444455用气量101213141717181920202226312831根据以上材料回答问题:小天、小东和小芸三人中,哪一位同学抽样调查的数据能较好地反映该小区家庭5月份用气量情况,并简要说明其他两位同学抽样调查的不足之处.23.如图,在四边形ABCD中,∠ABC=90°,AC=AD,M,N分别为AC,CD的中点,连接BM,MN,BN.(1)求证:BM=MN;(2)∠BAD=60°,AC平分∠BAD,AC=2,求BN的长.24.阅读下列材料:北京市正围绕着“政治中心、文化中心、国际交往中心、科技创新中心”的定位,深入实施“人文北京、科技北京、绿色北京”的发展战略.“十二五”期间,北京市文化创意产业展现了良好的发展基础和巨大的发展潜力,已经成为首都经济增长的支柱产业.2011年,北京市文化创意产业实现增加值1938.6亿元,占地区生产总值的12.2%.2012年,北京市文化创意产业继续呈现平稳发展态势,实现产业增加值2189.2亿元,占地区生产总值的12.3%,是第三产业中仅次于金融业、批发和零售业的第三大支柱产业.2013年,北京市文化产业实现增加值2406.7亿元,比上年增长9.1%,文化创意产业作为北京市支柱产业已经排到了第二位.2014年,北京市文化创意产业实现增加值2749.3亿元,占地区生产总值的13.1%,创历史新高,2015年,北京市文化创意产业发展总体平稳,实现产业增加值3072.3亿元,占地区生产总值的13.4%.根据以上材料解答下列问题:(1)用折线图将2011﹣2015年北京市文化创意产业实现增加值表示出来,并在图中标明相应数据;(2)根据绘制的折线图中提供的信息,预估2016年北京市文化创意产业实现增加值约亿元,你的预估理由.25.如图,AB为⊙O的直径,F为弦AC的中点,连接OF并延长交于点D,过点D作⊙O的切线,交BA的延长线于点E.(1)求证:AC∥DE;(2)连接CD,若OA=AE=a,写出求四边形ACDE面积的思路.26.已知y是x的函数,自变量x的取值范围x>0,下表是y与x的几组对应值:x…123579…y… 1.98 3.95 2.63 1.58 1.130.88…小腾根据学习函数的经验,利用上述表格所反映出的y与x之间的变化规律,对该函数的图象与性质进行了探究.下面是小腾的探究过程,请补充完整:(1)如图,在平面直角坐标系xOy中,描出了以上表格中各对对应值为坐标的点,根据描出的点,画出该函数的图象;(2)根据画出的函数图象,写出:①x=4对应的函数值y约为②该函数的一条性质:27.在平面直角坐标系xOy中,抛物线y=mx2﹣2mx+m﹣1(m>0)与x轴的交点为A,B.(1)求抛物线的顶点坐标;(2)横、纵坐标都是整数的点叫做整点.①当m=1时,求线段AB上整点的个数;②若抛物线在点A,B之间的部分与线段AB所围成的区域内(包括边界)恰有6个整点,结合函数的图象,求m的取值范围.28.在等边△ABC中,(1)如图1,P,Q是BC边上的两点,AP=AQ,∠BAP=20°,求∠AQB的度数;(2)点P,Q是BC边上的两个动点(不与点B,C重合),点P在点Q的左侧,且AP=AQ,点Q关于直线AC的对称点为M,连接AM,PM.①依题意将图2补全;②小茹通过观察、实验提出猜想:在点P,Q运动的过程中,始终有PA=PM,小茹把这个猜想与同学们进行交流,通过讨论,形成了证明该猜想的几种想法:想法1:要证明PA=PM,只需证△APM是等边三角形;想法2:在BA上取一点N,使得BN=BP,要证明PA=PM,只需证△ANP≌△PCM;想法3:将线段BP绕点B顺时针旋转60°,得到线段BK,要证PA=PM,只需证PA=CK,PM=CK…请你参考上面的想法,帮助小茹证明PA=PM(一种方法即可).29.在平面直角坐标系xOy中,点P的坐标为(x1,y1),点Q的坐标为(x2,y2),且x1≠x2,y1≠y2,若P,Q 为某个矩形的两个顶点,且该矩形的边均与某条坐标轴垂直,则称该矩形为点P,Q的“相关矩形”,如图为点P,Q的“相关矩形”示意图.(1)已知点A的坐标为(1,0),①若点B的坐标为(3,1),求点A,B的“相关矩形”的面积;②点C在直线x=3上,若点A,C的“相关矩形”为正方形,求直线AC的表达式;(2)⊙O的半径为 ,点M的坐标为(m,3),若在⊙O上存在一点N,使得点M,N的“相关矩形”为正方形,求m的取值范围.答案解析部分1.【答案】B【解析】【解答】解:由图形所示,∠AOB的度数为55°,故选B.【分析】由图形可直接得出.本题主要考查了角的度量,量角器的使用方法,正确使用量角器是解题的关键.2.【答案】C【解析】【解答】解:28000=2.8×104.故选:C.【分析】科学记数法的表示形式为a×10n的形式.其中1≤|a|<10,n为整数,确定n的值时,要看把原数变成a 时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.此题考查科学记数法的表示方法,表示时关键要正确确定a的值以及n的值.3.【答案】D【解析】【解答】解:A、如图所示:﹣3<a<﹣2,故此选项错误;B、如图所示:﹣3<a<﹣2,故此选项错误;C、如图所示:1<b<2,则﹣2<﹣b<﹣1,故a<﹣b,故此选项错误;D、由选项C可得,此选项正确.