中考数学第一轮专题限时训练精选试题及答案
- 格式:doc
- 大小:2.21 MB
- 文档页数:96
实数考点1 实数的大小比较两实数的大小关系如下:正实数都大于0,负实数都小于0,正数大于一切负数;两个正实数,绝对值大的实数较大;两个负实数,绝对值大的实数反而小.实数和数轴上的点一一对应,在数轴上表示的两个实数,右边的数总大于左边的数. 例1 比较3-2与2-1的大小.例2 在-6,0,3,8这四个数中,最小的数是( )A.-6B.0C.3D.8考点2 无理数常见的无理数类型(1) 一般的无限不循环小数,如:1.41421356¨···(2) 看似循环而实际不循环的小数,如0.1010010001···(相邻两个1之间0的个数逐次加1)。
(3) 有特定意义的数,如:π=3.14159265···(4).开方开不尽的数。
如:35,3注意:(1)无理数应满足:①是小数;②是无限小数;③不循环;(2)无理数不是都带根号的数(例如π就是无理数),反之,带根号的数也不一定都是无理数(例如4,327就是有理数).例3 下列是无理数的是( )A.-5/2B.πC. 0D.7.131412例4在实数中-23,03.14) A .1个 B .2个 C .3个 D .4个考点3 实数有关的概念实数的分类(1)按实数的定义分类:⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎨⎧⎭⎬⎫⎩⎨⎧⎪⎪⎪⎩⎪⎪⎪⎨⎧⎭⎬⎫⎩⎨⎧⎪⎩⎪⎨⎧无限不循环小数负无理数正无理数无理数数有限小数或无限循环小负分数正分数分数负整数零正整数整数有理数实数 (2)按实数的正负分类:⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎨⎧⎪⎩⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧⎩⎨⎧负无理数负分数负整数负有理数负实数负数)零(既不是正数也不是正无理数正分数正整数正有理数正实数实数例5若a 为实数,下列代数式中,一定是负数的是( )A. -a 2B. -( a +1)2C.-2aD.-(a -+1) 例6实数a 在数轴上的位置如图所示, 化简:2)2(1-+-a a =例7 如图所示,数轴上A 、B 两点分别表示实数1,5,点B 关于点A 的对称点为C ,则点C 所表示的实数为( )A.5-2 B. 2-5 C. 5-3 D.3-5例8已知a 、b 是有理数,且满足(a -2)2+3-b =0,则a b 的值为 考点4 平方根、算术平方根、立方根与二次根式若a ≥0,则a 的平方根是a ±,a 的算术平方根a ;若a<0,则a 没有平方根和算术平方根;若a 为任意实数,则a 的立方根是3a 。
一、选择题(每题4分,共20分)1. 若实数a,b满足a + b = 3,则a² + b²的最小值为()A. 5B. 6C. 7D. 82. 在直角坐标系中,点A(2,3),B(-1,-4)关于原点对称的点分别是()A. A(-2,-3),B(1,4)B. A(-2,3),B(1,-4)C. A(2,-3),B(-1,4)D. A(2,-3),B(-1,-4)3. 若等比数列{an}的前三项分别为1,-2,4,则该数列的公比为()A. -2B. 2C. -1/2D. 1/24. 若函数f(x) = ax² + bx + c的图象开口向上,且顶点坐标为(1,-3),则a,b,c的符号分别为()A. a > 0,b > 0,c > 0B. a > 0,b < 0,c < 0C. a < 0,b > 0,c > 0D. a < 0,b < 0,c > 05. 在△ABC中,∠A = 60°,∠B = 45°,则∠C的度数为()A. 75°B. 105°C.120°D. 135°二、填空题(每题5分,共20分)6. 若二次方程x² - 5x + 6 = 0的两根为m和n,则m + n的值为______。
7. 若等差数列{an}的首项为2,公差为3,则第10项an的值为______。
8. 若函数f(x) = -x² + 4x + 3的图象与x轴的交点坐标为(1,0),则该函数的对称轴方程为______。
9. 在△ABC中,若a = 3,b = 4,c = 5,则△ABC的面积S为______。
三、解答题(共60分)10. (12分)已知等差数列{an}的前三项分别为3,5,7,求该数列的通项公式。
11. (12分)在△ABC中,∠A = 60°,∠B = 45°,边BC = 6cm,求△ABC的外接圆半径R。
中考数学一轮复习《圆》专项练习题-附参考答案学校:___________班级:___________姓名:___________考号:___________一、选择题1.已知⊙O的直径是10,点P到圆心O的距离是10,则点P与⊙O的位置关系是()A.点P在⊙O内B.点P在⊙O上C.点P在⊙O外D.点P在圆心2.如图,点A、B、C、D都在⊙O上,OA⊥BC若∠AOB=40°,则∠ADC的度数为()A.20°B.30°C.40°D.80°3.往直径为26cm的圆柱形容器内装入一些水以后,截面如图所示,若水面AB的宽度为24cm,则水的最大深度为()A.5cm B.10cm C.13cm D.8cm4.如图,边长为1的小正方形网格中,点A、B、C、E在格点上,过A、B、E三点的圆交BC于点D,则∠AED 的正切值是()A.12B.2 C.√52D.√555.如图所示,将⊙O沿弦AB折叠,AB⌢恰好经过圆心O.若⊙O的半径为3,则AB⌢的长为().A.12πB.πC.2πD.3π6.如图,AB为⊙O的切线,切点为A,连接OA、OB,OB交⊙O于点C,点D在⊙O上,连接CD、AD若∠ADC= 30°,OA=1,则AB的长为()A.1B.√3C.2D.47.如图,正六边形ABCDEF内接于⊙O,若⊙O的周长等于6π,则正六边形的边长为()A.√3B.√6C.3 D.2√38.如图所示,在⊙O中,点C在优弧AB上,将弧BC沿BC折叠后,刚好经过AB的中点D.若⊙O的半径为2√5,AB=8,则BC的长是().A.5√3B.√2552C.6√2D.14√53二、填空题9.扇形的圆心角为80°,弧长为4πcm,则此扇形的面积等于cm2.10.如图,点A,B,C在⊙O上,∠ACB=30°,则∠ABO的度数是.11.如图,A、B、C、D均在⊙O上,E为BC延长线上一点,若∠A=102°,则∠DCE= .⌢的长12.如图,在矩形ABCD中,AB=4,AD=2,以点A为圆心,AB长为半径画圆弧交边DC于点E,则BE度为.,OB=6,则PB的长为.13.如图,PA是⊙O的切线,A为切点,PO交⊙O于点B,tanP=34三、解答题14.如图,在△ABC中,AB=AC,以AB为直径的半圆O分别交BC,AC于点D,E,连接DE,OD.⌢=ED⌢.(1)求证:BD⌢,BE⌢的度数之比为4∶5时,求四边形ABDE四个内角的度数.(2)当AE15.如图,中,以为直径作,点为上一点,且,连接并延长交的延长线于点(1)判断直线与的位置关系,并说明理由;(2)若求的值.16.已知,如图,AB为⊙O的直径,△ABC内接于⊙O,BC>AC,点P是△ABC的内心,延长CP交⊙O于点D,连接BP.(1)求证:BD=PD;(2)已知⊙O的半径是3√2,CD=8,求BC的长.17.如图,AB是的直径,点C,M为上两点,且C点为的中点,过C点的切线交射线BM、BA于点EF.(1)求证:;(2)若, MB=2 ,求的长度.18.如图,在中以为直径的分别与、相交于点、E,连接过点作,垂足为点(1)求证:是的切线;(2)若的半径为,求图中阴影部分的面积.参考答案1.C2.A3.D4.A5.C6.B7.C8.C9.18π10.60°11.102°12.23π13.414.(1)证明:如图,连接AD∵AB是直径∴∠ADB=90°∵AB=AC∴∠BAD=∠CAD∴BD⌢=ED⌢.(2)解:∵AE⌢ + BE⌢ =180°,AE⌢与BE⌢的度数之比为4:5∴AE⌢ =80°,BE⌢ =100°∴BD⌢ = ED⌢ =50°∴AD⌢ = AE⌢ + ED⌢ =130°∴∠BAE=12BE⌢=50°,∠B=12AD⌢=65°∵∠AED+∠B=180°,∠BDE+∠A=180°∴∠AED=115°,∠BDE=130°∴∠BAE=50°,∠B=65°,∠BDE=130°,∠AED=115°.15.(1)解:是的切线证明:连接在和中∵OD是圆的半径是的切线(2)解:.设在中.设的半径为,则在中.在中16.(1)证明:∵AB为直径∴∠ACB=90°∵点P是△ABC的内心∴∠ACD=∠BCP=45°,∠CBP=∠EBP∴∠ABD=∠ACD=45°∵∠DPB=∠BCP+∠CBP=45°+∠CBP,∠DBP=∠ABD+∠CBP=45°+∠EBP ∴∠DPB=∠DBP∴BD=DP(2)解:连接AD,如图所示∵AB是直径∴△ABD是等腰直角三角形∵⊙O的半径是3√2∴AB=6√2∴△ABD是等腰直角三角形∴BD=√22×AB=√22×6√2=6∵∠EDB=∠BDC ∵△DBE∽△DCB∴DEDB =DBCD∵CD=8∴DE=DB2CD =628=4.5∵∠ACD=∠ABD=45°∴△AEC∽△BED∴ACBD =CEDE∴AC=143∴在Rt△ABC中BC=√AB2−AC2=2√1133. 17.(1)证明:如图连接.∵是的切线∴∵点C是的中点∴∵OB=OC∴∴∴∴∴(2)解:如图,连接∵∴∵OM=OB∴为等边三角形∴OB=MB=2∴的长度18.(1)证明:连接.是的直径.又AB=AC,∴D是BC的中点.连接;由中位线定理,知又.是的切线;(2)解:连接,的半径为第11 页共11 页。
中考数学第一轮考试训练题及答案2019中考数学第一轮考试训练题及答案初中的学习至关重要,广大中学生朋友们一定要掌握科学的学习方法,提高学习效率。
以下是查字典数学网为大家提供的中考数学第一轮考试训练题,供大家复习时使用! A级基础题1.(2019年浙江温州)已知点P(1,-3)在反比例函数y=kx(k≠0)的图象上,则k的值是()A.3B.-3C.13D.-132.(2019年黑龙江绥化)对于反比例函数y=3x,下列说法正确的是()A.图象经过点(1,-3)B.图象在第二、四象限C.x>0时,y随x的增大而增大D.x0时,y随x的增大而增大,则一次函数y=x+b的图象不经过()A.第一象限B.第二象限C.第三象限D.第四象限6.(2019年四川南充)矩形的长为x,宽为y,面积为9,则y 与x之间的函数关系用图象表示大致为()A正方形 B 长方形 C 圆 D梯形7.(2019年广东惠州惠城区模拟)已知A(2,y1),B(3,y2)是反比例函数y=-2x图象上的两点,则y1____y2(填“>”或“0)的图象经过顶点B,则k的值为()A.12B.207.y2时,x的取值范围为-42.15.解:(1)如图8,过点C作CE⊥AB于点E,∵四边形ABCD是等腰梯形,∴AD=BC,DO=CE.∴△AOD≌△BEC(HL).∴AO=BE=2.∵BO=6,∴DC=OE=4,∴C(4,3).设反比例函数的解析式为y=kx(k≠0),∵反比例函数的图象经过点C,∴3=k4,解得k=12.∴反比例函数的解析式为y=12x.(2)将等腰梯形ABCD向上平移m个单位长度后得到梯形A′B′C′D′,如图9,∴点B′(6,m).∵点B′(6,m)恰好落在双曲线y=12x上,∴当x=6时,m=126=2.即m=2.中考数学第一轮考试训练题的内容,希望符合大家的实际需要。
中考数学一轮复习专题过关检测卷—轴对称、平移、旋转(含答案解析)(考试时间:90分钟,试卷满分:100分)一、选择题(本题共10小题,每小题3分,共30分)。
