数学模型方法分析简述
- 格式:doc
- 大小:181.74 KB
- 文档页数:5
数学建模方法与分析
数学建模是利用数学方法解决实际问题的过程。
数学建模的一般步骤包括问题定义、建立数学模型、模型求解和结果分析等阶段。
数学建模方法可以分为多种,常见的方法包括:
1. 数据分析:通过统计分析和数据挖掘等方法,对问题中的数据进行处理和分析,找出其中的规律和趋势。
2. 最优化方法:根据问题的要求,建立相应的数学规划模型,通过求解最优化问题,得到最优解。
3. 随机模型:将问题建立为随机过程或概率模型,通过概率统计的方法进行分析和求解。
4. 系统动力学模型:将问题建立为动态系统模型,通过系统动力学的方法分析系统的行为和演化规律。
5. 图论和网络分析:将问题建立为图模型或网络模型,通过图论和网络分析的方法研究其结构和性质。
6. 分数阶模型:将问题建立为分数阶微分方程或分数阶差分方程,通过分数阶
微积分的方法进行分析和求解。
数学建模的分析阶段是对模型求解结果进行解释和评估。
分析结果可以包括对模型的可行性和有效性进行验证,对模型的优化方向进行探讨,以及对问题的解释和解决方案的提出等。
总的来说,数学建模方法与分析是数学建模过程中重要的环节,通过合理选择建模方法和深入分析模型结果,可以得到对实际问题有价值的解决方案。
线性离散系统数学模型和分析方法目录一、内容简述 (3)二、线性离散系统的数学模型 (3)2.1 离散系统的概念 (5)2.2 离散系统的描述方法 (6)2.2.1 差分方程 (7)2.2.2 马尔可夫过程 (8)2.2.3 状态空间表示 (10)2.3 线性离散系统的特性 (11)2.3.1 稳定性分析 (12)2.3.2 脉冲响应与收敛性 (13)2.3.3 系统性能评估 (14)三、分析方法 (16)3.1 拉普拉斯变换法 (17)3.1.1 基本概念 (19)3.1.2 应用分析 (20)3.1.3 收敛性与应用局限 (21)3.2 状态空间方法 (23)3.2.1 基本理论 (24)3.2.2 控制器设计 (25)3.2.3 参数估计 (26)3.3 Z变换法 (27)3.3.1 基本原理 (28)3.3.2 系统分析 (30)3.3.3 系统的性能评估 (31)3.4 时域分析方法 (33)3.4.1 序贯逼近法 (34)3.4.2 数值仿真 (34)3.4.3 基于数字模型的算法 (36)四、应用实例 (37)4.1 控制系统设计 (39)4.1.1 系统建模 (40)4.1.2 控制器设计与仿真 (42)4.2 信号处理 (43)4.2.1 离散信号处理 (45)4.2.2 滤波器设计 (46)4.3 通信系统 (47)4.3.1 调制与解调 (49)4.3.2 语音编码与加密 (51)五、结论与展望 (52)5.1 研究成果总结 (53)5.2 未来研究方向 (54)5.3 实际应用前景 (55)一、内容简述本文档旨在全面介绍线性离散系统数学模型的构建及其分析方法。
线性离散系统在现代科技、工程和经济学等领域具有广泛的应用,因此对其数学模型的理解和分析显得尤为重要。
我们将从线性离散系统的基本概念出发,详细阐述线性离散系统的定义、特点以及类型。
通过实例演示如何建立线性离散系统的数学模型,包括状态方程、传递函数等基本形式。
数学建模方法分类数据分析法:通过对量测数据的统计分析,找出与数据拟合最好的模型1、回归分析法:用于对函数f(x)的一组观测值(xi,fi)i=1,2,,n,确定函数的表达式,由于处理的是静态的独立数据,故称为数理统计方法。
2、时序分析法:处理的是动态的相关数据,又称为过程统计方法。
3、回归分析法:用于对函数f(x)的一组观测值(xi,fi)i=1,2,,n,确定函数的表达式,由于处理的是静态的独立数据,故称为数理统计方法。
4、时序分析法:处理的是动态的相关数据,又称为过程统计方法。
2数学建模方法一层次分析法比较合适于具有分层交错评价指标的目标系统,而且目标值又难于定量描述的决策问题。
其用法是构造推断矩阵,求出其最大特征值。
及其所对应的特征向量W,归一化后,即为某一层次指标关于上一层次某相关指标的相对重要性权值。