故选:D.【分析】利用数轴上a,b所在的位置,进而得出a以及﹣b的取值范围,进而比较得出答案.此题主要考查了实数与数轴,正确得出a以及﹣b的取值范围是解题关键.4.【答案】C【解析】【解答】解:设多边形的边数是n,则(n﹣2)•180°=540°,解得n=5.故选:C.【分析】根据多边形的内角和公式(n﹣2)•180°列式进行计算即可求解.本题主要考查了多边形的内角和公式,熟记公式是解题的关键.5.【答案】D【解析】【解答】解:根据主视图和左视图为矩形判断出是柱体,根据俯视图是三角形可判断出这个几何体应该是三棱柱.故选D【分析】由主视图和左视图确定是柱体,锥体还是球体,再由俯视图确定具体形状.考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.6.【答案】A【解析】【解答】解:∵a+b=2,∴原式=t h t • =a+b=2故选:A.【分析】原式括号中两项通分并利用同分母分式的减法法则计算,约分得到最简结果,把已知等式代入计算即可求出值.此题考查了分式的化简求值,将原式进行正确的化简是解本题的关键.7.【答案】D【解析】【解答】解:A、是轴对称图形,故本选项错误;B、是轴对称图形,故本选项错误;C、是轴对称图形,故本选项错误;D、不是轴对称图形,故本选项正确.故选D.【分析】根据轴对称图形的概念求解.本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.8.【答案】B【解析】【解答】解:由图象中的信息可知,3月份的利润=7.5﹣4.5=3元,4月份的利润=6﹣2.4=3.6元,5月份的利润=4.5﹣1.5=3元,5月份的利润=2.5﹣1=1.5元,故出售该种水果每斤利润最大的月份是4月份,故选B.【分析】根据图象中的信息即可得到结论.本题考查了象形统计图,有理数大小的比较,正确的把握图象中的信息,理解利润=售价﹣进价是解题的关键.9.【答案】A【解析】【解答】解:设过A、B的直线解析式为y=kx+b∵点A的坐标为(﹣4,2),点B的坐标为(2,﹣4)∴ t ht h解得 t t∴直线AB为y=﹣x﹣2∴直线AB经过第二、三、四象限如图,连接AB,则原点在AB的右上方∴坐标原点为O1故选(A)【分析】本题主要考查了坐标与图形性质,解决问题的关键是掌握待定系数法以及一次函数图象与系数的关系.在一次函数y=kx+b中,k决定了直线的方向,b决定了直线与y轴的交点位置.已知A、B的坐标求得直线AB的解析式,再判断直线AB在坐标平面内的位置,最后得出原点的位置.10.【答案】B【解析】【解答】解:①由条形统计图可得:年用水量不超过180m3的该市居民家庭一共有(0.25+0.75+1.5+1.0+0.5)=4(万),×100%=80%,故年用水量不超过180m3的该市居民家庭按第一档水价交费,正确;②∵年用水量超过240m3的该市居民家庭有(0.15+0.15+0.05)=0.35(万),∴ꆈt ×100%=7%≠5%,故年用水量超过240m3的该市居民家庭按第三档水价交费,故此选项错误;③∵5万个数据的中间是第25000和25001的平均数,∴该市居民家庭年用水量的中位数在120﹣150之间,故此选项错误;④由①得,该市居民家庭年用水量的平均数不超过180,正确,故选:B.【分析】利用条形统计图结合中位数的定义分别分析得出答案.此题主要考查了频数分布直方图以及中位数的定义,正确利用条形统计图获取正确信息是解题关键.11.【答案】x≠1【解析】【解答】解:由题意,得x﹣1≠0,解得x≠1,故答案为:x≠1.【分析】根据分母不为零分式有意义,可得答案.本题考查了分式有意义的条件,利用分母不为零得出不等式是解题关键.12.【答案】am+bm+cm=m(a+b+c)【解析】【解答】解:由题意可得:am+bm+cm=m(a+b+c).故答案为:am+bm+cm=m(a+b+c).【分析】直接利用矩形面积求法结合提取公因式法分解因式即可.此题主要考查了提取公因式法分解因式,正确利用矩形面积求出是解题关键.13.【答案】0.880【解析】【解答】解: =(0.865+0.904+0.888+0.875+0.882+0.878+0.879+0.881)÷8=0.880,∴这种幼树移植成活率的概率约为0.880.故答案为:0.880【分析】对于不同批次的幼树移植成活率往往误差会比较大,为了减少误差,我们经常采用多批次计算求平均数的方法.此题主要考查了利用频率估计概率,大量反复试验下频率稳定值即概率.用到的知识点为:频率=所求情况数与总情况数之比.14.【答案】3【解析】【解答】解:如图,∵CD∥AB∥MN,∴△ABE∽△CDE,△ABF∽△MNF,∴ t , t ,即 t t t t h , t t t t h th ,解得:AB=3m,答:路灯的高为3m.【分析】根据CD∥AB∥MN,得到△ABE∽△CDE,△ABF∽△MNF,根据相似三角形的想知道的 t , t ,即可得到结论.本题考查了中心投影,相似三角形的判定和性质,熟练掌握相似三角形的判定和性质是解题的关键.15.