1.下列图形中,对称轴最多的图形是()A.B.C.D.【答案】A【解答】解:A.该图有无数条对称轴;B.该图有一条对称轴;C.该图有两条对称轴;D.该图有三条对称轴.所以对称轴最多的图形是选项A.故选:A.2.如图,将△ABC沿直线DE折叠,使点C与点A重合,已知AB=7,BC=6,则△BCD的周长为()A.12B.13C.19D.20【答案】B【解答】解:由折叠可知,AD=CD,∵AB=7,BC=6,∴△BCD的周长=BC+BD+CD=BC+BD+AD=BC+AB=7+6=13.故选:B.3.在平面直角坐标系中,点(3,2)关于x轴对称的点是()A.(﹣3,2)B.(3,﹣2)C.(﹣3,﹣2)D.(﹣2,3)【答案】B【解答】解在平面直角坐标系中,点(3,2)关于x轴对称的点是(3,﹣2).故选:B.4.在平面直角坐标系中,将点A(﹣3,﹣2)向右平移5个单位长度得到的点坐标为()A.(2,2)B.(﹣2,2)C.(﹣2,﹣2)D.(2,﹣2)【答案】D【解答】解:将点A(﹣3,﹣2)向右平移5个单位长度得到的点坐标为(﹣3+5,﹣2),即(2,﹣2),故选:D.5.“方胜”是中国古代妇女的一种发饰,其图案由两个全等正方形相叠组成,寓意是同心吉祥.如图,将边长为2cm的正方形ABCD沿对角线BD方向平移1cm得到正方形A′B′C′D′,形成一个“方胜”图案,则重叠部分的小正方形边长为()A.1cm B.2cm C.D.【答案】C【解答】解:∵四边形ABCD是正方形,∵AB=AD=2cm,∠A=90°,∴BD=AB=2(cm),由平移变换的性质可知BB′=1cm,∴DB′=BD﹣BB﹣1)cm,∴小正方形的边长=DB′=×(2﹣1)=(2﹣)cm,故选:C.6.如图,把三角形ABC沿BC方向平移1个单位长度得到三角形DEF,若四边形ABFD的周长为10,则三角形ABC的周长为()A.8B.10C.12D.14【答案】A【解答】解:∵把三角形ABC沿BC方向平移1个单位长度得到三角形DEF,∴AD=BE=1,△ABC≌△DEF,∵四边形ABFD的周长为10,∴AD+BF+AB+DF=10,∵BF=BE+EF=1+EF,∴1+1+EF+AB+DF=10,即EF+AB+DF=8,又∵DF=AC,EF=BC,∴AB+AC+BC=8,∴三角形ABC的周长为:8.故选:A.7.如图,将△ABC绕点C逆时针旋转一定的角度得到△A′B′C′,此点A在边B′C上,若BC=5,AC =3,则AB′的长为()A.5B.4C.3D.2【答案】D【解答】解:∵△ABC绕点C逆时针旋转一定的角度得到△A′B′C′,点A在边B′C上,∴CB′=CB=5,∴AB′=CB′﹣CA=5﹣3=2.故选:D.8.已知点A(a,1)与点B(﹣4,b)关于原点对称,则a﹣b的值为()A.﹣5B.5C.3D.﹣3【答案】B【解答】解:∵点A(a,1)与点B(﹣4,b)关于原点对称,∴a=4,b=﹣1.∴a﹣b=4﹣(﹣1)=5.故选:B.9.如图,在方格纸上建立的平面直角坐标系中,将△ABO绕点O按顺时针方向旋转90°,得△A′B′O′,则点A′的坐标为()A.(3,1)B.(3,2)C.(2,3)D.(1,3)【答案】D【解答】解:如图,点A′的坐标为(1,3).故选D.10.如图,等腰三角形ABC的底边BC长为4,面积是16,腰AC的垂直平分线EF分别交AC,AB边于E,F点.若点D为BC边的中点,点M为线段EF上一动点,则△CDM周长的最小值为()A.6B.8C.10D.12【答案】C【解答】解:连接AD,∵△ABC是等腰三角形,点D是BC边的中点,∴AD⊥BC,=BC•AD=×4×AD=16,解得AD=8,∴S△ABC∵EF是线段AC的垂直平分线,∴点C关于直线EF的对称点为点A,∴AD的长为CM+MD的最小值,∴△CDM的周长最短=CM+MD+CD=AD+BC=8+×4=8+2=10.故选:C.二、填空题(本题共6题,每小题2分,共12分)。
中考数学第一轮复习基础知识训练(一)时间:30分钟你实际使用分钟班级姓名学号成绩一、精心选一选1.图(1)所示几何体的左视图...是()2.一对酷爱运动的夫妇,让他们刚满周岁的孩子拼排3块分别写有“20”、“08”、“北京”的字块.假如小孩将字块横着正排,则该小孩能够排成“2008北京”或“北京2008”的概率是()A.16B.14C.13D.123.一名宇航员向地球总站发回两组数据:甲、乙两颗行星的直径分别为46.110⨯千米和46.1010⨯千米,这两组数据之间()A.有差别B.无差别C.差别是40.00110⨯千米D.差别是100千米4.如图,把直线l向上平移2个单位得到直线l′,则l′的表达式为()A.112y x=+B.112y x=-C.112y x=--D.112y x=-+5.汽车以72千米/时的速度在公路上行驶,开向寂静的山谷,驾驶员揿一下喇叭,4秒后听到回响,这时汽车离山谷多远?已知空气中声音的传播速度约为340米/秒.设听到回响时,汽车离山谷x米,根据题意,列出方程为()A.24204340x+⨯=⨯B.24724340x-⨯=⨯C.24724340x+⨯=⨯D.24204340x-⨯=⨯6.某公园计划砌一个形状如图(1)所示的喷水池,后来有人建议改为图(2)的形状,且外圆的直径不变,喷水池边沿的宽度、高度不变,你认为砌喷水池的边沿()A.图(1)需要的材料多B.图(2)需要的材料多C.图(1)、图(2)需要的材料一样多 D.无法确定7.如图,等腰梯形ABCD 下底与上底的差恰好等于腰长,DE AB ∥.则DEC ∠等于( )A.75° B.60° C.45° D.30°8.如图是一台54英寸的大背投彩电放置在墙角的俯视图.设DAO α=∠,彩电后背AD 平行于前沿BC ,且与BC 的距离为60cm ,若100cm AO =,则墙角O 到前沿BC 的距离OE 是( )A.()60100sin cm α+ B.()60100cos cm α+ C.()60100tan cm α+ D.以上答案都不对二、细心填一填9.某农场购置了甲、乙、丙三台打包机,同时分装质量相同的棉花,从它们各自分装的棉花包中随机抽取了10包,测得它们实际质量的方差分别为222S 11.05S 7.96S 16.32===乙甲丙,,.可以确定 打包机的质量最稳定.10.如图,照相时为了把近处的较高物体照下来,常常保持镜头中心不动,使相机旋转一定的角度,若A 点从水平位置顺时针旋转了30︒,那么B 点从水平位置顺时针旋转了__ ____度.图(1) 图(2)第6题第8题ABA D CE B 第7题11.林业工人为调查树木的生长情况,常用一种角卡为工具,可以很快测出大树的直径,其工作原理如图所示.现已知5380.5BAC AB =︒=∠′,米,则这棵大树的直径约为 _____ ____米.12.如图,一次函数11y x =--与反比例函数22y x =-的图象交于点(21)(12)A B --,,,,则使12y y >的x 的取值范围是三、开心用一用13.(6分)解不等式组3181(5)32x x -->⎧⎪⎨+⎪⎩≤并把解集在数轴上表示出来.14.如图,数轴上点AA 关于原点的对称点为B ,设点B 所表示的数为x ,求(x 的值.第12题答案参考一、精心选一选 BCAD ACBA二、细心填一填9. 乙 10. __30___ 11. _ 0.5__12. 2x <-或01x <<. 三、开心用一用13.(6分)解不等式组3181(5)32x x -->⎧⎪⎨+⎪⎩≤并把解集在数轴上表示出来.解:解不等式318x -->,得3x <-.解不等式1(5)32x +≤,得x ≤1.原不等式组的解集为3x <-.14.如图,数轴上点AA 关于原点的对称点为B ,设点B 所表示的数为x ,求(0x的值.解: 点AB 与点A 关于原点对称,∴点B 表示的数是,即x =3分00(((121x ==-=-. 6分第12题3- 2- 1- 0 1。
中考数学一轮复习测试题(有答案)想要学好数学,一定要多做练习,以下所引见的中考数学一轮温习测试题,主要是针对学过的知识来稳固自己所学过的内容,希望对大家有所协助!A级基础题1.要使分式1x-1有意义,那么x的取值范围应满足()A.x=1B.x≠0C.x≠1D.x=02.分式x2-1x+1的值为零,那么x的值为()A.-1B.0C.±1D.13.化简a3a,正确结果为()A.aB.a2C.a-1D.a-24.约分:56x3yz448x5y2z=________;x2-9x2-2x-3=________.5.a-ba+b=15,那么ab=__________.6.当x=______时,分式x2-2x-3x-3的值为零.7.(2021年广东汕头模拟)化简:1x-4+1x+4÷2x2-16.8.(2021年浙江衢州)先化简x2x-1+11-x,再选取一个你喜欢的数代入求值.9.先化简,再求值:m2-4m+4m2-1÷m-2m-1+2m-1,其中m=2. B级中等题10.化简:2mm+2-mm-2÷mm2-4=________.11.假定x+y=1,且x≠0,那么x+2xy+y2x÷x+yx的值为________.12.实数a满足a2+2a-15=0,求1a+1-a+2a2-1÷?a+1??a+2?a2-2a+1的值.C级拔尖题13.三个数x,y,z满足xyx+y=-2,yzz+y=34,zxz+x=-34,那么xyzxy+yz+zx的值为________.14.先化简再求值:ab+ab2-1+b-1b2-2b+1,其中b-2+36a2+b2-12ab=0.参考答案1.C2.D3.B4.7z36x2y x+3x+15.326.-17.解:原式=?x+4?+?x-4??x+4??x-4???x+4??x-4?2=x+4+x-42=x.8.解:原式=x2-1x-1=x+1,当x=2时,原式=3(除x=1外的任何实数都可以).9.解:原式=?m-2?2?m+1??m-1??m-1m-2+2m-1=m-2m+1+2m-1=?m-2??m-1 ?+2?m+1??m+1??m-1?=m2-m+4?m+1??m-1?,当m=2时,原式=4-2+43=2.10.m-6 11.112.解:原式=1a+1-a+2?a+1??a-1???a-1?2?a+1??a+2?=1a+1-a-1?a+1?2 =2?a+1?2,∵a2+2a-15=0,∴(a+1)2=16.∴原式=216=18.13.-4 解析:由xyx+y=-2,得x+yxy=-12,裂项得1y+1x=-12.同理1z+1y=43,1x+1z=-43.所以1y+1x+1z+1y+1x+1z=-12+43-43=-12,1z+1y+1x=-14.于是xy+yz+zxxyz=1z+1y+1x=-14,所以xyzxy+yz+zx=-4.14.解:原式=a?b+1??b+1??b-1?+b-1?b-1?2=ab-1+1b-1=a+1b-1.由b-2+36a2+b2-12ab=0,得b-2+(6a-b)2=0,∴b=2,6a=b,即a=13,b=2.∴原式=13+12-1=43.。
中考数学一轮复习 第1讲:实数概念与运算 一、夯实基础1、绝对值是6的数是________2、|21|-的倒数是________________。
3、2的平方根是_________.4、下列四个实数中,比-1小的数是( ) A .-2 B.0 C .1 D .25、在下列实数中,无理数是( )A.2B.0C.5D.13二、能力提升6、小明家冰箱冷冻室的温度为-5℃,调高4℃后的温度为( )A .4℃B .9℃C .-1℃D .-9℃7、定义一种运算☆,其规则为a ☆b =1a +1b,根据这个规则、计算2☆3的值是( )A .65B . 15C .5D .6 8、下列计算不正确的是( )(A )31222-+=- (B )21139⎛⎫-= ⎪⎝⎭ (C )33-= (D )1223= 三、课外拓展9、实数a 、b 在数轴上位置如图所示,则|a|、|b|的大小关系是________。
四、中考链接10、数轴上的点A 到原点的距离是6,则点A 表示的数为( )A. 6或6-B. 6 C . 6- D. 3或3-11、如果a与1互为相反数,则a等于().A.2 B.2- C.1 D.1-12、下列哪一选项的值介于0.2与0.3之间?()A、 4.84B、0.484C、0.0484D、0.0048413、―2×63=14、在﹣2,2,2这三个实数中,最小的是15、写出一个大于3且小于4的无理数。
参考答案一、夯实基础1、6和-62、2±3、24、A5、C二、能力提升6、C7、A8、A三、课外拓展9、a b>四、中考链接10、A11、C12、C13、-214、﹣215、解:∵π≈3.14…,∴3<π<4,故答案为:π(答案不唯一).第2讲:整式与因式分解一、夯实基础1.计算(直接写出结果)①a ·a 3=③(b 3)4=④(2ab )3=⑤3x 2y ·)223y x -(= 2.计算:2332)()(a a -+-= .3.计算:)(3)2(43222y x y x xy -⋅⋅-= .4.1821684=⋅⋅n n n ,求n = .5.若._____34,992213=-=⋅⋅++-m m y x y x y x n n m m 则二、能力提升6.若)5)((-+x k x 的积中不含有x 的一次项,则k 的值是()A .0B .5C .-5D .-5或57.若))(3(152n x x mx x ++=-+,则m 的值为()A .-5B .5C .-2D .28.若142-=y x ,1327+=x y ,则y x -等于()A .-5B .-3C .-1D .19.如果552=a ,443=b ,334=c ,那么()A .a >b >cB .b >c >aC .c >a >bD .c >b >a三、课外拓展10.①已知,2,21==mn a 求n m a a )(2⋅的值.②若的求n n n x x x 22232)(4)3(,2---=值11.若0352=-+y x ,求y x 324⋅的值.四、中考链接12.(龙口)先化简,再求值:(每小题5分,共10分)(1)x (x -1)+2x (x +1)-(3x -1)(2x -5),其中x =2.(2)342)()(m m m -⋅-⋅-,其中m =2-13、(延庆)已知,求下列各式的值:(1); (2).14、(鞍山)已知:,.求:(1);(2).15、计算:;参考答案一、夯实基础1.a 4,b 4,8a 3b 3,-6x 5y 3;2.0;3.-12x 7y 9;4.2;5.4二、能力提升6.B ;7.C ;8.B ;9.B ;三、课外拓展10.①161;②56; 11.8;四、中考链接12.(1)-3x 2+18x-5,19;(2)m 9,-512;13.(1)45;(2)5714.(1)9;(2)115.第3讲:分式检测一、夯实基础1.下列式子是分式的是( )A .x 2B .x x +1C .x 2+yD .x32.如果把分式2xy x +y 中的x 和y 都扩大3倍,那么分式的值( ) A .扩大3倍 B .缩小3倍 C .扩大9倍 D .不变3.当分式x -1x +2的值为0时,x 的值是( ) A .0 B .1 C .-1 D .-2 4.化简:(1)x 2-9x -3=__________. (2)aa -1+11-a=__________. 二、能力提升5.