层次分析法是将决策问题按总目标、各层子目标、评价准则直至具体的备投方案的顺序分解为不同的层次结构,然后得用求解推断矩阵特征向量的办法,求得每一层次的各元素对上一层次某元素的优先权重,最后再加权和的方法递归并各备择方案对总目标的最终权重,此最终权重最大者即为最优方案。
3数学建模方法二回归分析:对具有相关关系的现象,依据其关系形态,选择一个合适的数学模型,用来近似地表示变量间的平均变化关系的一种统计方法(一元线性回归、多元线性回归、非线性回归),回归分析在一组数据的基础上研究这样几个问题:建立因变量与自变量之间的回归模型(经验公式);对回归模型的可信度进行检验;推断每个自变量对因变量的影响是否显著;推断回归模型是否合适这组数据;利用回归模型对进行预报或控制。
相对应的有线性回归、多元二项式回归、非线性回归。
逐步回归分析:从一个自变量开始,视自变量作用的显著程度,从大到地依次逐个引入回归方程:当引入的自变量由于后面变量的引入而变得不显著时,要将其剔除掉;引入一个自变量或从回归方程中剔除一个自变量,为逐步回归的一步;关于每一步都要进行值检验,以保证每次引入新的显著性变量前回归方程中只包涵对作用显著的变量;这个过程反复进行,直至既无不显著的变量从回归方程中剔除,又无显著变量可引入回归方程时为止。
数学建模的基本方法与实例数学建模是一种通过数学模型来解决实际问题的方法。
它在现代科学研究和工程实践中扮演着重要的角色。
本文将介绍数学建模的基本方法,并通过实例来详细说明。
一、问题分析在进行数学建模之前,首先需要对问题进行分析和理解。
这包括明确问题的背景、确定问题的目标以及收集问题所需数据等。
通过充分了解问题,我们可以更加准确地进行建模和求解。
二、建立模型在问题分析的基础上,我们需要建立适当的数学模型来描述和解决问题。
数学模型是对实际问题的抽象和简化,它包括变量、参数、约束条件和目标函数等要素。
常见的数学模型包括线性规划模型、非线性规划模型、动态规划模型等。
以线性规划模型为例,其数学形式为:Max/Min Z = c₁x₁ + c₂x₂ + ... + cₙxₙSubject to:a₁₁x₁ + a₁₂x₂ + ... + a₁ₙxₙ ≤ b₁a₂₁x₁ + a₂₂x₂ + ... + a₂ₙxₙ ≤ b₂...aₙ₁x₁ + aₙ₂x₂ + ... + aₙₙxₙ ≤ bₙ其中,c₁、c₂、...、cₙ分别为模型的目标函数系数,x₁、x₂、...、xₙ为决策变量,a₁₁、a₁₂、...、aₙₙ为约束条件的系数,b₁、b₂、...、bₙ为约束条件的右侧常数。
三、求解模型建立完数学模型后,下一步是求解模型以得到问题的最优解。
对于不同类型的模型,可以使用不同的数学方法和工具来求解。
常见的方法包括线性规划的单纯形法、非线性规划的梯度法、动态规划的最优控制理论等。
四、模型验证与分析求解完模型后,需要对结果进行验证和分析。
这包括检验模型的可行性、灵敏度分析以及结果的解释和实际应用等。
通过对模型结果的分析,可以判断模型的有效性和可靠性。
接下来,让我们通过一个实例来具体说明数学建模的过程。
实例:某物流公司的货物配送问题某物流公司需要合理安排货物的配送路线,以最小化配送时间并满足客户的需求。
假设有n个客户需要送货,每个客户的货物量不同,同时每个客户的配送时间窗口也不同。
数学建模各种分析方法数学建模是指将实际问题转化为数学问题,然后利用数学方法求解的过程。
在数学建模中,有各种各样的分析方法可以辅助研究人员进行问题分析和求解。
下面将介绍一些常用的数学建模分析方法。
1.计算方法:计算方法是数学建模中最基础也是最常用的方法之一、它可以包括求解方程组、数值积分、数值微分、插值与拟合、数值优化等。
通过这些计算方法,可以将实际问题转化为数学模型,然后利用计算机进行数值计算和模拟实验。
2.统计分析方法:统计分析在数学建模中也起着非常重要的作用。
它可以用来分析数据、建立概率模型、进行参数估计和假设检验等。
统计分析可以帮助研究人员从大量数据中提取有用的信息,深入分析问题的特征和规律,为问题解决提供参考。
3.线性规划模型:线性规划是一种优化模型,常用于解决资源分配、生产计划、物流运输等问题。