【答案】505【解析】【解答】解:1~100的总和为:t h ꆈꆈ ꆈꆈ =5050,一共有10行,且每行10个数之和均相等,所以每行10个数之和为:5050÷10=505,故答案为:505.【分析】根据已知得:百子回归图是由1,2,3…,100无重复排列而成,先计算总和;又因为一共有10行,且每行10个数之和均相等,所以每行10个数之和=总和÷10.本题是数字变化类的规律题,是常考题型;一般思路为:按所描述的规律从1开始计算,从计算的过程中慢慢发现规律,总结出与每一次计算都符合的规律,就是最后的答案;此题非常简单,跟百子碑简介没关系,只考虑行、列就可以,同时,也可以利用列来计算.16.【答案】到线段两个端点的距离相等的点在线段的垂直平分线上(A、B都在线段PQ的垂直平分线上)【解析】【解答】解:到线段两个端点的距离相等的点在线段的垂直平分线上(A、B都在线段PQ的垂直平分线上),理由:如图,∵PA=PQ,PB=PB,∴点A、点B在线段PQ的垂直平分线上,∴直线AB垂直平分线段PQ,∴PQ⊥AB.【分析】只要证明直线AB是线段PQ的垂直平分线即可.本题考查作图﹣基本作图,解题的关键是理解到线段两个端点的距离相等的点在线段的垂直平分线上,属于中考常考题型.17.【答案】解:(3﹣π)0+4sin45°﹣ +|1﹣ |=1+4×﹣2 + ﹣1=1+ ﹣2 + ﹣1= .【解析】【分析】根据实数的运算顺序,首先计算乘方、开方和乘法,然后从左向右依次计算,求出算式(3﹣π)0+4sin45°﹣ +|1﹣ |的值是多少即可.(1)此题主要考查了实数的运算,要熟练掌握,解答此题的关键是要明确:在进行实数运算时,和有理数运算一样,要从高级到低级,即先算乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到右的顺序进行.另外,有理数的运算律在实数范围内仍然适用;(2)此题还考查了零指数幂的运算,要熟练掌握,解答此题的关键是要明确:①a0=1(a≠0);②00≠1;(3)此题还考查了特殊角的三角函数值,要牢记30°、45°、60°角的各种三角函数值.18.【答案】解:解不等式2x+5>3(x﹣1),得:x<8,解不等式4x> hh,得:x>1,∴不等式组的解集为:1<x<8.【解析】【分析】根据不等式性质分别求出每一个不等式的解集,再根据口诀:大小小大中间找可得不等式组的解集.本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.19.【答案】证明:∵四边形ABCD是平行四边形,∴AB∥CD,∴∠E=∠BAE,∵AE平分∠BAD,∴∠BAE=∠DAE,∴∠E=∠DAE,∴DA=DE.【解析】【分析】由平行四边形的性质得出AB∥CD,得出内错角相等∠E=∠BAE,再由角平分线证出∠E=∠DAE,即可得出结论.本题考查了平行四边形的性质、平行线的性质、等腰三角形的判定;熟练掌握平行四边形的性质,证出∠E=∠DAE是解决问题的关键.20.【答案】(1)∵关于x的一元二次方程x2+(2m+1)x+m2﹣1=0有两个不相等的实数根,∴△=(2m+1)2﹣4×1×(m2﹣1)=4m+5>0,解得:m>﹣ .(2)解:m=1,此时原方程为x2+3x=0,即x(x+3)=0,解得:x1=0,x2=﹣3.【解析】【分析】(1)由方程有两个不相等的实数根即可得出△>0,代入数据即可得出关于m的一元一次不等式,解不等式即可得出结论;(2)结合(1)结论,令m=1,将m=1代入原方程,利用因式分解法解方程即可得出结论.21.【答案】(1)解:∵点B在直线l2上,∴4=2m,∴m=2,点B(2,4)设直线l1的表达式为y=kx+b,由题意 h th tꆈ,解得 t t ,∴直线l1的表达式为y= x+3.(2)解:与图象可知n<2.【解析】【分析】不同考查两条直线平行、相交问题,解题的关键是灵活应用待定系数法,学会利用图象根据条件确定自变量取值范围.(1)先求出点B坐标,再利用待定系数法即可解决问题;(2)由图象可知直线l1在直线l2上方即可,由此即可写出n的范围.22.【答案】解:小芸,小天调查的人数太少,小东抽样的调查数据中,家庭人数的平均值为:(2×3+3×11+4)÷15=2.87,远远偏离了平均人数的3.4,所以他的数据抽样有明显的问题,小芸抽样的调查数据中,家庭人数的平均值为:(2×2+3×7+4×4+5×2)÷15=3.4,说明小芸抽样数据质量较好,因此小芸的抽样调查的数据能较好的反应出该小区家庭5月份用气量情况.【解析】【分析】首先根据题意分析家庭平均人数,进而利用加权平均数求出答案,再利用已知这300户家庭的平均人数均为3.4分析即可.此题主要考查了抽样调查的可靠性以及加权平均数,正确理解抽样调查的随机性是解题关键.23.【答案】(1)证明:在△CAD中,∵M、N分别是AC、CD的中点,∴MN∥AD,MN= AD,在Rt△ABC 中,∵M是AC中点,∴BM= AC,∵AC=AD,∴MN=BM.(2)解:∵∠BAD=60°,AC平分∠BAD,∴∠BAC=∠DAC=30°,由(1)可知,BM= AC=AM=MC,∴∠BMC=∠BAM+∠ABM=2∠BAM=60°,∵MN∥AD,∴∠NMC=∠DAC=30°,∴∠BMN=∠BMC+∠NMC=90°,∴BN2=BM2+MN2,由(1)可知MN=BM= AC=1,∴BN=【解析】【分析】(1)根据三角形中位线定理得MN= AD,根据直角三角形斜边中线定理得BM= AC,由此即可证明.