若分式2a +1有意义,则a 的取值范围是( ) A .a =0 B .a =1 C .a ≠-1 D .a ≠06.化简2x 2-1÷1x -1的结果是( ) A ..2x -1 B .2x 3-1 C .2x +1D .2(x +1) 7.化简m 2-163m -12得__________;当m =-1时,原式的值为__________. 三、课外拓展8.化简⎝ ⎛⎭⎪⎫m 2m -2+42-m ÷(m +2)的结果是( ) A .0 B .1 C .-1 D .(m +2)29.下列等式中,不成立的是( )A .x 2-y 2x -y =x -yB .x 2-2xy +y 2x -y=x -yC .xy x 2-xy =y x -yD .y x -x y =y 2-x 2xy10.已知1a -1b =12,则aba -b 的值是( )A .12 B .-12 C .2 D .-211.当x =__________时,分式x -2x +2的值为零.12.计算(2-a a—2+a a)·a a 24-的结果是( )A . 4B . -4C .2aD .-2a13.分式方程2114339x x x +=-+-的解是( )A .x=-2B .x=2C . x=±2D .无解14.把分式(0)xyx y x y +≠+中的x ,y 都扩大3倍,那么分式的值()A .扩大为原来的3倍B .缩小为原来的13C .扩大为原来的9倍D .不变四、中考链接15.(临沂)先化简,再求值:(1)⎝ ⎛⎭⎪⎫1-1a -1÷a 2-4a +4a 2-a ,其中a =-1.(2)3-x 2x -4÷⎝ ⎛⎭⎪⎫5x -2-x -2,其中x =3-3.参考答案 一、夯实基础 1.B B 项分母中含有字母. 2.A 因为x 和y 都扩大3倍,则2xy 扩大9倍,x +y 扩大3倍,所以2xy x +y 扩大3倍.3.B 由题意得x -1=0且x +2≠0,解得x =1.4.(1)x +3 (2)1 (1)原式=(x +3)(x -3)x -3=x +3;(2)原式=a a -1-1a -1=a -1a -1=1. 二、能力提升5.C 因为分式有意义,则a +1≠0,所以a ≠-1.6.C 原式=2(x +1)(x -1)·(x -1)=2x +1. 7.m +43 1 原式=(m +4)(m -4)3(m -4)=m +43.当m =-1时,原式=-1+43=1. 三、课外拓展8.B 原式=m 2-4m -2·1m +2=(m +2)(m -2)m -2·1m +2=1. 9.A x 2-y 2x -y =(x +y )(x -y )x -y=x +y . 10.D 因为1a -1b =12,所以b -a ab =12,所以ab =-2(a -b ),所以ab a -b =-2(a -b )a -b=-2.11.2 由题意得x -2=0且x +2≠0,解得x =2.12. B13. B14. A四、中考链接15.解:(1)⎝⎛⎭⎪⎫1-1a -1÷a 2-4a +4a 2-a =a -2a -1·a (a -1)(a -2)2=a a -2.当a =-1时,原式=aa -2=-1-1-2=13.(2)3-x2x-4÷⎝⎛⎭⎪⎫5x-2-x-2=3-x2(x-2)÷⎝⎛⎭⎪⎫5x-2-x2-4x-2=3-x2(x-2)÷9-x2x-2=3-x2(x-2)·x-2(3-x)(3+x)=12x+6.∵x=3-3,∴原式=12x+6=36.第4讲:二次根式一、夯实基础1.使3x -1有意义的x 的取值范围是( )A .x >13B .x >-13C .x ≥13D .x ≥-132.已知y =2x -5+5-2x -3,则2xy 的值为( ) A .-15 B .15 C .-152 D .1523.下列二次根式中,与3是同类二次根式的是( ) A .18 B .27 C .23D .324.下列运算正确的是( )A .25=±5B .43-27=1C .18÷2=9D .24·32=6 5.估计11的值( )A .在2到3之间B .在3到4之间C .在4到5之间D .在5到6之间 二、能力提升6.若x ,y 为实数,且满足|x -3|+y +3=0,则⎝ ⎛⎭⎪⎫x y 2 012的值是__________.7.有下列计算:①(m 2)3=m 6,②4a 2-4a +1=2a -1,③m 6÷m 2=m 3,④27×50÷6=15,⑤212-23+348=143,其中正确的运算有__________.(填序号)三、课外拓展8.若x +1+(y -2 012)2=0,则x y =__________. 9.当-1<x <3时,化简:x -32+x 2+2x +1=__________.10.如果代数式4x -3有意义,则x 的取值范围是________.11、比较大小:⑴3 5 2 6 ⑵11 -10 14 -1312、若最简根式m2-3 与5m+3 是同类二次根式,则m= .13、若 5 的整数部分是a,小数部分是b,则a-1b= 。
中考数学一轮复习《一次函数》专项练习题-附含答案学校:___________班级:___________姓名:___________考号:___________一、选择题1.点P(1,3)在正比例函数y=kx(k≠0)的图象上,则k的值为()A.13B.2 C.3 D.42.直线y=x−1的图象大致是()A.B.C.D.3.对于函数y=3x,下列说法不正确的是()A.该函数是正比例函数B.该函数图象过点(1,2)C.该函数图象经过一、三象限D.y随着x的增大而增大4.对于一次函数y=﹣2x+4,当﹣2≤x≤4时,函数y的取值范围是()A.﹣4≤y≤16 B.4≤y≤8 C.﹣8≤y≤4 D.﹣4≤y≤85.将一次函数y=2x+4的图像向右平移5个单位后,所得的直线与两坐标轴围成的三角形的面积是()A.4 B.6 C.9 D.496.汽车开始行驶时,油箱内有油40升,如果每小时耗油5升,则油箱内余油量y(升)与行驶时间x(时)之间的函数关系式为()A.y=40x+5B.y=5x+40C.y=5x−40D.y=40−5x7.如图,函数y=2x和y=ax+4的图象相交于点A(m,3),则不等式2x<ax+4的解集为()A.x<32B.x<3 C.x>32D.x>38.甲、乙两地相距300千米,一辆货车和一辆轿车分别从甲地开往乙地(轿车的平均速度大于货车的平均速度),如图线段OA和折线BCD分别表示两车离甲地的距离y(单位:千米)与时间x(单位:小时)之间的函数关系.则下列说法正确的是()A.两车同时到达乙地B.轿车行驶1.3小时时进行了提速C.货车出发3小时后,轿车追上货车D.两车在前80千米的速度相等二、填空题9.一次函数y=2x的图象向上平移个单位后经过点A(−2,−1).10.若一次函数y=(k+1)x+2k−4的图象经过第一、三、四象限,则k的取值范围是.11.已知正比例函数y=kx与反比例函数y=3x的图象没有交点,写出一个符合条件的k的值为.12.如图,函数y1=mx,y2=x+3的图象相交于点A(−1,2),则关于x的不等式−2<x+3≤mx的解集是.13.如图,在平面直角坐标系xOy中,已知直线y=ax+b和直线y=kx交于点P(1,2),若关于x、y的二元一次方程组{y=kxy=ax+b的解为x、y,则x+y=.三、解答题14.如图,一次函数y1=kx+b的图象交x轴于点B,OB=12并与一次函数y2=−x+4的图象交于点A,点A的横坐标为1.(1)求一次函数y1=kx+b的解析式.(2)请直接写出kx+b>−x+4时自变量x的取值范围.15.A,B两地距离24km,甲、乙两人同时从A地出发前往B地.甲先匀速慢走2h,而后匀速慢跑;乙始终保持匀速快走,设运动时间为x(单位:h).甲、乙距离A地的路程分别为y1,y2(单位:km)y1,y2分别与x的函数关系如图所示.(1)求y1关于x的函数解析式;(2)相遇前,是否存在甲、乙两人相距1km的时刻?若存在,求运动时间;若不存在,请说明理由.16.如图,一次函数y1=x+m的图象与y轴交于点B,与正比例函数y2=3x的图象交于点A(1,3).(1)求△ABO的面积;(2)利用函数图象直接写出当y1>y2时,x的取值范围.17.为了学生的身体健康,学校课桌、凳的高度都是按照一定的关系科学设计的,研究表明:课桌的高度与椅子的高度符合一次函数关系,小明测量了一套课桌、椅对应的四档高度,得到数据如下表:档次/高度第一档第二档第三档第四档椅高x/cm 37.040.042.045.0桌高y/cm 68.074.078.0(1)设课桌的高度为y(cm),椅子的高度为x(cm),求y与x的函数关系式;(2)在表格中,有一个数据被污染了,则被污染的数据为;(3)小明放学回到家,又测量了家里的写字台的高度为79cm,凳子的高度为43.5cm,请你判断小明家里的写字台与凳子是否符合科学设计,并说明理由.18.已知直线l为x+y=8,点P(x,y)在l上,且x>0,y>0,点A的坐标为(4,0).(1)设△OAP的面积为S,求S与x的函数关系式,并直接写出x的取值范围;(2)当S=10时,求点P的坐标;(3)在直线l上有一点M,使OM+MA的和最小,求点M的坐标.参考答案1.C2.A3.B4.D5.C6.D7.A8.B9.310.−1<k<211.k=−1(答案不唯一)12.−5<x≤−113.314.(1)解:∵OB=12∴B(−12,0).∵点A的横坐标为1,点A在一次函数y2=−x+4的图象上∴x=1时y=3,即A(1,3).将A(1,3),B(−12,0)代入,得{−12k+b=0k+b=3,解得{k=2b=1∴一次函数的解析式为y1=2x+1(2)解:由图象可知,当x>1时,直线y1=kx+b在直线y=−x+4的上方∴kx+b>−x+4时自变量x的取值范围为x>115.(1)解:当0≤x<2时,设y1=kx,把(2,8)代入得:2k=8解得k=4∴y1=4x当x≥2时,设y1=kx+b把(2,8)(3,16)代入得:{2k+b=83k+b=16解得{k =8b =−8∴y 1=8x-8∴y 1关于x 的函数解析式为y 1={4x(0≤x <2)8x −8(x ≥2)(2)解:∵乙3小时运动16千米,乙的速度是163千米/小时 ∴y 2=163x当163x −4x =1时,解得x =34<3 当163x −(8x −8)=1时,解得x =218<3;答:相遇前,存在甲、乙两人相距1km 的时刻,运动时间为34小时或218小时 16.(1)解:∵一次函数 y 1=x +m 的图象过点 A(1,3) ∴3=1+m ∴m =2∴一次函数的表达式为 y 1=x +2 . 当 x =0 时 ∴B(0,2)∴S △ABO =12×2×1=1 .(2)当 y 1>y 2 时, x 的取值范围为 x <117.(1)解:由课桌的高度与椅子的高度符合一次函数关系,设y =kx +b ∵y =kx +b 过点(37.0,68.0)和(40.0,74.0) ∴{68=37k +b74=40k +b 解得{k =2b =−6∴y 与x 的函数关系式y =2x −6 (2)84.0(3)解:小明家里的写字台与凳子不符合科学设计,理由如下∶ 当x =43.5时,y =2×43.5−6=81≠79 ∴小明家里的写字台与凳子不符合科学设计. 18.(1)解:∵点A 的坐标为(4,0) ∴OA =4∵直线l 为x +y =8∴直线l 的解析式为y =−x +8 ∴当y =0时x =8; ∵S =12OA ⋅|y P |,y p >0∴S =2|−x +8|=2(−x +8)=−2x +16 ∴S =−2x +16(0<x <8)(2)解:当S =10时,则−2x +16=10 ∴x =3 ∴−x +8=5 ∴P(3,5);(3)解:作点O 关于直线l 的对称点G ,连接GM ,GD ,AG ,设直线l 与x 轴,y 轴分别交于D 、C ,∴D(8,0),C(0,8) ∴OC =OD =8 ∴∠ODC =45°由对称性可知GD =OD =8,∠GDC =∠ODC =45°,OM =GM ∴∠ODG =90° ∴G(8,8)∵OM +MA =GM +MA∴当A 、M 、G 三点共线时GM +MA 最小,即此时OM +MA 最小,则点M 即为直线AG 与直线l 的交点 设直线AG 的解析式为y =kx +b ∴{8k +b =84k +b =0 ∴{k =2b =−8∴直线AG 的解析式为y =2x −8 联立{y =2x −8y =−x +8,解得{x =163y =83∴M(163,83).。