线性规划模型的目标是最大化或最小化一些线性函数,同时满足一系列线性等式或不等式约束。
通过线性规划模型,可以确定最优决策和最优解。
4.非线性规划模型:非线性规划是一种更一般的优化模型,用于解决非线性约束条件下的最优化问题。
非线性规划模型常用于经济管理、工程设计、生物医学等领域。
非线性规划模型的求解较复杂,需要借助数值计算和优化算法。
5.动态规划模型:动态规划是一种用来解决决策问题的数学方法,其特点是将问题分解为多个阶段,并利用最优子结构的性质进行递推求解。
动态规划模型常用于决策路径规划、资源调度、序列比对等问题。
它优化了逐步贪心法的局部最优解,能够得到全局最优解。
6.图论模型:图论是一种数学工具,用于研究图或网络结构及其属性。
图论模型在数学建模中可以用来分析网络拓扑、路径优化、最短路径、最小生成树等问题。
图论模型的特点是简洁明了,适用于复杂问题的分析和求解。
7.随机过程模型:随机过程是一种描述随机变量随时间变化的数学模型,常用于建立概率模型和分析具有随机性的系统。
随机过程模型常用于金融风险评估、天气预测、信号处理、优化设计等问题。
数学模型中的因子分析法因子分析是一种常用的数学模型,用于解释多个变量之间的关系和发现潜在的因素。
它是一种降维技术,旨在将众多变量转化为较少数量的无关因子。
因子分析在统计学、心理学和市场研究等领域广泛应用,可用于数据降维、消除多重共线性、提取潜在特征、构建模型等等。
在因子分析中,有两种主要类型:探索性因子分析(Exploratory Factor Analysis,EFA)和验证性因子分析(Confirmatory Factor Analysis,CFA)。
探索性因子分析用于发现数据中的潜在因素,而验证性因子分析则用于验证已经提出的因素模型是否符合实际数据。
探索性因子分析的步骤如下:1.提出假设:确定为什么要进行因子分析以及预期结果,用于指导后续的数据分析。
2.数据准备:收集和整理要进行因子分析的数据,确保数据的可用性和准确性。
3.因子提取:通过主成分分析或最大似然法等方法,提取出能够解释数据变异最大的因子。
4.因子旋转:因子旋转是为了使提取出的因子更易于解释和理解。
常用的旋转方法有正交旋转和斜交旋转等。
5.因子解释和命名:对于每个提取出的因子,需要根据变量的载荷矩阵和旋转后的载荷矩阵进行解释和命名。
载荷矩阵表示每个因子与每个变量之间的关系。
6.结果评估:对于提取出的因子,需要进行信度和效度的评估。
信度评估包括内部一致性和稳定性等指标;效度评估包括构造效度和相关效度等指标。
验证性因子分析通常用于验证已经提出的因子模型是否符合实际数据。
其步骤包括:1.提出假设:确定已存在的因子模型,并对其进行理论和实际的验证。
2.选择分析方法:确定适合验证性因子分析的模型拟合方法,如最大似然法或广义最小二乘法等。
3.构建模型:将因子模型转化为测量模型,并建立测量方程。
4.模型拟合:对构建的测量模型进行拟合,评估模型的拟合度,如χ²检验、准则拟合指数(CFI)等。
5.修正模型:根据拟合域冒去改进模型的拟合,如剔除不显著的路径、修正测量方程等。
第 章 实例及数学模型一般地说,为了定量地解决一个实际问题,从中抽象,归纳出来的数学表述就是数学模型.数学模型可以描述为,对现实世界的一个研究对象,为了一个特定目的,做出必须的简化假设,根据对象的内在规律,运用适当的数学工具,得到的一个数学表述.而数学建模包括模型的建立,求解,分析和检验的全过程.从实际问题到数学模型,又从数学模型的求解结果回到现实对象.数学建模面临的实际问题多种多样,建模的目的不同,分析的方法不同,采用的数学工具不同,所得模型的类型也不同.1 初等数学模型实例1 商品市场占有率问题有R 和S 两家公司经营同类产品,这两家公司相互竞争.每年R 公司保持1/4的顾客,而3/4转移向S 公司;每年S 公司保持有2/3的顾客,而1/3转移向R 公司.当产品开始制造时R 公司占有3/5的市场份额,而S 公司占有2/5的市场份额.试问两年以后,两家公司所占有的市场份额变化怎样?5年以后会怎样?10年以后呢?是否有一组初始市场份额分配数据使以后每年的市场分配成为稳定不变?