(2)首先证明∠BMN=90°,根据BN2=BM2+MN2即可解决问题.24.【答案】(1)解:(1)2011﹣2015年北京市文化创意产业实现增加值如图所示,(2)3471.7;用近3年的平均增长率估计2016年的增长率【解析】【解答】(2)解:设2013到2015的平均增长率为x,则2406.7(1+x)2=3072.3,解得x≈13%,用近3年的平均增长率估计2016年的增长率,∴2016年的增长率为3072.3×(1+13%)≈3471.7亿元.故答案分别为3471.7,用近3年的平均增长率估计2016年的增长率.【分析】本题考查折线图、样本估计总体的思想,解题的关键是用近3年的平均增长率估计2016年的增长率,属于中考常考题型.(1)画出2011﹣2015的北京市文化创意产业实现增加值折线图即可.(2)设2013到2015的平均增长率为x,列出方程求出x,用近3年的平均增长率估计2016年的增长率即可解决问题.25.【答案】(1)证明:∵ED与⊙O相切于D,∴OD⊥DE,∵F为弦AC中点,∴OD⊥AC,∴AC∥DE.(2)解:作DM⊥OA于M,连接CD,CO,AD.=AE•DM,只要求出DM即可.首先证明四边形ACDE是平行四边形,根据S平行四边形ACDE∵AC∥DE,AE=AO,∴OF=DF,∵AF⊥DO,∴AD=AO,∴AD=AO=OD,∴△ADO是等边三角形,同理△CDO也是等边三角形,∴∠CDO=∠DOA=60°,AE=CD=AD=AO=DD=a,∴AO∥CD,又AE=CD,∴四边形ACDE是平行四边形,易知DM=a,∴平行四边形ACDE面积=a2.【解析】【分析】本题考查切线的性质、平行四边形的性质、垂径定理等知识,解题的关键是学会添加常用辅助线,利用特殊三角形解决问题,属于中考常考题型.(1)欲证明AC∥DE,只要证明AC⊥OD,ED⊥OD即可.(2)=AE•DM,作DM⊥OA于M,连接CD,CO,AD,首先证明四边形ACDE是平行四边形,根据S平行四边形ACDE只要求出DM即可.26.【答案】(1)解:如图,(2)2;该函数有最大值【解析】【解答】解:①x=4对应的函数值y约为2;②该函数有最大值.故答案为2,该函数有最大值.【分析】本题考查了函数的定义:对于函数概念的理解:①有两个变量;②一个变量的数值随着另一个变量的数值的变化而发生变化;③对于自变量的每一个确定的值,函数值有且只有一个值与之对应.(1)按照自变量由小到大,利用平滑的曲线连结各点即可;(2)①在所画的函数图象上找出自变量为4所对应的函数值即可;②利用函数图象有最高点求解.27.【答案】(1)解:∵y=mx2﹣2mx+m﹣1=m(x﹣1)2﹣1,∴抛物线顶点坐标(1,﹣1).(2)解:①∵m=1,∴抛物线为y=x2﹣2x,令y=0,得x=0或2,不妨设A(0,0),B(2,0),∴线段AB上整点的个数为3个.②如图所示,抛物线在点A,B之间的部分与线段AB所围成的区域内(包括边界)恰有6个整点,∴点A在(﹣1,0)与(﹣2,0)之间(包括(﹣1,0)),当抛物线经过(﹣1,0)时,m= ,当抛物线经过点(﹣2,0)时,m= ,∴m的取值范围为 <m≤ .【解析】【分析】(1)利用配方法即可解决问题;(2)①m=1代入抛物线解析式,求出A、B两点坐标即可解决问题.②根据题意判断出点A的位置,利用待定系数法确定m的范围.28.【答案】(1)解:(1)∵AP=AQ,∴∠APQ=∠AQP,∴∠APB=∠AQC,∵△ABC是等边三角形,∴∠B=∠C=60°,∴∠BAP=∠CAQ=20°,∴∠PAQ=∠BAC﹣∠BAP﹣∠CAQ=60°﹣20°﹣20°=20°,∴∠BAQ=∠BAP+∠PAQ=40°;(2)解:如图2,∵AP=AQ,∴∠APQ=∠AQP,∴∠APB=∠AQC,∵△ABC是等边三角形,∴∠B=∠C=60°,∴∠BAP=∠CAQ,∵点Q关于直线AC的对称点为M,∴AQ=AM,∠QAC=∠MAC,∴∠MAC=∠BAP,∴∠BAP+∠PAC=∠MAC+∠CAP=60°,∴∠PAM=60°,∵AP=AQ,∴AP=AM,∴△APM是等边三角形,∴AP=PM.【解析】【分析】(1)根据等腰三角形的性质得到∠APQ=∠AQP,由邻补角的定义得到∠APB=∠AQC,根据三角形外角的性质即可得到结论;(2)如图2根据等腰三角形的性质得到∠APQ=∠AQP,由邻补角的定义得到∠APB=∠AQC,由点Q关于直线AC的对称点为M,得到AQ=AM,∠OAC=∠MAC,等量代换得到∠MAC=∠BAP,推出△APM 是等边三角形,根据等边三角形的性质即可得到结论.29.