章节限时练1 数与式(时间:40分钟满分:100分) 一、选择题(本大题共9小题,每小题3分,共27分) 1.-2 024的绝对值的相反数是(A)A.-2 024 B.2 024C.12 024 D.-12 0242.(2023·南充)如果向东走10 m记作+10 m,那么向西走8 m,记作(C)A.-10 m B.+10 mC.-8 m D.+8 m3.下列计算中正确的是(A)A.a7÷a5=a2 B.5a-4a=1C.3a2·2a3=6a6 D.(2a-b)2=4a2-b24.(2023·成都)2023年5月17日10时49分,我国在西昌卫星发射中心成功发射第五十六颗北斗导航卫星.北斗系统作为国家重要基础设施,深刻改变着人们的生产生活方式.目前,某地图软件调用的北斗卫星日定位量超3 000亿次.将数据3 000亿用科学记数法表示为(D)A.3×108 B.3×109C.3×1010 D.3×10115.下列各式中计算正确的是(C)A.2+3= 5 B .43-33=1 C.2×3= 6 D.12÷2= 66.下列因式分解中正确的是(B )A .ax +ay =a(x +y)+1B .3a +3b =3(a +b)C .a 2+4a +4=(a +4)2D .a 2+b =a(a +b)7.化简⎝ ⎛⎭⎪⎫1+1y ÷y +1y 2的结果是(D )A.1y +1 B.1y C .y +1 D .y8.19的平方根是(D )A.181B.13 C .-13 D .±139.一组按规律排列的单项式:-4x ,7x 2,-10x 3,13x 4,-16x 5,…,根据其中的规律,第12个单项式是(C )A .-31x 12B .-40x 11C .37x 12D .34x 12【解析】第n 个单项式为(-1)n (3n +1)x n二、填空题(本大题共7小题,每小题3分,共21分)10.函数y =1x -3的自变量x 的取值范围是x >3.11.化简:16=4.12.分解因式:5a 2-10a +5=5(a -1)2.13.若m +n =10,mn =5,则(m -n)2的值为80.14.若两个连续整数x,y满足x<5+1<y,则x+y=7.15.计算:24-65×45=-6.16.如图,某学校“桃李餐厅”把WIFI密码做成了数学题.小红在餐厅就餐时,思索了一会儿,输入密码,顺利地连接到了“桃李餐厅”的网络,那么她输入的密码是244 872.三、解答题(本大题共5小题,共52分)17.(6分)计算:(-2)×(-5)+33÷(4-7).解:原式=10+27÷(-3)=10+(-9)=1.18.(10分)分解因式:(1)(2a+b)2-(a+2b)2;解:原式=3(a+b)(a-b).(2)3x3-6x.(在实数范围内)解:原式=3x(x2-2)=3x(x+2)(x-2).19.(10分)先化简,再求值:(2x+y)2-x(4x+y)-y2,其中x=5-1,y=5+1.解:原式=4x2+4xy+y2-4x2-xy-y2=3xy,当x=5-1,y=5+1时,原式=3×(5-1)×(5+1)=12.20.(12分)观察下列算式:①1×3-22=-1;②2×4-32=-1;③3×5-42=-1;…按照以上规律,解决下列问题:(1)写出第⑤个算式:________;(2)根据规律,猜想第n个算式(用含n的式子表示),并证明.解:(1)第⑤个算式为5×7-62=-1.(2)第n个算式为n(n+2)-(n+1)2=-1.证明:n(n+2)-(n+1)2=n2+2n-(n2+2n+1)=n2+2n-n2-2n-1=-1.21.(14分)下面是小斌同学进行分式化简的过程,请认真阅读并解答问题.2x +12x +4-x 2-4x 2+4x +4+12=2x +12(x +2)-(x +2)(x -2)(x +2)2+12第一步 =2x +12(x +2)-x -2x +2+12第二步 =2x +12(x +2)-2(x -2)2(x +2)+12第三步 =2x +1-2x -22(x +2)+12第四步 =-12(x +2)+12第五步 =x +12x +4. 第六步 (1)填空:a .以上化简步骤中,第三步是进行分式的通分,通分的依据是分式的基本性质;b .第四步开始出现错误,这一步错误的原因是括号前面是负号,去掉括号后括号里面第二项没有变号,也没有与括号前面的系数相乘;(2)请写出正确的解答过程;(3)除纠正上述错误外,请根据平时的学习经验,就分式化简时还需要注意的事项给其他同学提一条建议.解:(2)原式=2x +1-2x +42(x +2)+12=52x +4+12=x +72x +4.(3)分式的混合运算,要注意运算顺序.(答案不唯一)。
中考数学第一轮重点练习题(有解析)面对中考,考生对待考试需保持平常心态,复习时仍要按知识点、题型、易混易错的问题进行梳理,不断总结,不断反思,从中提炼最佳的解题方法,进一步提高解题能力。
下文预备了中考数学第一轮模拟练习题供大伙儿练习。
A级基础题1.若二次函数y=ax2的图象通过点P(-2,4),则该图象必通过点()A.(2,4)B.(-2,-4)C.(-4,2)D.(4,-2)2.抛物线y=x2+bx+c的图象先向右平移2个单位长度,再向下平移3个单位长度,所得图象的函数解析式为y=(x-1)2-4,则b,c的值为()A.b=2,c=-6B.b=2,c=0C.b=-6,c=8D.b=-6,c=23.如图3-4-11,二次函数y=ax2+bx+c的图象开口向上,对称轴为直线x=1,图象通过(3,0),下列结论中,正确的一项是()A.abcB级中等题10.已知二次函数y=x2-3x+m(m为常数)的图象与x轴的一个交点为(1,0),则关于x的一元二次方程x2-3x+m=0的两实数根是()A.x1=1,x2=-1B.x1=1,x2=2C.x1=1,x2=0D.x1=1,x2=311.二次函数y=ax2+bx+c的图象如图3-4-13,给出下列结论:①2a+b> 0;②b>a>c;③若-112.已知二次函数y=x2-2mx+m2-1.(1)当二次函数的图象通过坐标原点O(0,0)时,求二次函数的解析式;(2)如图3-4-14,当m=2时,该抛物线与y轴交于点C,顶点为D,求C,D两点的坐标;(3)在(2)的条件下,x轴上是否存在一点P,使得PC+PD最短?若P点存在,求出P点的坐标;若P点不存在,请说明理由.C级拔尖题13.(2021年黑龙江绥化)如图3-4-15,已知抛物线y=1a(x-2)(x+a)(a>0)与x轴交于点B,C,与y轴交于点E,且点B在点C的左侧.(1)若抛物线过点M(-2,-2),求实数a的值;(2)在(1)的条件下,解答下列问题;①求出△BCE的面积;②在抛物线的对称轴上找一点H,使CH+EH的值最小,直截了当写出点H的坐标.14.已知二次函数y=mx2+nx+p图象的顶点横坐标是2,与x轴交于A(x 1,0),B(x2,0),x10且二次函数图象与直线y=x+3仅有一个交点时,求二次函数的最大值.15.(2021年广东湛江)如图3-4-16,在平面直角坐标系中,顶点为(3,4)的抛物线交y轴于A点,交x轴与B,C两点(点B在点C的左侧),已知A点坐标为(0,-5).(1)求此抛物线的解析式;(2)过点B作线段AB的垂线交抛物线于点D,假如以点C为圆心的圆与直线BD相切,请判定抛物线的对称轴与⊙C的位置关系,并给出证明;(3)在抛物线上是否存在一点P,使△ACP是以AC为直角边的直角三角形.若存在,求点P的坐标;若不存在,请说明理由.参考答案1.A2.B解析:利用反推法解答,函数y=(x-1)2-4的顶点坐标为(1,-4),其向左平移2个单位长度,再向上平移3个单位长度,得到函数y=x2+bx+ c,又∵1-2=-1,-4+3=-1,∴平移前的函数顶点坐标为(-1,-1),函数解析式为y=(x+1)2-1,即y=x2+2x,∴b=2,c=0.3.D4.C5.C6.B7.k=0或k=-18.y=x2+1(答案不唯独)9.解:(1)∵抛物线y=-x2+bx+c通过点A(3,0),B(-1,0),∴抛物线的解析式为y=-(x-3)(x+1),即y=-x2+2x+3.(2)∵y=-x2+2x+3=-(x-1)2+4,∴抛物线的顶点坐标为(1,4).10.B11.①③④12.解:(1)将点O(0,0)代入,解得m=±1,二次函数关系式为y=x2+2x或y=x2-2x.(2)当m=2时,y=x2-4x+3=(x-2)2-1,∴D(2,-1).当x=0时,y=3,∴C(0,3).(3)存在.接连接C,D交x轴于点P,则点P为所求.由C(0,3),D(2,-1)求得直线CD为y=-2x+3.当y=0时,x=32,∴P32,0.13.解:(1)将M(-2,-2)代入抛物线解析式,得-2=1a(-2-2)(-2+a),解得a=4.(2)①由(1),得y=14(x-2)(x+4),当y=0时,得0=14(x-2)(x+4),解得x1=2,x2=-4.∵点B在点C的左侧,∴B(-4,0),C(2,0).当x=0时,得y=-2,即E(0,-2).∴S△BCE=12×6×2=6.②由抛物线解析式y=14(x-2)(x+4),得对称轴为直线x=-1,依照C与B关于抛物线对称轴x=-1对称,连接BE,与对称轴交于点H,即为所求.设直线BE的解析式为y=kx+b,将B(-4,0)与E(0,-2)代入,得-4k+b=0,b=-2,解得k=-12,b=-2.∴直线BE的解析式为y=-12x-2.将x=-1代入,得y=12-2=-32,则点H-1,-32.14.(1)证明:∵二次函数y=mx2+nx+p图象的顶点横坐标是2,∴抛物线的对称轴为x=2,即-n2m=2,化简,得n+4m=0.(2)解:∵二次函数y=mx2+nx+p与x轴交于A(x1,0),B(x2,0),x10时,n=1,m=-14,∴抛物线解析式为:y=-14x2+x+p.联立抛物线y=-14x2+x+p与直线y=x+3解析式得到-14x2+x+p=x+3,化简,得x2-4(p-3)=0.∵二次函数图象与直线y=x+3仅有一个交点,∴一元二次方程根的判别式等于0,即Δ=02+16(p-3)=0,解得p=3.∴y=-14x2+x+3=-14(x-2)2+4.当x=2时,二次函数有最大值,最大值为4.15.解:(1)设此抛物线的解析式为y=a(x-3)2+4,此抛物线过点A(0,-5),∴-5=a(0-3)2+4,∴a=-1.∴抛物线的解析式为y=-(x-3)2+4,即y=-x2+6x-5.(2)抛物线的对称轴与⊙C相离.证明:令y=0,即-x2+6x-5=0,得x=1或x=5,∴B(1,0),C(5,0).设切点为E,连接CE,由题意,得,Rt△ABO∽Rt△BCE.∴ABBC=OBCE,即12+524=1CE,解得CE=426.∵以点C为圆心的圆与直线BD相切,⊙C的半径为r=d=426.又点C到抛物线对称轴的距离为5-3=2,而2>426.则现在抛物线的对称轴与⊙C相离.(3)假设存在满足条件的点P(xp,yp),∵A(0,-5),C(5,0),∴AC2=50,AP2=(xp-0)2+(yp+5)2=x2p+y2p+10yp+25,CP2=(xp-5)2+(yp-0)2=x2p+y 2p-10xp+25.①当∠A=90°时,在Rt△CAP中,由勾股定理,得AC2+AP2=CP2,∴50+x2p+y2p+10yp+25=x2p+y2p-10xp+25,整理,得xp+yp+5=0.∵点P(xp,yp)在抛物线y=-x2+6x-5上,∴yp=-x2p+6xp-5.∴xp+(-x2p+6xp-5)+5=0,解得xp=7或xp=0,∴yp=-12或yp=-5.∴点P为(7,-12)或(0,-5)(舍去).②当∠C=90°时,在Rt△ACP中,由勾股定理,得AC2+CP2=AP2,∴50+x2p+y2p-10xp+25=x2p+y2p+10yp+25,整理,得xp+yp-5=0.∵点P(xp,yp)在抛物线y=-x2+6x-5上,∴yp=-x2p+6xp-5,∴xp+(-x2p+6xp-5)-5=0,解得xp=2或xp=5,∴yp=3或yp=0.唐宋或更早之前,针对“经学”“律学”“算学”和“书学”各科目,其相应传授者称为“博士”,这与当今“博士”含义差不多相去甚远。
2023年中考数学一轮专题练习 ——一次函数1一、单选题(本大题共12小题)1. (四川省广安市2022年)在平面直角坐标系中,将函数y =3x +2的图象向下平移3个单位长度,所得的函数的解析式是( ) A .y =3x +5 B .y =3x ﹣5C .y =3x +1D .y =3x ﹣12. (广东省广州市2022年)点(3,5)-在正比例函数y kx =(0k ≠)的图象上,则k 的值为( ) A .-15B .15C .35 D .53-3. (安徽省2022年)在同一平面直角坐标系中,一次函数2y ax a =+与2y a x a =+的图像可能是( )A .B .C .D .4. (浙江省杭州市2022年)如图,在平面直角坐标系中,已知点P (0,2),点A (4,2).以点P 为旋转中心,把点A 按逆时针方向旋转60°,得点B .在1M ⎛⎫⎪ ⎪⎝⎭,()21M -,()31,4M ,4112,2M ⎛⎫⎪⎝⎭四个点中,直线PB 经过的点是( )A .1MB .2MC .3MD .4M5. (广西柳州市2022年)如图,直线y 1=x +3分别与x 轴、y 轴交于点A 和点C ,直线y 2=﹣x +3分别与x 轴、y 轴交于点B 和点C ,点P (m ,2)是△ABC 内部(包括边上)的一点,则m 的最大值与最小值之差为( )A .1B .2C .4D .66. (广西梧州市2022年)如图,在平面直角坐标系中,直线2y x b =+与直线36y x =-+相交于点A ,则关于x ,y 的二元一次方程组236y x by x =+⎧⎨=-+⎩的解是( )A .20x y =⎧⎨=⎩B .13x y =⎧⎨=⎩C .19x y =-⎧⎨=⎩D .31x y =⎧⎨=⎩7. (黑龙江省哈尔滨市2022年)一辆汽车油箱中剩余的油量(L)y 与已行驶的路程(km)x 的对应关系如图所示,如果这辆汽车每千米的耗油量相同,当油箱中剩余的油量为35L 时,那么该汽车已行驶的路程为( )A .150kmB .165kmC .125kmD .350km8. (山东省聊城市2022年)如图,一次函数4y x =+的图象与x 轴,y 轴分别交于点A ,B ,点()2,0C -是x 轴上一点,点E ,F 分别为直线4y x =+和y 轴上的两个动点,当CEF △周长最小时,点E ,F 的坐标分别为( )A .53,22E ⎛⎫- ⎪⎝⎭,()0,2FB .