一 问题及分析模型建立根据两家公司每年顾客转移的数据资料,形成下面的转移矩阵⎪⎪⎪⎪⎭⎫⎝⎛=32433141A 又根据产品制造之初市场的初始分配数据可得如下向量⎪⎪⎪⎪⎭⎫ ⎝⎛=52530X所以一年后,市场分配为⎪⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎪⎭⎫⎝⎛==52533243314101AX X 两年以后,市场分配为022X A X =设n 年后市场分配的份额为n X ,则有01X A AX X nn n ==-设数据b a ,为R 公司和S 公司的初始市场份额,则有1=+b a为了使以后每年的市场份额分配不变,根据顾客转移的规律,有⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎪⎭⎫⎝⎛b a b a 32433141 即⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎪⎭⎫⎝⎛--0031433143b a 这是一个齐次方程组问题,如果方程组有解,则应该在非零解的集合中选取正数解作为市场份额稳定的初始份额.由上面的分析得该问题的数学模型为求两个线性方程组,即0X A X n n =⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫⎝⎛⎪⎪⎪⎪⎭⎫⎝⎛--0031433143b a 二 模型的求解可以用[x1,x2]=solve(s1,s2,v1,v2)来求方程组0=AX 的解. 也可以用命令rref(A ),化A 为上三角阵,再求解. 计算程序为A=[1/4 1/3;3/4 2/3]; X0=[3/5;2/5]; X2=A^2*X0 X5=A^5*X0 X10=A^10*X0 运算结果为X2 =0.3097 0.6903X5 =0.3077 0.6923 X10 =0.3077 0.6923为了求a 和b 作为R 公司和S 公司稳定的初始市场份额,用命令rref 来求解齐次方程组 计算程序为format rat; rref(A-eye(2)) 运算结果为 ans =1 -4/90 0 由此得化简后的方程为094=-b a结合约束条件1=+b a可以得到134=a 139=b 这就是使市场稳定的两家公司的初始份额.2 微积分方法模型实例问题分析及模型建立模型的求解3 微分方程模型本节以实例分析并建立微分方程模型,对模型作了解析解以及MA TLAB 数值解.而当函数以离散数据形式表示时,函数的数值微分就得借助差分来计算,差分是微分的近似.故本节还分析了简单的差分方程模型.实例1 温度冷却由物理学知道,物体冷却的速度与当时的物体温度和周围环境温度之差成正比.今100℃的沸水注入杯里,放在室温为20℃的环境冷却,5min 后测得水温为60℃.求水温u 与时间t 的函数关系.一 问题分析及模型的建立设比例系数为)0(>k k ,根据题意可得微分方程)20(--=u k dtdu60,10050====t t u u二 模型的求解此为简单的一阶可分离变量微分方程,可得解析解5)5.0(8020t u +=另外,还可用MA TLAB 程序求其解析解和数值解. 解析解的程序为dsolve('Du+k*(u-20)=0','u(0)=100','t') %dsolve 为求常微分方程的符号解函数运算结果为u =20+80*exp(-k*t)再由605==t u ,可得52ln =k ,即5)5.0(8020tu +=数值解的程序为f=inline('-0.2*log(2)*(u-20)','t','u');[t,u]=ode45(f,[0, 100],100); %ode45为龙格库塔法求微分方程的数值解plot(t,u) %绘制0到100分钟的温度随时间变化的图形图 温度随时间变化从图可看出温度随时间逐渐趋于20℃.实例2 动物种群的相互竞争与相互依存的模型在生物的种群关系中,一种生物以另一种生物为食的现象,称为捕食.一般说来,由于捕食关系,当捕食动物数量增长时,被捕食动物数量就逐渐下降,捕食动物由于食物来源短缺,数量也随之下降,而被捕食动物数量却随之上升.