【答案】(1)解:(1)①∵A(1,0),B(3,1)由定义可知:点A,B的“相关矩形”的底与高分别为2和1,∴点A,B的“相关矩形”的面积为2×1=2;②由定义可知:AC是点A,C的“相关矩形”的对角线,又∵点A,C的“相关矩形”为正方形∴直线AC与x轴的夹角为45°,设直线AC的解析为:y=x+m或y=﹣x+n把(1,0)分别y=x+m,∴m=﹣1,∴直线AC的解析为:y=x﹣1,把(1,0)代入y=﹣x+n,∴n=1,∴y=﹣x+1,综上所述,若点A,C的“相关矩形”为正方形,直线AC的表达式为y=x﹣1或y=﹣x+1;(2)解:设直线MN的解析式为y=kx+b,∵点M,N的“相关矩形”为正方形,∴由定义可知:直线MN与x轴的夹角为45°,∴k=±1,∵点N在⊙O上,∴当直线MN与⊙O有交点时,点M,N的“相关矩形”为正方形,当k=1时,作⊙O的切线AD和BC,且与直线MN平行,其中A、C为⊙O的切点,直线AD与y轴交于点D,直线BC与y轴交于点B,连接OA,OC,把M(m,3)代入y=x+b,∴b=3﹣m,∴直线MN的解析式为:y=x+3﹣m∵∠ADO=45°,∠OAD=90°,∴OD= OA=2,∴D(0,2)同理可得:B(0,﹣2),∴令x=0代入y=x+3﹣m,∴y=3﹣m,∴﹣2≤3﹣m≤2,∴1≤m≤5,当k=﹣1时,把M(m,3)代入y=﹣x+b,∴b=3+m,∴直线MN的解析式为:y=x+3+m,同理可得:﹣2≤3+m≤2,∴﹣5≤m≤﹣1;综上所述,当点M,N的“相关矩形”为正方形时,m的取值范围是:1≤m≤5或﹣5≤m≤﹣1【解析】【分析】(1)①由相关矩形的定义可知:要求A与B的相关矩形面积,则AB必为对角线,利用A、B两点的坐标即可求出该矩形的底与高的长度,进而可求出该矩形的面积;②由定义可知,AC必为正方形的对角线,所以AC与x轴的夹角必为45,设直线AC的解析式为;y=kx+b,由此可知k=±1,再(1,0)代入y=kx+b,即可求出b的值;(2)由定义可知,MN必为相关矩形的对角线,若该相关矩形的为正方形,即直线MN与x轴的夹角为45°,由因为点N在圆O上,所以该直线MN与圆O一定要有交点,由此可以求出m的范围.。
中考数学复习专题训练精选试题及答案目录实数专题训练 (2)实数专题训练答案 (4)代数式、整式及因式分解专题训练 (5)代数式、整式及因式分解专题训练答案 (6)分式和二次根式专题训练 (7)分式和二次根式专题训练答案 (8)一次方程及方程组专题训练 (9)一次方程及方程组专题训练答案 (11)一元二次方程及分式方程专题训练 (11)一元二次方程及分式方程专题训练答案 (13)一元一次不等式及不等式组专题训练 (13)一元一次不等式及不等式组专题训练答案 (15)一次函数及反比例函数专题训练 (15)一次函数及反比例函数专题训练答案 (17)二次函数及其应用专题训练 (18)二次函数及其应用专题训练答案 (20)立体图形的认识及角、相交线与平行线专题训练 (20)立体图形的认识及角、相交线与平行线专题训练答案 (22)三角形专题训练 (23)三角形专题训练答案 (25)多边形及四边形专题训练 (25)多边形及四边形专题训练答案 (27)圆及尺规作图专题训练 (28)圆及尺规作图专题训练答案 (30)轴对称专题训练 (30)轴对称专题训练答案 (32)平移与旋转专题训练 (33)平移与旋转专题训练答案 (35)相似图形专题训练 (35)相似图形专题训练答案 (37)图形与坐标专题训练 (38)图形与坐标专题训练答案 (40)图形与证明专题训练 (40)图形与证明专题训练答案 (42)概率专题训练 (42)概率专题训练答案 (44)统计专题训练 (45)统计专题训练答案 (47)实数专题训练一、填空题:(每题 3 分,共 36 分)1、-2 的倒数是____。
2、4 的平方根是____.3、-27 的立方根是____。
4、-2 的绝对值是____。
5、2004年我国外汇储备3275。
34亿美元,用科学记数法表示为____亿美元。
6、比较大小:-____-。
7、近似数0。
020精确到____位,它有____个有效数字.8、若 n 为自然数,那么(-1)2n+(-1)2n+1=____.9、若实数 a、b 满足|a-2|+( b+)2=0,则 ab=____.10、在数轴上表示 a 的点到原点的距离为 3,则 a-3=____。
初中数学中考一轮复习——空间与图形第四单元三角形与四边形第十九讲多边形与平行四边形(时间:30分,满分100分)班级姓名得分一.选择题(每小题4分,满分40分)1.若一个正n边形的每个内角为156°,则这个正n边形的边数是()A. 13 B. 14 C. 15 D.16【答案】C.【解析】∵一个正多边形的每个内角都为156°,∴这个正多边形的每个外角都为:180°-156°=24°,∴这个多边形的边数为:360°÷24°=15,故选C.2.如果一个多边形的内角和是540°,那么这个多边形是()A.四边形B.五边形C.六边形D.七边形【答案】B.3.十边形外角和为()A. 180°B. 360°C. 900°D. 1260°【答案】B.【解析】十边形的外角和为360°.故选:B.4.如图,▱ABCD的周长为20cm,AE平分∠BAD,若CE=2cm,则AB的长度是()A .10cmB .8cmC .6cmD .4cm【答案】D .【解析】根据平行四边形的性质得出AB=CD ,AD=BC ,AD ∥BC ,再由平行线的性质可得∠DAE=∠AEB ;又因AE 平分∠BAD 可得∠DAE=∠BAE ,所以∠BAE=∠AEB ,根据等腰三角形的性质可得AB=AE ,设AB=CD=xcm ,则AD=BC=(x+2)cm ,由已知▱ABCD 的周长为20cm ,可列方程2(x+x+2)=10,解得x=4,即AB=4cm , 故选D .5. 