()2,2E -,()0,2FC .53,22E ⎛⎫- ⎪⎝⎭,20,3F ⎛⎫ ⎪⎝⎭D .()2,2E -,20,3F ⎛⎫⎪⎝⎭9. (山东省威海市2022年)如图,在方格纸中,点P ,Q ,M 的坐标分别记为(0,2),(3,0),(1,4).若MN ∥PQ ,则点N 的坐标可能是( )A .(2,3)B .(3,3)C .(4,2)D .(5,1)10. (陕西省2022年(A 卷))在同一平面直角坐标系中,直线4y x =-+与2y x m =+相交于点(3,)P n ,则关于x ,y 的方程组4020x y x y m +-=⎧⎨-+=⎩的解为( )A .15x y =-⎧⎨=⎩B .13x y =⎧⎨=⎩C .31x y =⎧⎨=⎩D .95x y =⎧⎨=-⎩11. (浙江省绍兴市2022年)已知112233()()()x y x y x y ,,,,,为直线23y x =-+上的三个点,且123x x x <<,则以下判断正确的是( ). A .若120x x >,则130y y > B .若130x x <,则120y y > C .若230x x >,则130y y >D .若230x x <,则120y y >12. (贵州省贵阳市2022年)在同一平面直角坐标系中,一次函数y ax b =+与()0y mx n a m =+<<的图象如图所示,小星根据图象得到如下结论:①在一次函数y mx n =+的图象中,y 的值随着x 值的增大而增大;②方程组y ax b y mx n -=⎧⎨-=⎩的解为32x y =-⎧⎨=⎩;③方程0mx n +=的解为2x =; ④当0x =时,1ax b +=-. 其中结论正确的个数是( ) A .1B .2C .3D .4二、填空题(本大题共9小题)13. (天津市2022年)若一次函数y x b =+(b 是常数)的图象经过第一、二、三象限,则b 的值可以是 (写出一个..即可). 14. (河南省2022年)请写出一个y 随x 增大而增大的一次函数表达式 . 15. (江苏省宿迁市2022年)甲、乙两位同学各给出某函数的一个特征,甲:“函数值y 随自变量x 增大而减小”;乙:“函数图像经过点(0,2)”,请你写出一个同时满足这两个特征的函数,其表达式是 .16. (江苏省泰州市2022年)一次函数2y ax =+的图像经过点(1,0).当y >0时,x 的取值范围是 .17. (上海市2022年)已知直线y =kx +b 过第一象限且函数值随着x 的增大而减小,请列举出来这样的一条直线: .18. (浙江省杭州市2022年)已知一次函数y =3x -1与y =kx (k 是常数,k ≠0)的图象的交点坐标是(1,2),则方程组31x y kx y -=⎧⎨-=⎩的解是 .19. (广西梧州市2022年)在平面直角坐标系中,请写出直线2y x =上的一个点的坐标 .20. (四川省德阳市2022年)如图,已知点()2,3A -,()2,1B ,直线y kx k =+经过点()1,0P -.试探究:直线与线段AB 有交点时k 的变化情况,猜想k 的取值范围是 .21. (辽宁省铁岭市、葫芦岛市2022年)如图,直线y =2x +4与x 轴交于点A ,与y 轴交于点B ,点D 为OB 的中点,▱OCDE 的顶点C 在x 轴上,顶点E 在直线AB 上,则▱OCDE 的面积为 .三、解答题(本大题共9小题)22. (天津市2022年)在“看图说故事”活动中,某学习小组结合图象设计了一个问题情境.已知学生公寓、阅览室、超市依次在同一条直线上,阅览室离学生公寓1.2km ,超市离学生公寓2km ,小琪从学生公寓出发,匀速步行了12min 到阅览室;在阅览室停留70min 后,匀速步行了10min 到超市;在超市停留20min 后,匀速骑行了8min 返回学生公寓.给出的图象反映了这个过程中小琪离学生公寓的距离km y 与离开学生公寓的时间min x 之间的对应关系. 请根据相关信息,解答下列问题:(1)填表:(2)填空:①阅览室到超市的距离为 km ;②小琪从超市返回学生公寓的速度为 km /min ;③当小琪离学生公寓的距离为1km 时,他离开学生公寓的时间为 min . (3)当092x ≤≤时,请直接写出y 关于x 的函数解析式.23. (四川省内江市2022年)为贯彻执行“德、智、体、美、劳”五育并举的教育方针,内江市某中学组织全体学生前往某劳动实践基地开展劳动实践活动.在此次活动中,若每位老师带队30名学生,则还剩7名学生没老师带;若每位老师带队31名学生,就有一位老师少带1名学生.现有甲、乙两型客车,它们的载客量和租金如表所示:学校计划此次劳动实践活动的租金总费用不超过3000元. (1)参加此次劳动实践活动的老师和学生各有多少人?(2)每位老师负责一辆车的组织工作,请问有哪几种租车方案? (3)学校租车总费用最少是多少元?24. (四川省南充市2022年)南充市被誉为中国绸都,本地某电商销售真丝衬衣和真丝围巾两种产品,它们的进价和售价如下表用15000元可购进真丝衬衣50件和真丝围巾25件.(利润=售价-进价)(1)求真丝衬衣进价a 的值.(2)若该电商计划购进真丝衬衣和真丝围巾两种商品共300件,据市场销售分析,真丝围巾进货件数不低于真丝衬衣件数的2倍.如何进货才能使本次销售获得的利润最大?最大利润是多少元?(3)按(2)中最大利润方案进货与销售,在实际销售过程中,当真丝围巾销量达到一半时,为促销并保证销售利润不低于原来最大利润的90%,衬衣售价不变,余下围巾降价销售,每件最多降价多少元?25. (四川省泸州市2022年)某经销商计划购进A ,B 两种农产品.已知购进A 种农产品2件,B 种农产品3件,共需690元;购进A 种农产品1件,B 种农产品4件,共需720元.(1)A ,B 两种农产品每件的价格分别是多少元?(2)该经销商计划用不超过5400元购进A ,B 两种农产品共40件,且A 种农产品的件数不超过B 种农产品件数的3倍.如果该经销商将购进的农产品按照A 种每件160元,B 种每件200元的价格全部售出,那么购进A ,B 两种农产品各多少件时获利最多?26. (四川省凉山州2022年)为全面贯彻党的教育方针,严格落实教育部对中小学生“五项管理”的相关要求和《关于进一步加强中小学生体质健康管理工作的通知》精神,保障学生每天在校1小时体育活动时间,某班计划采购A 、B 两种类型的羽毛球拍,已知购买3副A 型羽毛球拍和4副B 型羽毛球拍共需248元;购买5副A 型羽毛球拍和2副B 型羽毛球拍共需264元. (1)求A 、B 两种类型羽毛球拍的单价.(2)该班准备采购A 、B 两种类型的羽毛球拍共30副,且A 型羽毛球拍的数量不少于B 型羽毛球拍数量的2倍,请给出最省钱的购买方案,求出最少费用,并说明理由. 27. (四川省成都市2022年)随着“公园城市”建设的不断推进,成都绕城绿道化身成为这座城市的一个超大型“体育场”,绿道骑行成为市民的一种低碳生活新风尚.甲、乙两人相约同时从绿道某地出发同向骑行,甲骑行的速度是18km/h ,乙骑行的路程()km s 与骑行的时间()h t 之间的关系如图所示.(1)直接写出当00.2t ≤≤和0.2t >时,s 与t 之间的函数表达式; (2)何时乙骑行在甲的前面?28. (江苏省苏州市2022年)某水果店经销甲、乙两种水果,两次购进水果的情况如下表所示:(1)求甲、乙两种水果的进价;(2)销售完前两次购进的水果后,该水果店决定回馈顾客,开展促销活动.第三次购进甲、乙两种水果共200千克,且投入的资金不超过3360元.将其中的m千克甲种水果和3m千克乙种水果按进价销售,剩余的甲种水果以每千克17元、乙种水果以每千克30元的价格销售.若第三次购进的200千克水果全部售出后,获得的最大..利润不低于800元,求正整数m的最大值.29. (陕西省2022年(A卷))如图,是一个“函数求值机”的示意图,其中y是x的函数.下面表格中,是通过该“函数求值机”得到的几组x与y的对应值.根据以上信息,解答下列问题:(1)当输入的x值为1时,输出的y值为;(2)求k,b的值;(3)当输出的y值为0时,求输入的x值.30. (浙江省绍兴市2022年)一个深为6米的水池积存着少量水,现在打开水阀进水,下表记录了2小时内5个时刻的水位高度,其中x表示进水用时(单位:小时),y表示水位高度(单位:米).为了描述水池水位高度与进水用时的关系,现有以下三种函数模型供选择:y kx b =+(0k ≠),y =ax 2+bx +c (0a ≠),ky x=(0k ≠). (1)在平面直角坐标系中描出表中数据对应的点,再选出最符合实际的函数模型,求出相应的函数表达式,并画出这个函数的图像.(2)当水位高度达到5米时,求进水用时x .参考答案1. 【答案】D 【分析】根据“上加下减,左加右减”的平移规律即可求解. 【详解】解:将函数y =3x +2的图象向下平移3个单位长度,所得的函数的解析式是y =3x ﹣1, 故选:D 2. 【答案】D 【分析】直接把已知点代入,即可求出k 的值. 【详解】解:∵点(3,5)-在正比例函数(0)y kx k =≠的图象上, ∴53k -=, ∴53k =-,故选:D . 3. 【答案】D 【分析】分为0a >和0a <两种情况,利用一次函数图像的性质进行判断即可. 【详解】解:当1x =时,两个函数的函数值:2y a a =+,即两个图像都过点()21,a a +,故选项A 、C 不符合题意;当0a >时,20a >,一次函数2y ax a =+经过一、二、三象限,一次函数2y a x a =+经过一、二、三象限,都与y 轴正半轴有交点,故选项B 不符合题意;当0a <时,20a >,一次函数2y ax a =+经过一、二、四象限,与y 轴正半轴有交点,一次函数2y a x a =+经过一、三、四象限,与y 轴负半轴有交点,故选项D 符合题意.故选:D . 4. 【答案】B 【分析】根据含30°角的直角三角形的性质可得B (2,PB的解析式,依次将M 1,M 2,M 3,M 4四个点的一个坐标代入y +2中可解答. 【详解】解:∵点A (4,2),点P (0,2),∴PA ⊥y 轴,PA =4,由旋转得:∠APB =60°,AP =PB =4,如图,过点B 作BC ⊥y 轴于C ,∴∠BPC =30°,∴BC =2,PC∴B (2,2+2设直线PB 的解析式为:y =kx +b ,则222k b b ⎧+=+⎪⎨=⎪⎩∴2k b ⎧=⎪⎨=⎪⎩∴直线PB 的解析式为:y +2,当y =0+2=0,x∴点M 1(-0)不在直线PB 上,当x y =-3+2=1,∴M 2(-1)在直线PB 上,当x =1时,y ,∴M 3(1,4)不在直线PB 上,当x =2时,y ,∴M 4(2,112)不在直线PB 上. 故选:B .5. 【答案】B【分析】由于P 的纵坐标为2,故点P 在直线y = 2上,要求符合题意的m 值,则P 点为直线y = 2与题目中两直线的交点,此时m 存在最大值与最小值,故可求得.【详解】∵点P (m , 2)是△ABC 内部(包括边上)的点.∴点P 在直线y = 2上,如图所示,,当P 为直线y = 2与直线y 2的交点时,m 取最大值,当P 为直线y = 2与直线y 1的交点时,m 取最小值,∵y 2 =-x + 3中令y =2,则x = 1,∵y 1 =x + 3中令y =2,则x = -1,∴m 的最大值为1, m 的最小值为- 1.则m 的最大值与最小值之差为:1- (-1)= 2.故选:B .6. 【答案】B【分析】由图象交点坐标可得方程组的解.【详解】解:由图象可得直线2y x b =+与直线36y x =-+相交于点A (1,3),∴关于x ,y 的二元一次方程组236y x b y x =+⎧⎨=-+⎩的解是13x y =⎧⎨=⎩. 故选:B .7. 【答案】A【分析】根据题意所述,设函数解析式为y =kx +b ,将(0,50)、(500,0)代入即可得出函数关系式.【详解】解:设函数解析式为y =kx +b ,将(0,50)、(500,0)代入得505000b k b =⎧⎨+=⎩解得:50110b k =⎧⎪⎨=-⎪⎩∴函数解析式为15010y x =-+ 当y =35时,代入解析式得:x=150故选A8. 【答案】C【分析】作C (-2,0)关于y 轴的对称点G (2,0),作C (2,0)关于直线y =x +4的对称点D ,连接AD ,连接DG 交AB 于E ,交y 轴于F ,此时△CEF 周长最小,由y =x +4得A (-4,0),B (0,4),∠BAC =45°,根据C 、D 关于AB 对称,可得D (-4,2),直线DG 解析式为1233y x =-+,即可得20,3F ⎛⎫ ⎪⎝⎭,由41233y x y x =+⎧⎪⎨=-+⎪⎩,得52,23E ⎛⎫- ⎪⎝⎭. 【详解】解:作()2,0C -关于y 轴的对称点()2,0G ,作()2,0C 关于直线4y x =+的对称点D ,连接AD ,连接DG 交AB 于E ,交y 轴于F ,如图:∴DE CE =,CF GF =,∴CE CF EF DE GF EF DG ++=++=,此时CEF △周长最小,由4y x =+得()4,0A -,()0,4B ,∴OA OB =,AOB 是等腰直角三角形,∴45BAC ∠=︒,∵C 、D 关于AB 对称,∴45DAB BAC ∠=∠=︒,∴90DAC ∠=︒,∵()2,0C -,∴2AC OA OC AD =-==,∴()4,2D -,由()4,2D -,()2,0G 可得直线DG 解析式为1233y x =-+, 在1233y x =-+中,令0x =得23y =, ∴20,3F ⎛⎫ ⎪⎝⎭,由41233y x y x =+⎧⎪⎨=+⎪⎩,得5232x y ⎧=-⎪⎪⎨⎪=⎪⎩, ∴53,22E ⎛⎫- ⎪⎝⎭, ∴E 的坐标为53,22⎛⎫- ⎪⎝⎭,F 的坐标为20,3⎛⎫ ⎪⎝⎭, 故选:C .9. 