这样周而复始,捕食动物与被捕食动物的数量随时间变化形成周期性的震荡.田鼠及其天敌的田间种群消长动态规律也是如此.实验调查数据表明:无论是田鼠还是其天敌的数量都呈周期性的变化,天鼠与天敌的作用系统随时间序列推移,田鼠密度逐渐增加,其天敌随之增加,但时间上落后一步.由于天敌密度增加,则田鼠密度降低,而田鼠密度的降低,则其天敌密度亦减少,如此往复循环,从而形成一定的周期.试用数学模型来概括这一现象,并总结出其数量变化的近似公式.一 问题分析及模型的建立设)(t x 和)(t y 分别表示t 时刻田鼠与其天敌的数量,如果单独生活,田鼠的增长速度正比于当时的数量,即x dt dxλ= 而田鼠的天敌由于没有被捕食对象,其数量减少的速率正比于当时的数量,即y dtdyμ-= 现在田鼠与其天敌生活一起,田鼠一部分遭到其天敌的消灭,于是以一定的速率α减少,减少的数量正比于天敌的数量,因此有x y dtdx)(αλ-= 类似地,田鼠的天敌有了食物,数量减少的速率μ减少β,减少的量正比于田鼠的数量,因此有y x dtdy)(βμ--= 上述公式,最后两个方程联合起来称为V olterra-Lot 方程,这里μλβα,,,均为正数,初始条件为00)0(,)0(y y x x ==现在通过实验调查所得到的数据如表,此数据为每隔两个月田间调查一次,得到的田鼠及其天敌种群数量的记录,数量的单位经过处理.试建立合理的数学模型. 表 田鼠种群数量记录29.7 33.1 32.5 69.1 134.2 236.0 269.6 162.2 69.6 39.8 34.0 20.7 22.0 37.6 57.6 124.6 225.0 272.7 195.7 94.5 41.9 25.7 10.9 22.5 33.5 48.2 92.5 183.3 268.5 230.6 115.5表 田鼠天敌种群数量记录1.6 1.3 1.1 1.2 1.1 1.3 1.82.2 2.4 2.2 1.9 1.5 1.5 1.2 0.9 1.1 1.3 1.6 2.3 2.4 2.2 1.7 1.8 1.5 1.2 1.0 0.9 1.1 1.3 1.9 2.3二 模型的求解V olterra-Lotok 方程的解析解即y x ,的显示解难求出,因此公式的参数方程不宜直接用Matlab 函数来拟合解,可用如下的方法来求其近似解.V olterra-Lotok 可转化为⎩⎨⎧+-=-=dtx y d dty x d )(ln )(ln βμαλ 在区间],[1i i t t -上积分,得i i i i i S t t x x 111)(ln ln αλ--=--- i i i i i S t t y y 211)(ln ln βμ+--=---这里,⎰-=ii t t i ydt S 11,⎰-=ii t t i xdt S 22, m i ,,1 =于是得到方程组⎩⎨⎧==222111B P A B P A这里⎪⎪⎪⎪⎪⎭⎫⎝⎛------=-im m m S t t S t t S t t A 1121211011 ⎪⎪⎪⎪⎪⎭⎫⎝⎛------=-m m m S t t S t t S t t A 212212012 ⎪⎪⎭⎫ ⎝⎛=αλ1P ⎪⎪⎭⎫⎝⎛-=βμ2PT m m x x x x B )ln ,,(ln1011-= T m m y y y yB )ln ,,(ln 101-= 因此方程组参数的最小二乘解为 111111)(B A A A P T T-= 22122)(B A A A P TT -=由于)(t x 和)(t y 均为未知,因此21,S S i 用数值积分方法的梯形公式解 )(21111--+-≈=⎰-i i i i t t i y y t t ydt S ii )(21121--+-==⎰-i i i i t t x x t t xdt S ii 这样就可求得参数的近似值.模型参数求解的程序为 clear all,clcX=[29.7 33.1 32.5 69.1 134.2 236.0 269.6 162.2 69.6 39.8 ...34.0 20.7 22.0 37.6 57.6 124.6 225.0 272.7 195.7 94.5 41.9 25.7 ... 