如图,在ABCD 中,对角线AC 、BD 相交成的锐角为α,若AC a,BD b == ,则 ABCD 的面积是( )A .1absin 2α B .absin α C .abcos α D .1abcos 2α 【答案】A .6. 如图,在平行四边形ABCD中,AB=4,BC=6,AC的垂直平分线交AD于点E,则△CDE的周长是()A.7B.10C.11 D.12【答案】B.7. 如图,在▱ABCD中,AD=8,点E,F分别是BD,CD的中点,则EF等于()A. 2 B. 3 C. 4 D. 5【答案】C.【解析】∵四边形ABCD是平行四边形,∴BC=AD=8,∵点E、F分别是BD、CD的中点,∴EF=12BC=12×8=4.故选C.8. 在四边形ABCD中,对角线AC、BD相交于点O,∠ADB=∠CBD,添加下列一个条件后,仍不能判定四边形ABCD是平行四边形的是()A.∠ABD=∠CDB B.∠DAB=∠BCD C.∠ABC=∠CDA D.∠DAC=∠BCA【答案】D.【解析】由∠ADB=∠CBD科研得到AD∥BC,∴A、∠ABD=∠CDB能得到AB∥CD,所以能判定四边形ABCD是平行四边形;B、利用三角形的内角和定理能进一步得到∠ABD=∠CDB,从而能得到AB∥CD,所以能判定四边形ABCD是平行四边形;C、能进一步得到∠CDB=∠ABD,从而能得到AB∥CD,所以能判定四边形ABCD是平行四边形;D、不能进一步得到AB∥CD,所以不能判定四边形ABCD是平行四边形,故选D.9. 下列条件中,不能判定四边形ABCD是平行四边形的是().A. ∠A=∠C,∠B=∠DB. ∠A=∠B=∠C=90°C. ∠A+∠B=180°,∠B+∠C=180°D. ∠A+∠B=180°,∠C+∠D=180°【答案】D.10. 如图,在平行四边形ABCD中,AB=6,AD=9,∠BAD的平分线交BC于E,交DC的延长线于F,BG⊥AE于G,BG=,则△EFC的周长为A. 11 B. 10 C.9 D. 8【答案】D.【解析】∵在▱ABCD 中,AB=CD=6,AD=BC=9,∠BAD 的平分线交BC 于点E ,∴∠BAF=∠DAF ,∵AB ∥DF ,AD ∥BC ,∴∠BAF=∠F=∠DAF ,∠BAE=∠AEB ,∴AB=BE=6,AD=DF=9,∴△ADF 是等腰三角形,△ABE 是等腰三角形,∵AD ∥BC ,∴△EFC 是等腰三角形,且CF=CE ,∴EC=FC=DF-DC=9-6=3,12CE BE =,在△ABG 中,BG ⊥AE ,AB=6,,∴2=,∴AE=2AG=4,∴△ABE 的周长等于16,又∵△CEF ∽△BEA ,相似比为1:2,∴△CEF 的周长为8.故选D .二.填空题(每小题4分,满分24分)11.如图,平行四边形ABCD 的对角线AC 、BD 相交于点O ,BC=9,AC=8,BD=14,则△AOD 的周长为 .【答案】20.12. 一个多边形的内角和是外角和的2倍,则这个多边形的边数为 .【答案】6.【解析】∵多边形的外角和是360度,多边形的内角和是外角和的2倍,则内角和是720度,720÷180+2=6,∴这个多边形是六边形.故答案为:6.13.在 ABCD中,BC边上的高为4,AB=5,AC=,则 ABCD的周长等于.【答案】12或20.14. 如图,先将一平行四边形纸片ABCD沿AE,EF折叠,使点E,B′,C′在同一直线上,再将折叠的纸片沿EG折叠,使AE落在EF上,则∠AEG=度.【答案】45.【解析】根据沿直线折叠的特点,△ABE≌△AB′E,△CEF≌△C′EF,∴∠AEB=∠AEB′,∠CEF=∠C′EF,∵∠AEB+∠AEB′+∠CEF+∠C′EF=180°,∴∠AEB′+∠C′EF=90°,∵点E,B′,C′在同一直线上,∴∠AEF=90°,∵将折叠的纸片沿EG折叠,使AE落在EF上,∴∠AEG=∠GEA′=12∠AEF=45°15. 如图,若该图案是由8个全等的等腰梯形拼成的,则图中的=∠1__________º.【答案】67. 5.【解析】∵正八边形的每个内角为()º821801358º-⋅=,且该图案由8个全等的等腰梯形拼成,∴11135º7.52º6∠=⨯=.16. 如图,分别以Rt△ABC的直角边AC及斜边AB为边向外作等边△ACD、等边△ABE,EF⊥AB,垂足为F,连接DF,当ACAB= 时,四边形ADFE是平行四边形..三.解答题(第17、18小题每题8分,第19.20小题每题10分,满分36分)17. 如图,在边长为1的小正方形网格中,三角形的三个顶点均落在格点上.(1)以三角形的其中两边为边画一个平行四边形,并在顶点处标上字母A ,B ,C ,D ;(2)证明四边形ABCD 是平行四边形.【答案】(1)答案见解析;(2)证明见解析.【解析】(1)如图,四边形ABCD 为平行四边形;(2)∵AB=CD ,AB ∥CD ,∴四边形ABCD 为平行四边形.18. 如图,在 ABCD 中,点E 在边BC 上,点F 在BC 的延长线上,且BE=CF 。