【答案】C【分析】根据P ,Q 的坐标求得直线解析式,进而求得过点M 的解析式,即可求解.【详解】解:∵P ,Q 的坐标分别为(0,2),(3,0),设直线PQ 的解析式为y kx b =+, 则230b k b =⎧⎨+=⎩, 解得232k b ⎧=-⎪⎨⎪=⎩, ∴直线PQ 的解析式为223y x =-+,MN ∥PQ , 设MN 的解析式为23y x t =-+,()14M ,, 则243t =-+, 解得143t =, ∴MN 的解析式为214y x 33=-+,当2x =时,103y =, 当3x =时,83y =,当4x =时,2y =,当5x =时,43y =, 故选C10. 【答案】C【分析】先把点P 代入直线4y x =-+求出n ,再根据二元一次方程组与一次函数的关系求解即可;解:∵直线4y x =-+与直线2y x m =+交于点P (3,n ),∴34n =-+,∴1n =,∴()3,1P ,∴1=3×2+m ,∴m =-5,∴关于x ,y 的方程组40250x y x y +-=⎧⎨--=⎩的解31x y =⎧⎨=⎩; 故选:C .11. 【答案】D【分析】根据一次函数的性质和各个选项中的条件,可以判断是否正确,从而可以解答本题.【详解】解:∵直线y =−2x +3∴y 随x 增大而减小,当y =0时,x =1.5∵(x 1,y 1),(x 2,y 2),(x 3,y 3)为直线y =−2x +3上的三个点,且x 1<x 2<x 3∴若x 1x 2>0,则x 1,x 2同号,但不能确定y 1y 3的正负,故选项A 不符合题意; 若x 1x 3<0,则x 1,x 3异号,但不能确定y 1y 2的正负,故选项B 不符合题意;若x 2x 3>0,则x 2,x 3同号,但不能确定y 1y 3的正负,故选项C 不符合题意;若x 2x 3<0,则x 2,x 3异号,则x 1,x 2同时为负,故y 1,y 2同时为正,故y 1y 2>0,故选项D 符合题意.故选:D .12. 【答案】B【分析】由函数图象经过的象限可判断①,由两个一次函数的交点坐标可判断②,由一次函数与坐标轴的交点坐标可判断③④,从而可得答案.【详解】解:由一次函数y mx n =+的图象过一,二,四象限,y 的值随着x 值的增大而减小; 故①不符合题意;由图象可得方程组y ax b y mx n =+⎧⎨=+⎩的解为32x y =-⎧⎨=⎩,即方程组y ax b y mx n -=⎧⎨-=⎩的解为32x y =-⎧⎨=⎩; 故②符合题意;由一次函数y mx n =+的图象过()2,0, 则方程0mx n +=的解为2x =;故③符合题意; 由一次函数y ax b =+的图象过()0,2,- 则当0x =时,2ax b +=-.故④不符合题意; 综上:符合题意的有②③,故选B13. 【答案】1(答案不唯一,满足0b >即可)根据一次函数经过第一、二、三象限,可得0b >,进而即可求解.【详解】解:∵一次函数y x b =+(b 是常数)的图象经过第一、二、三象限,∴0b >故答案为:1答案不唯一,满足0b >即可)14. 【答案】y x =(答案不唯一)【分析】在此解析式中,当x 增大时,y 也随着增大,这样的一次函数表达式有很多,根据题意写一个即可.【详解】解:如y x =,y 随x 的增大而增大.故答案为:y x =(答案不唯一).15. 【答案】22y x =-+(答案不唯一)【分析】根据题意的要求,结合常见的函数,写出函数解析式即可,最好找有代表性的、特殊的函数,如一次函数、二次函数、反比例函数等.【详解】解:根据题意,甲:“函数值y 随自变量x 增大而减小”;可设函数为:2,y x b =-+又满足乙:“函数图像经过点(0,2)”,则函数关系式为22y x =-+,故答案为:22y x =-+(答案不唯一)16. 【答案】x <1【分析】先用待定系数法,求出a 的值.当y >0时,用含x 的代数式表示y ,解不等式即可.【详解】解:把(1,0)代入一次函数2y ax =+,得a +2=0,解得:a =-2,∴-22y x =+,当y >0时,即-220x +>,解得:x <1.故答案为:x <1.17. 【答案】2y x =-+(答案不唯一)【分析】直接根据一次函数的图象与系数的关系即可得出结论.【详解】∵直线y kx b =+过第一象限且函数值随着x 的增大而减小,∴0k <,0b ,∴符合条件的一条直线可以为:2y x =-+(答案不唯一).18. 【答案】12x y =⎧⎨=⎩ 【分析】根据一次函数的交点坐标即可确定以两个一次函数解析式组成的二元一次方程组的解.【详解】解:∵一次函数y =3x -1与y =kx (k 是常数,k ≠0)的图象的交点坐标是(1,2),∴联立y =3x -1与y =kx 的方程组31y x y kx =-⎧⎨=⎩的解为:12x y =⎧⎨=⎩, 即310x y kx y -=⎧⎨-=⎩的解为:12x y =⎧⎨=⎩, 故答案为:12x y =⎧⎨=⎩. 19. 【答案】(0,0)(答案不唯一)【分析】根据正比例函数一定经过原点进行求解即可.【详解】解:当x =0时,y =0,∴直线y =2x 上的一个点的坐标为(0,0),故答案为:(0,0)(答案不唯一).20. 【答案】13k ≥或3k ≤-##3k ≤-或13k ≥ 【分析】根据题意,画出图象,可得当x =2时,y ≥1,当x =-2时,y ≥3,即可求解.【详解】解:如图,观察图象得:当x =2时,y ≥1,即21k k +≥,解得:13k ≥, 当x =-2时,y ≥3,即23k k -+≥,解得:3k ≤-,∴k 的取值范围是13k ≥或3k ≤-. 故答案为:13k ≥或3k ≤- 21. 【答案】2【分析】根据一次函数解析式求出点B 的坐标,根据题意以及平行四边形的性质得出点E 的坐标,从而得出点C 的坐标,然后运用平行四边形面积计算公式计算即可.【详解】解:当x =0时,y =2×0+4=4,∴点B 的坐标为(0,4),OB =4.∵点D 为OB 的中点,∴OD =12OB =12×4=2.∵四边形OCDE 为平行四边形,点C 在x 轴上,∴DE ∥x 轴.当y =2时,2x +4=2,解得:x =﹣1,∴点E 的坐标为(﹣1,2),∴DE =1,∴OC =1,∴▱OCDE 的面积=OC •OD =1×2=2.故答案为:2.22. 【答案】(1)0.8,1.2,2(2)①0.8;②0.25;③10或116(3)当012x ≤≤时,0.1y x =;当1282x <≤时, 1.2y =;当8292x <≤时,0.08 5.36y x =-【分析】(1)根据题意和函数图象,可以将表格补充完整;(2)根据函数图象中的数据,可以将各个小题中的空补充完整;(3)根据(2)中的结果和函数图象中的数据,可以写出当092x ≤≤时,y 关于x 的函数解析式.(1)由图象可得,在前12分钟的速度为:1.2÷12=0.1km/min,故当x =8时,离学生公寓的距离为8×0.1=0.8;在1282x ≤≤时,离学生公寓的距离不变,都是1.2km故当x =50时,距离不变,都是1.2km ;在92112x ≤≤时,离学生公寓的距离不变,都是2km ,所以,当x =112时,离学生公寓的距离为2km故填表为:(2)①阅览室到超市的距离为2-1.2=0.8km ;②小琪从超市返回学生公寓的速度为:2÷(120-112)=0.25km /min ;③分两种情形:当小琪离开学生公寓,与学生公寓的距离为1km 时,他离开学生公寓的时间为: 1÷0.1=10min ;当小琪返回与学生公寓的距离为1km 时,他离开学生公寓的时间为:112+(2-1)÷{2÷(120-112)}=112+4=116min ;故答案为:①0.8;②0.25;③10或116(3)当012x ≤≤时,设直线解析式为y =kx ,把(12,1.2)代入得,12k =1.2,解得,k =0.1∴0.1y x =;当1282x <≤时, 1.2y =;当8292x <≤时,设直线解析式为y mx n =+,把(82,1.2),(92,2)代入得,82 1.2922m n m n +=⎧⎨+=⎩解得,0.085.36m n =⎧⎨=-⎩ ∴0.08 5.36y x =-,由上可得,当092x ≤≤时,y 关于x 的函数解析式为()0.10121.2(1282)0.08 5.36(8292)y x x y x y x x ⎧=≤≤⎪=<≤⎨⎪=-<≤⎩.23. 【答案】(1)参加此次劳动实践活动的老师有8人,参加此次劳动实践活动的学生有247人(2)一共有3种租车方案:租甲型客车3辆,租乙型客车5辆或租甲型客车4辆,租乙型客车4辆或租甲型客车5辆,租乙型客车3辆(3)学校租车总费用最少是2800元.【分析】(1)设参加此次劳动实践活动的老师有x人,根据参加实践活动的学生人数的两种不同表示方法作为等量关系列方程;(2)首页判断车辆总数为8,设租甲型客车m辆,列出不等式组求出整数解即可;(3)列出函数解析式w=80m+2560,结合自变量取值范围求出最少总费用.(1)设参加此次劳动实践活动的老师有x人,参加此次劳动实践活动的学生有(30x+7)人,根据题意得:30x+7=31x﹣1,解得x=8,∴30x+7=30×8+7=247,答:参加此次劳动实践活动的老师有8人,参加此次劳动实践活动的学生有247人;(2)师生总数为247+8=255(人),∵每位老师负责一辆车的组织工作,∴一共租8辆车,设租甲型客车m辆,则租乙型客车(8﹣m)辆,根据题意得:3530(8)255 400320(8)3000m mm m+-≥⎧⎨+-≤⎩,解得3≤m≤5.5,∵m为整数,∴m可取3、4、5,∴一共有3种租车方案:租甲型客车3辆,租乙型客车5辆或租甲型客车4辆,租乙型客车4辆或租甲型客车5辆,租乙型客车3辆;(3)设租甲型客车m辆,则租乙型客车(8﹣m)辆,由(2)知:3≤m≤5.5,设学校租车总费用是w元,w=400m+320(8﹣m)=80m+2560,∵80>0,∴w随m的增大而增大,∴m=3时,w取最小值,最小值为80×3+2560=2800(元),答:学校租车总费用最少是2800元.24. 【答案】(1)a=260;(2)真丝衬衣件数进货100件,真丝围巾进货200件,最大利润为8000元;(3)每件最多降价28元.【分析】(1)根据题意列出一元一次方程求解即可;(2)设真丝衬衣件数进货x件,则真丝围巾进货(300-x)件,根据题意列出不等式得出x≤100;设总利润为y,由题意得出函数关系式,然后利用一次函数的性质求解即可得出;(3)设降价z 元,根据题意列出不等式求解即可.(1)解:根据表格数据可得:50a +25×80=15000,解得:a =260;(2)解:设真丝衬衣件数进货x 件,则真丝围巾进货(300-x )件,根据题意可得:300-x ≥2x ,解得:x ≤100;设总利润为y ,根据题意可得y =(300-260)x +(100-80)(300-x )=20x +6000,∵20>0,∴y 随x 的增大而增大,当x =100时,y 最大为:20×100+6000=8000元,此时方案为:真丝衬衣件数进货100件,真丝围巾进货200件,最大利润为8000元;(3)设降价z 元,根据题意可得100×(100-80)+100×(300-260)+100×(300-260-z )≥8000×90%, 解得:z ≤28,∴每件最多降价28元.25. 【答案】(1)A 每件进价120元,B 每件进价150元;(2)A 农产品进20件,B 农产品进20件,最大利润是1800元.【分析】(1)根据“购进A 种农产品2件,B 种农产品3件,共需690元;购进A 种农产品1件,B 种农产品4件,共需720元”可以列出相应的方程组,从而可以求得A 、B 两种农产品每件的价格分别是多少元;(2)根据题意可以得到利润与购买甲种商品的函数关系式,从而可以解答本题.(1)设A 每件进价x 元,B 每件进价y 元,由题意得236904720x y x y +=⎧⎨+=⎩, 解得:120150x y =⎧⎨=⎩, 答:A 每件进价120元,B 每件进价150元;(2)设A 农产品进a 件,B 农产品(40-a )件,由题意得,120150(40)54003(40)a a a a +-≤⎧⎨≤-⎩解得2030a ≤≤,设利润为y 元,则(160120)?(200150)(40)102000y a a a =-+--=-+, ∵y 随a 的增大而减小,∴当a =20时,y 最大, 最大值y =2000-10×200=1800,答:A 农产品进20件,B 农产品进20件,最大利润是1800元.26. 【答案】(1)A 型羽毛球拍的单价为40元,B 型羽毛球拍的单价为32元(2)最省钱的购买方案是采购20副A 型羽毛球拍,10副B 型羽毛球拍;最少费用为1120元,理由见解析【分析】(1)设A 型羽毛球拍的单价为x 元,B 型羽毛球拍的单价为y 元,根据“购买3副A 型羽毛球拍和4副B 型羽毛球拍共需248元;购买5副A 型羽毛球拍和2副B 型羽毛球拍共需264元”建立方程组,解方程组即可得;(2)设该班采购A 型羽毛球拍m 副,购买的费用为W 元,则采购B 型羽毛球拍(30)m -副,结合(1)的结论可得8960W m =+,再根据“A 型羽毛球拍的数量不少于B 型羽毛球拍数量的2倍”求出m 的取值范围,然后利用一次函数的性质求解即可得.