2016年中考数学复习专题 选择填空题(1)1、如图,在正方形ABCD 内有一折线段,其中AE ⊥EF ,EF ⊥FC,并且AE=6,EF=8,FC=10,则正方形与其外接圆之间形成的阴影部分的面积为__ ______。
2、在右表中,我们把第i 行第j 列的数记为,i j a (其中i ,j 都是不大于5的正整数),对于表中的每个数,i j a ,规定如下:当i j ≥时,,1i j a =;当i j <时,,0i j a =。
例如:当2i =,1j =时,,2,11i j a a ==。
按此规定,1,3a =____;表中的25个数中,共有_____个1;计算1,1,11,2,21,3,31,4,41,5,5i i i i i a a a a a a a a a a ⋅+⋅+⋅+⋅+⋅的值为_______。
3、如图,正方形ABCD 中,AB=6,点E 在边CD 上,且CD=3DE .将△ADE 沿AE 对折至△AFE ,延长EF 交边BC 于点G ,连接AG 、CF .下列结论:①△ABG ≌△AFG ;②BG=GC ;③AG ∥CF ;④S △FGC =3.其中正确结论的个数是( )A 、1B 、2C 、3D 、44、梯形ABCD 中AB ∥CD ,∠ADC +∠BCD =90°,以AD 、AB 、BC 为斜边向形外作等腰直角三角形,其面积分别是S 1、S 2、S 3 ,且S 1 +S 3 =4S 2,则CD =( ) A. 2.5AB B. 3AB C. 3.5AB D. 4AB5、如图,在正方形纸片ABCD 中,E ,F 分别是AD ,BC 的中点,沿过点B 的直线折叠,使点C 落在EF 上,落点为N ,折痕交CD 边于点M ,BM 与EF 交于点P ,再展开.则下列结论中:①CM =DM ;②∠ABN =30°;③AB 2=3CM 2;④△PMN 是等边三角形.正确的有( ) A .1个 B .2个 C .3个 D .4个(第10题)M6、如图,有一直径为4的圆形铁皮,要从中剪出一个最大圆心角为60°的扇形ABC.那么剪下的扇形ABC (阴影部分)的面积为 ;用此剪下的扇形铁皮围成一个圆锥,该圆锥的底面圆的半径r= .7、若},,,max{21n s s s 表示实数n s s s ,,,21 中的最大者.设),,(321a a a A =,⎪⎪⎪⎭⎫⎝⎛=321b b b B ,记}.,,max{332211b a b a b a B A =⊗设,1(-=x A )1,1+x ,⎪⎪⎪⎭⎫⎝⎛--=|1|21x x B ,若1-=⊗x B A ,则x 的取值范围为( )A .131≤≤-xB .211+≤≤x .C .121≤≤-xD .311+≤≤x8“数形结合”思想.具体方法是这样的:如图,C 为线段BD 上一动点,分别过点B 、D 作,AB BD ED BD ⊥⊥,连结AC、EC .已知AB=1,DE=5,BD=8,设BC=x.则AC =,CE =则问题即转化成求AC+CE 的最小值.(1)我们知道当A 、C 、E 在同一直线上时,AC+CE 的值最小,于是可求的最小值等于 ,此时x =;(2的最小值等于 .9、P (x ,y )位于第二象限,并且y 3+≤x ,x ,y 为整数,写出所有符合上述条件的点P 的坐标: 。
10、如果0)1)(2(2=-+-x m x x 方程的三根,可作为一个三角形的三边长,则m 的取值范围是( ) A .43≥m B. 43﹤1≤m . C. 143≤≤m D. 43≤m 11、如图,在△ABC 中,∠ABC 和∠ACB 的平分线相交于点O ,过点O 作EF ∥BC 交AB 于E ,交AC 于F ,过点O 作OD ⊥AC 于D .下列四个结论:①∠BOC =90º+ 12∠A ; ②以E 为圆心、BE 为半径的圆与以F 为圆心、CF 为半径的圆外切;③设OD =m ,AE +AF =n ,则S △AEF =mn ; ④EF 是△ABC 的中位线. 其中正确的结论是 _.12、在锐角△ABC 中,∠BAC=60°,BN 、CM 为高,P 为BC 的中点,连接MN 、MP 、NP ,则结论:①NP=MP②当∠ABC=60°时,MN ∥BC ③ BN=2AN ④AN ·AC=AM·AB ,一定正确的有 ( ) A . 1个 B . 2个 C.3个 D. 4个13、在菱形ABCD 中,对角线AC ,BD 相交于点O ,且AC=12,BD=16,E 为AD 的中点,点P 在BD 上移动,若△POE 为等腰三角形,则所有符合条件的点P 共有______个.14、如图,△ABC 中,D 、E 分别是BC 、AC 的中点,BF 平分∠ABC ,交DE 于点F ,若BC=6,则DF 的长是( )(A )2 (B )3 (C )25(D )415、如图,在等腰梯形ABCD 中,AD BC ∥,对角线AC BD ⊥于点O ,AE BC DF BC ⊥⊥,,垂足分别为E 、F ,设AD =a ,BC =b ,则四边形AEFD 的周长是( ) A .3a b +B .2()a b +C .2b a +D .4a b +16、在平面直角坐标系中,对于平面内任一点()a b ,,若规定以下三种变换:()()()()1313;f a b a b f -=-如①,=,.,,, ()()()()1331;g a b b a g =如②,=,.,,,()()()()1313h a b a b h --=--如③,=,.,,,. 按照以上变换有:(())()()233232f g f -=-=,,,,那么()()53f h -,等于( )A .()53--,B .()53,C .()53-,D .()53-,17、如图,等边ABC △的边长为3,P 为BC 上一点,且1BP =,D 为AC 上一点,若60APD ∠=°,则CD 的长为( )A .32B .23C .12D .34ADFC BOEA CBM 第12题图N DC ABE FO(第15题图)ADCPB(第17题图)60°18、若将代数式中的任意两个字母交换,代数式不变,则称这个代数式为完全对称式.....,如a b c ++就是完全对称式.下列三个代数式:①2)(b a -;②ab bc ca ++;③222a b b c c a ++.其中是完全对称式的是( )A .①②B .①③C . ②③D .①②③19、如图所示的44⨯正方形网格中,1234567∠+∠+∠+∠+∠+∠+∠=( ) A .330° B .315° C .310°D .320°20、如图所示是二次函数2y ax bx c =++图象的一部分,图象过A 点(3,0),二次函数图象对称轴为1x =,给出四个结论:①24b ac >;②0bc <;③20a b +=;④0a b c ++=, 其中正确结论是( ) A .②④B .①③C .②③D .①④21、二次函数223y x =的图象如图12所示,点0A 位于坐标原点,点1A ,2A ,3A ,…, 2008A 在y 轴的正半轴上,点1B ,2B ,3B ,…, 2008B 在二次函数223y x=位于第一象限的图象上,若△011A B A ,△122A B A ,△233A B A ,…,△200720082008A B A 都为等边三角形,则△200720082008A B A 的边长= .22、如图,正方形ABCD 中,E 是BC 边上一点,以E 为圆心、EC 为半径的半圆与以A 为圆心,AB 为半径的圆弧外切,则sin EAB ∠的值为 .23、如图,正方形ABCD 的边长为1cm ,E 、F 分别是BC 、CD 的中点,连接BF 、DE ,则图中阴影部分的面积是 cm 2.24、对于每个非零自然数n ,抛物线2211(1)(1)n n n n n y x x +++=-+与x 轴交于A n 、B n 两点,以n n A B 表示这两点间的距离,则112220092009A B A B A B +++ 的值是( ) A .20092008B .20082009C .20102009D .20092010第24题图D C EBA(第23题)第19题图7654 3 21x 第20题图25、已知函数2()1f x x=+,其中()f a 表示当x a =时对应的函数值,如: 222(1)1(2)1()112f f f a a=+=+=+,,,则(1)(2)(3).....(100)f f f f ⋅⋅=__________。
26、(08年杭州)如图,记抛物线21y x =-+的图象与x 正半轴的交点为A ,将线段OA 分成n 等份.设分点分别为1P ,2P ,…,1n P -,过每个分点作x 轴的垂线,分别与抛物线交于点1Q ,2Q ,…,1n Q -,再记直角三角形11OPQ ,122PPQ ,…的面积分别为1S ,2S ,…,这样就有21312n S n -=,22342n S n -=,…;记121n W S S S -=+++…,当n 越来越大时,你猜想W 最接近的常数是( )A .23B .12C .13D .1427、(08年杭州)如图,大圆O 的半径OC 是小圆1O 的直径,且有OC 垂直于圆O 的直径AB .圆1O 的切线AD 交OC 的延长线于点E ,切点为D .已知圆1O 的半径为r ,则1AO = ;DE = .28、(08年杭州)如图,一个42⨯的矩形可以用3种不同的方式分割成2或5或8个小正方形,那么一个53⨯的矩形用不同的方式分割后,小正方形的个数可以是 .28、(09年杭州)如图,AB 为半圆的直径,C 是半圆弧上一点,正方形DEFG 的一边DG 在直径AB 上,另一边DE 过ΔABC 的内切圆圆心O ,且点E 在半圆弧上.①若正方形的顶点F 也在半圆弧上,则半圆的半径与正方形边长的比是______________; ②若正方形DEFG 的面积为100,且ΔABC 的内切圆半径r =4,则半圆的直径AB = __________ .29、(10年杭州)定义[,,a b c ]为函数2y ax bx c =++的特征数, 下面给出特征数为 [2m ,1 – m , –1– m ] 的函数的一些结论:(第26题)(第27题)或或?(第28题)① 当m = – 3时,函数图象的顶点坐标是(31,38); ② 当m > 0时,函数图象截x 轴所得的线段长度大于23; ③ 当m < 0时,函数在x >41时,y 随x 的增大而减小; ④ 当m ≠ 0时,函数图象经过同一个点。