(1)解:设A 型羽毛球拍的单价为x 元,B 型羽毛球拍的单价为y 元,由题意得:3424852264x y x y +=⎧⎨+=⎩, 解得4032x y =⎧⎨=⎩, 答:A 型羽毛球拍的单价为40元,B 型羽毛球拍的单价为32元.(2)解:设该班采购A 型羽毛球拍m 副,购买的费用为W 元,则采购B 型羽毛球拍(30)m -副,由(1)的结论得:4032(30)8960W m m m =+-=+, A 型羽毛球拍的数量不少于B 型羽毛球拍数量的2倍,2(30)300m m m ≥-⎧∴⎨->⎩, 解得2030m ≤<,在2030m ≤<内,W 随m 的增大而增大,则当20m =时,W 取得最小值,最小值为8209601120⨯+=,此时30302010m -=-=,答:最省钱的购买方案是采购20副A 型羽毛球拍,10副B 型羽毛球拍;最少费用为1120元.27. 【答案】(1)当00.2t ≤≤时,15s t =;当0.2t >时,201s t =-(2)0.5小时后【分析】(1)根据函数图象,待定系数法求解析式即可求解;(2)根据乙的路程大于甲的路程即可求解.(1)由函数图像可知,设00.2t ≤≤时,s kt =,将()0.2,3代入,得3150.2s k t ===,则15s t =,当0.2t >时,设s at b =+,将()0.2,3,()0.5,9代入得0.230.59t b t b +=⎧⎨+=⎩解得201t b =⎧⎨=-⎩∴201s t =-(2)由(1)可知00.2t ≤≤时,乙骑行的速度为15km /h ,而甲的速度为18km/h ,则甲在乙前面,当0.2t >时,乙骑行的速度为20km /h ,甲的速度为18km/h ,设x 小时后,乙骑行在甲的前面则18201x x <-解得0.5x >答:0.5小时后乙骑行在甲的前面28. 【答案】(1)甲种水果的进价为每千克12元,乙种水果的进价为每千克20元(2)正整数m 的最大值为22【分析】(1)设甲种水果的进价为每千克a 元,乙种水果的进价为每千克b 元,根据总费用列方程组即可;(2)设水果店第三次购进x 千克甲种水果,根据题意先求出x 的取值范围,再表示出总利润w 与x 的关系式,根据一次函数的性质判断即可.(1)设甲种水果的进价为每千克a 元,乙种水果的进价为每千克b 元.根据题意,得60401520,30501360.a b a b +=⎧⎨+=⎩解方程组,得12,20.a b =⎧⎨=⎩答:甲种水果的进价为每千克12元,乙种水果的进价为每千克20元.(2)设水果店第三次购进x 千克甲种水果,则购进()200x -千克乙种水果,根据题意,得()12202003360x x +-≤.解这个不等式,得80x ≥.设获得的利润为w 元,根据题意,得()()()()1712302020035352000w x m x m x m =-⨯-+-⨯--=--+.∵50-<,∴w 随x 的增大而减小.∴当80x =时,w 的最大值为351600m -+.根据题意,得351600800m -+≥. 解这个不等式,得1607m ≤. ∴正整数m 的最大值为22.29. 【答案】(1)8(2)26k b =⎧⎨=⎩(3)3-【分析】对于(1),将x =1代入y =8x ,求出答案即可;对于(2),将(-2,2),(0,6)代入y=kx+b 得二元一次方程组,解方程组得出答案;对于(3),将y=0分别代入两个关系式,再求解判断即可.(1)当x =1时,y =8×1=8;故答案为:8;(2)将(-2,2),(0,6)代入y kx b =+,得226k b b -+=⎧⎨=⎩, 解得26k b =⎧⎨=⎩; (3)令0y =,由8y x =,得08x =,∴01x =<.(舍去)由26y x =+,得026x =+,∴31x =-<.∴输出的y 值为0时,输入的x 值为3-.30. 【答案】(1)y =x +1(0≤x ≤5),图见解析(2)4小时【分析】(1)观察表格数据,y 的增长量是固定的,故符合一次函数模型,建立模型待定系数法求解析式,画出函数图像即可求解;(2)根据5y =,代入解析式求得x 的值即可求解.(1)(1)选择y =kx +b ,将(0,1),(1,2)代入,得12bk b=⎧⎨+=⎩,,解得11.kb=⎧⎨=⎩,∴y=x+1(0≤x≤5).(2)当y=5时,x+1=5,∴x=4.答:当水位高度达到5米时,进水用时x为4小时.。
2024年中考九年级数学一轮复习练习题:一次函数一、选择题1.直线y=x+2经过的点是()A.(2,0)B.(0,−2)C.(−2,0)D.(2,2)2.若正比例函数y=kx(k≠0)的图象过点(1,−2),则k的值是()A.12B.2C.−12D.-23.若一次函数y=(m−2)x−2的函数值y随x的增大而增大,则m的取值范围是()A.m<0B.m>0C.m<2D.m>2 4.在平面直角坐标系xOy中,若点A(3,y1),B(4,y2)在一次函数y=2x+1(k为任意实数),则()A.y1≤y2B.y1≥y2C.y1<y2D.y1>y25.已知函数y=2x的图象是一条直线,下列说法正确的是()A.直线过原点B.y随x的增大而减小C.直线经过点(1,3)D.直线经过第二、四象限6.已知一次函数y=ax+5和y=bx+3,假设a>0且b<0,则这两个一次函数的图象的交点所在象限是()A.第一象限B.第二象限C.第三象限D.第四象限7.如图,直线l1:y=ax+b与直线l2:y=mx+n交于点P(3,−2),则不等式ax+b>mx+n的解集是()A.x>−2B.x<−2C.x>3D.x<38.如图,正方形ABCD的边长为4,点A(0,2)和点D在y轴正半轴上,点B、C在第一象限,一次函数y=kx+4的图象交AD、CD分别于E、F.若△DEF与△BCF的面积比为1:2,则k的值为()A.4B.2C.1D.12二、填空题9.已知一次函数y=(m−3)x|m|−2,则y随x的增大而.10.将直线y=−2x+1向上平移2个单位长度,平移后直线的解析式为.11.若点(m,m−1)在一次函数y=2x+1的图象上,则m=.12.直线y=mx+n(m>0)经过点(−1,1),则关于x的不等式(m+1)x+n>0的解集为.13.如图,直线l1:y=x+3与直线l2:y=ax+b相交于点A(1,4),则关于x,y的方程组y=x+3y=ax+b 的解为.三、解答题14.已知一次函数y=kx+b(k,b是常数,且k≠0)的图象过A(2,3)与B(−1,−3)两点.(1)求一次函数的解析式;(2)若点(a,3)在该一次函数图象上,求a的值.15.如图,在平面直角坐标系中,A(1,0),B(5,0),矩形ABCD的边BC=2,直线y=kx+b(k≠0)经过B,D两点.(1)求直线y=kx+b的解析式:(2)若直线y=kx+b与y轴交于点P,连接CP,求△CDP的面积.16.参观红色基地,研学红色文化.根据校团委的部署,八年级780名师生准备租车到革命历史展览馆参观学习.车站有大小两种车型,每辆大车可坐48人,每辆小车可坐36人,已知租用大车1辆和小车2辆共需1100元,租用大车2辆和小车1辆共需1300元.(1)租大车、小车两种客车每辆各多少元?(2)若学校计划租20辆车,其中大车辆有a辆,租车费用w元,能保障所有的八年级师生到革命历史展览馆参观学习,租车费用不超过7500元,有哪几种租车方案?租车费用最少为多少?17.如图,折线ABC是在某市乘出租车所付车费y(元)与行车里程x(km)之间的函数关系图象.(1)根据图象,求当x≥3时,该图象的函数关系式;(2)某人乘坐23km应付多少钱?(3)若某人付车费30.8元,出租车行驶了多少千米?18.某公司计划购买A,B两种设备共100台,要求B种设备数量不低于A种的14,且不高于A种的13.已知A,B两种设备的单价分别是1000元/台,1500元/台,设购买A种设备x台.(1)求该公司计划购买这两种设备所需费用y(元)与x的函数关系式;(2)求该公司按计划购买这两种设备有多少种方案?(3)由于市场行情波动,实际购买时,A种设备单价上调了2a(a>0)元/台,B种设备单价下调了3a元/121500元,请直接写出a的值.参考答案1.C2.D3.D4.C5.A6.B7.D8.C9.减小10.y=−2x+311.−212.x>−113.x=1y=414.(1)解:一次函数y=kx+b(k,b是常数,且k≠0)的图象过A(2,3)与B(−1,−3)两点,∴2k+b=3−k+b=−3,解得:k=2b=−1,∴一次函数的解析式为:y=2x−1;(2)解:点(a,3)在该一次函数图象上,∴2a−1=3,解得:a=2,∴当a=2,点(a,3)在该一次函数图象上.15.(1)解:∵A(1,0),B(5,0),矩形ABCD的边BC=2,∴AD=BC=2,∴D(1,2),将点B、D代入解析式得:5k+b=0k+b=2,解得:k=−12b=52,∴y=−12x+52;(2)解:如图,y=−12x+52,当x=0时,y=52,∴P(0,52);∵A(1,0),B(5,0),∴AB=CD=5−1=4,△CDP的边CD上的高的长为OP−AD=52−2=12,∴SΔCDP=12×4×12=1.16.(1)解:设租用大车每辆x元,租用小车每辆y元,根据题意可列方程组为:x+2y=11002x+y=1300,解得:x=500y=300,答:租用大客车每辆500元,租用小客车每辆300元;(2)解:根据题意可得:租用乙种客车(20−a)辆,且48a+36(20−a)≥780500a+300(20−a)≤7500,解得:5≤a≤7.5,根据题意可得:w=500a+300(20−a)=200a+6000,∵200>0,∴w随a的增大而增大,∵5≤a≤7.5,a取整数,∴a=5,6,7,∴当a=5时,w有最小值,此时最小值为7000元.答:当大车租用5辆,小车租15辆时,能保障所有师生送到展览馆且租车费用最少,最少费用为7000元.17.(1)解:设当x≥3时,y与x之间的函数关系式为y=kx+b,将点B(3,7)、C(8,14)代入y=kx+b,得3k+b=78k+b=14,解得:k=75b=145,∴当x≥3时该图象的函数关系式为y=75x+145;(2)解:当x=23时,y=75×23+145=35,答:某人乘坐23km,应付35元钱;(3)解:当y=75x+145=30.8,解得:x=20,答:若某人付车费30.8元,出租车行驶了20千米.18.(1)解:由题意得:y=1000x+1500(100−x)=−500x+150000,∴y与x的函数关系式为:y=−500x+150000(2)解:根据题意得,100−x≥14x100−x≤13x,解得:75≤x≤80,又∵x取整数,∴x可取75,76,77,78,79,80这6个整数,∴该公司按计划购买两种设备有6种方案(3)解:a=120。
中考数学第一轮复习专题练习(有答案)同学们都在忙碌地复习自己的功课,为了帮助大家能够在考前对自己多学的知识点有所巩固,下文整理了这篇中考数学第一轮复习专题练习,希望可以帮助到大家!A级基础题1.下列各条件中,不能作出唯一三角形的条件是()A.已知两边和夹角B.已知两边和其中一条边所对的角C.已知两角和夹边D.已知两角和其中一角的对边2.如图6-3-10,在△ABC中,∠C=90°,∠B=30°,以A为圆心,任意长为半径画弧分别交AB,AC于点M和N,再分别以M,N为圆心,大于12MN的长为半径画弧,两弧交于点P,连接AP并延长交BC于点D,则下列说法:①AD是∠BAC 的平分线;②∠ADC=60°; ③点D在AB的中垂线上; ④S△DAC∶S△ABC=1∶3.其中正确的个数是()A.1个B.2个C.3个D.4个3.已知:线段AB,BC,∠ABC=90°.求作:矩形ABCD.以下是甲、乙两同学的作业:甲:①以点C为圆心,AB的长为半径画弧;②以点A为圆心,BC的长为半径画弧;③两弧在BC上方交于点D,连接AD,CD,四边形ABCD即为所求(如图6-3-11).乙:①连接AC,作线段AC的垂直平分线,交AC于点M;②连接BM并延长,在延长线上取一点D,使MD=MB,连接AD,CD,四边形ABCD 即为所求(如图6-3-12).对于两人的作业,下列说法正确的是()A.两人都对B.两人都不对C.甲对,乙不对D.甲不对,乙对4.如图6-1-13,在△ABC中,∠C=90°,∠CAB=60°.按以下步骤作图:①分别以A,B为圆心,以大于12AB的长为半径作弧,两弧相交于点P和Q.②作直线PQ交AB于点D,交BC于点E,连接AE.若CE=4,则AE=________.5.两个城镇A,B与两条公路l1,l2的位置如图6-3-14.电信部门需在C处修建一座信号发射塔,要求发射塔到两个城镇A,B的距离必须相等,到两条公路l1,l2的距离也必须相等,那么点C应选在何处?请在下图中,用尺规作图找出所有符合条件的点C(不写已知、求作、作法,只保留作图痕迹).6.某市计划在新竣工的矩形广场的内部修建一个音乐喷泉,要求音乐喷泉M到广场的两个入口A,B的距离相等,且到广场管理处C的距离等于A和B之间距离的一半,A,B,C的位置如图6-3-15,请在原图上利用尺规作图作出音乐喷泉M 的位置(要求:不写已知、求作、作法和结论,保留作图痕迹,必须用铅笔作图).参考答案:1.B2.D3.A4.85.解:作线段AB的垂直平分线,作两条公路夹角的平分线,两线分别交于点C1,C2.如图48,所以点C1、C2就是符合条件的点.6.解:如图49,点M为所求.B级中等题7.已知△ABC,且∠ACB=90°.(1)请用直尺和圆规按要求作图(保留作图痕迹,不写作法和证明).①以点A为圆心,BC边的长为半径作⊙A;②以点B为顶点,在AB边的下方作∠ABD=∠BAC.(2)请判断直线BD与⊙A的位置关系(需证明).8.(2019年江苏宿迁)如图6-3-17,在平行四边形ABCD中,AD>AB.(1)作出∠ABC的平分线(尺规作图,保留作图痕迹,不写作法);(2)若(1)中所作的角平分线交AD于点E,AF⊥BE,垂足为点O,交BC于点F,连接EF. w求证:四边形ABFE为菱形.C级拔尖题9.(2019年山东德州)(1)如图6-3-18(1),已知△ABC,以AB,AC为边向△ABC 外作等边三角形ABD和等边三角形ACE.连接BE,CD.请你完成图形,并证明:BE=CD(尺规作图,不写做法,保留作图痕迹);(2)如图6-3-18(2),已知△ABC,以AB,AC为边向外作正方形ABFD和正方形ACGE.连接BE,CD.BE与CD有什么数量关系?简单说明理由;(3)运用(1)(2)解答中积累的经验和知识,完成下题:如图6-3-18(3),要测量池塘两岸相对的两点B,E的距离,已经测得∠ABC=45°,∠CAE=90°,AB=BC=100米,AC=AE,求BE的长.(1) (2) (3)参考答案7.解:(1)如图50.(2)直线BD与⊙A相切.证明如下:∵∠ABD=∠B AC,∴AC∥BD.∵∠ACB=90°,⊙A的半径等于BC,∴点A到直线BD的距离等于BC.∴直线BD与⊙A相切.8.解:(1)如图51.(2)∵BE平分∠ABC,∴∠ABO=∠FBO.∵AF⊥BE于点O,∴∠AOB=∠FOB=∠AOE=90°.又∵BO=BO,∴△AOB≌△FOB.∴AO=FO,AB=FB.∵四边形ABCD是平行四边形,∴AD∥BC,∴∠AEO=∠FBO.∴△AOE≌△FOB.∴AE=BF.又∵AE∥BF,∴四边形ABFE是平行四边形.又∵AB=FB,∴平行四边形ABFE是菱形.11.(1)证明:如图52.∵△ABD和△ACE都是等边三角形,∴AD=AB,AC=AE,∠BAD=∠CAE=60°.∴∠BAD+∠BAC=∠CAE+∠BAC.即∠CAD=∠EAB.∴△CAD≌△EAB.∴BE=CD.图52 图53(2)解:BE=CD.理由:∵四边形ABFD和ACGE均为正方形,∴AD=AB,AC=AE,∠BAD=∠CAE=90°.∴∠CAD=∠EAB.∴△CAD≌△EAB.∴BE=CD.(3)解:如图53,过A作等腰直角三角形ABD,∠BAD=90°,则AD=AB=100,∠ABD=45°.∴BD=100 2.连接CD,则由(2)可知BE=CD.∵∠ABC=45°,在Rt△DBC中,BC=100,BD=100 2.∴CD=1002+?100 2?2=100 3.我国古代的读书人,从上学之日起,就日诵不辍,一般在几年内就能识记几千个汉字,熟记几百篇文章,写出的诗文也是字斟句酌,琅琅上口,成为满腹经纶的文人。
2015年中考数学一轮复习资料毛坦厂中学叶集分校皖西当代中学二零一四年十月坚持到底,三载拼搏终有回报决胜中考,父母期盼定成现实序言第一轮复习的目的第一轮复习的目的是要“过三关”:(1)过记忆关。
必须做到记牢记准所有的公式、定理等,没有准确无误的记忆,就不可能有好的结果。
要求学生记牢认准所有的公式、定理,特别是平方差公式、完全平方和、差公式,没有准确无误的记忆。
要求学生用课前5 ---15分钟的时间来完成这个要求,有些内容重点串讲。
(2)过基本方法关。
如,待定系数法求函数解析式,过基本计算关:如方程、不等式、代数式的化简,要求人人能熟练的准确的进行运算,这部分是决不能丢。
(3)过基本技能关。
如,给你一个题,你找到了它的解题方法,也就是知道了用什么办法,这时就说具备了解这个题的技能。
做到对每道题要知道它的考点。
基本宗旨:知识系统化,练习专题化。
2、具体要求与做法:(1)认真阅读考纲,搞清课本上每一个概念,公式、法则、性质、公理、定理。
重视教材的基础作用和示范作用。
抓基本概念的准确性;抓公式、定理的熟练和初步应用;抓基本技能的正用、逆用、变用、连用、巧用;能准确理解教材中的概念;能独立证明书中的定理;能熟练求解书中的例题;能说出书中各单元的作业类型;能掌握书中的基本数学思想、方法,做到基础知识系统化,基本方法类型化,解题步骤规范化(2)抓住基本题型,学会对基本题目进行演变,如适当改变题目条件,改变题目问法等。
(3)初中数学教材中出现的数学方法有:换元法、配方法、图象法、解析法、待定系数法、分析法、综合法、分析综合法、反证法、作图法。
这些方法要按要求灵活运用。
因此复习中针对要求,分层训练,避免不必要的丢分,从而形成明晰的知识网络和稳定的知识框架。
研读课标(特别注意课标中可操作性语言,对“了解”“理解”“掌握”“灵活应用”等做出具体界定),以课本为依据,不扩展范围和提高要求.据课本内容将有关的概念、公式、法则、定理及基本运算、基本推理,基本作图,基本技能和方法等形成合理的知识网络结构,通过网络结构,体现知识发生、发展的过程,体现知识的联系,体现知识的应用功能,做到遗漏的知识要补充;模糊的概念要明晰;零散的内容要整合;初浅的理解要深化,要关注基础知识和基本技能的训练,关注“双基”所蕴涵的数学本质及其在具体情况中的合理应用.(4)防范错误。
把学生所有可能的错误收集起来,制定一个错误的预防表,再将这些错误的问题设计在练习与模拟题中,让学生在解题实践获得教训和反思。
(5)研读近两年我省中考试卷及全国各地中考试卷,熟悉中考命题的趋向,也就是要研究:中考必然要考什么?可能会考什么?不考什么?包括哪些基本考点?哪些是重点?应该坚守的基本东西是什么?(6)在练习的操作上可以分层次布置,基础的练习要全部过关,有难度的题目可选择性的布置,后进生只做一些简单的、基础性的、核心的练习,好生可要求全部做。
数学:提高中考数学解题成绩的五种技巧1、配方法:所谓配方,就是把一个解析式利用恒等变形的方法,把其中的某些项配成一个或几个多项式正整数次幂的和形式。
通过配方解决数学问题的方法叫配方法。
其中,用的最多的是配成完全平方式。
配方法是数学中一种重要的恒等变形的方法,它的应用非常广泛,在因式分解、化简根式、解方程、证明等式和不等式、求函数的极值和解析式等方面都经常用到它。
2、因式分解法:因式分解,就是把一个多项式化成几个整式乘积的形式。
因式分解是恒等变形的基础,它作为数学的一个有力工具、一种数学方法在代数、几何、三角函数等的解题中起着重要的作用。
因式分解的方法有许多,除中学课本上介绍的提取公因式法、公式法、分组分解法、十字相乘法等外,还有如利用拆项添项、求根分解、换元、待定系数等等。
3、换元法:换元法是数学中一个非常重要而且应用十分广泛的解题方法。
我们通常把未知数或变数称为元,所谓换元法,就是在一个比较复杂的数学式子中,用新的变元去代替原式的一个部分或改造原来的式子,使它简化,使问题易于解决。
4、判别式法与韦达定理:一元二次方程ax2+bx+c=0(a、b、c∈R,a≠0)根的判别式△=b2-4ac,不仅用来判定根的性质,而且作为一种解题方法,在代数式变形,解方程(组),解不等式,研究函数乃至解析几何、三角函数运算中都有非常广泛的应用。
韦达定理除了已知一元二次方程的一个根,求另一根;已知两个数的和与积,求这两个数等简单应用外,还可以求根的对称函数,计论二次方程根的符号,解对称方程组,以及解一些有关二次曲线的问题等,都有非常广泛的应用。
5、待定系数法:在解数学问题时,若先判断所求的结果具有某种确定的形式,其中含有某些待定的系数,而后根据题设条件列出关于待定系数的等式,最后解出这些待定系数的值或找到这些待定系数间的某种关系,从而解答数学问题,这种解题方法称为待定系数法。
它是中学数学中常用的重要方法之一。
目录实数专题训练...........................................................实数专题训练答案.................................................. 代数式、整式及因式分解专题训练..........................................代数式、整式及因式分解专题训练答案................................ 分式和二次根式专题训练 .................................................分式和二次根式专题训练答案........................................ 一次方程及方程组专题训练................................................一次方程及方程组专题训练答案...................................... 一元二次方程及分式方程专题训练..........................................一元二次方程及分式方程专题训练答案................................ 一元一次不等式及不等式组专题训练 ........................................一元一次不等式及不等式组专题训练答案 (33)一次函数及反比例函数专题训练............................................一次函数及反比例函数专题训练答案.................................. 二次函数及其应用专题训练................................................二次函数及其应用专题训练答案...................................... 立体图形的认识及角、相交线与平行线专题训练 ...............................立体图形的认识及角、相交线与平行线专题训练答案.................... 三角形专题训练.........................................................三角形专题训练答案................................................多边形及四边形专题训练 .................................................多边形及四边形专题训练答案........................................ 圆及尺规作图专题训练 ...................................................圆及尺规作图专题训练答案.......................................... 轴对称专题训练.........................................................轴对称专题训练答案................................................ 平移与旋转专题训练.....................................................平移与旋转专题训练答案............................................ 相似图形专题训练.......................................................相似图形专题训练答案.............................................. 图形与坐标专题训练.....................................................图形与坐标专题训练答案............................................ 图形与证明专题训练.....................................................图形与证明专题训练答案............................................ 概率专题训练...........................................................概率专题训练答案.................................................. 统计专题训练...........................................................统计专题训练答案..................................................实数专题训练一、填空题:(每题 3 分,共 36 分)1、-2 的倒数是____。
2、4 的平方根是____。
3、-27 的立方根是____。
4、3-2 的绝对值是____。
5、2004年我国外汇储备3275.34亿美元,用科学记数法表示为____亿美元。
6、比较大小:-12____-13。
7、近似数0.020精确到____位,它有____个有效数字。
8、若 n 为自然数,那么(-1)2n+(-1)2n+1=____。
9、若实数 a、b 满足|a-2|+( b+12)2=0,则 ab=____。