10.9 22.5 33.5 48.2 92.5 183.3 268.5 230.6 115.5];Y=[1.6 1.3 1.1 1.2 1.1 1.3 1.8 2.2 2.4 2.2 1.9 1.5 1.5 1.2 0.9 ... 1.1 1.3 1.6 2.3 2.4 2.2 1.7 1.8 1.5 1.2 1.0 0.9 1.1 1.3 1.9 2.3];N=[X;Y]; T=[0:2:60]; for i=1:30A(i,1)=T(i+1)-T(i);A(i,[2 3])=((T(i+1)-T(i))/2)*[-(N(1,i+1)+N(1,i)),-(N(2,i+1)+N(2,i))]; B(i,[1 2])=[log(N(1,i+1)/N(1,i)),log(N(2,i+1)/N(2,i))]; end;A1=A(:,[1 3]);P1=inv((A1'*A1))*A1'*B(:,1) A2=A(:,[1 2]);P2=inv((A2'*A2))*A2'*B(:,2)上述结果代入V olterra-Lotok 方程,用MA TLAB 函数ode45求方程在时间[0,60]的数值解.作图可看到田鼠及其天敌数量的周期震荡.求方程Volterra-Lotok 的数值解的程序为定义函数vlok 为 [vlok.m]function dydt=vlok(T,Y)dydt=[(0.8765-0.5468*Y(2))*Y(1);(-0.1037+0.0010*Y(1))*Y(2)]; clear all, clcX=[29.7 33.1 32.5 69.1 134.2 236.0 269.6 162.2 69.6 39.8 ...34.0 20.7 22.0 37.6 57.6 124.6 225.0 272.7 195.7 94.5 41.9 25.7 ... 10.9 22.5 33.5 48.2 92.5 183.3 268.5 230.6 115.5];Y=[1.6 1.3 1.1 1.2 1.1 1.3 1.8 2.2 2.4 2.2 1.9 1.5 1.5 1.2 0.9 ... 1.1 1.3 1.6 2.3 2.4 2.2 1.7 1.8 1.5 1.2 1.0 0.9 1.1 1.3 1.9 2.3]; N=[X,Y]; T=[0:2:60];[t,Y]=ode45(@vlok,[0:0.5:60],[29.7 1.6]); plot(t,Y(:,1)/100,'k'); hold on;plot(t,Y(:,2),'-.k');title('田鼠及其天敌的V olterra-Lotok 模型拟合曲线'); xlabel('时间');ylabel('数量(只/每百)'); gtext('田鼠'); gtext('天敌');legend('田鼠','天敌');legend('田鼠','天敌');图 田鼠及其天敌的模拟曲线实线和虚线分别为田鼠和天敌的实际值,田鼠的数量为y 坐标乘以100.上机实验研究种群竞争模型设有甲乙两个种群,当它们独自生存时数量演变服从Logistic 规律,即 )1()(11n xx r t x -=⋅)1()(22n y y r t y -=⋅这里)(),(t y t x 分别为甲乙种群的数量,21,r r 为它们的固有增长率,21,n n 为它们的最大容量.当两个种群在同环境中生存时,它们之间的关系是为了争夺同资源而进行竞争.考查由于乙消耗有限的资源对甲的增长产生影响,可以合理地修改甲的方程为 )1()(2111n y s n x x r t x --=⋅这里1s 的含义为:对于供养甲的资源而言,单位数量乙(相对2n )的消耗为单位数量甲(相对1n )消耗的1s 倍.类似地,甲的存在也影响了乙的增长,乙的方程应改写为 )1()(2122n yn x s y r t y --=⋅对2s 可作相应解释.当给定种群的初始值0)0(x x = 0)0(y y =及参数212121,,,,,n n s s r r 后,公式确定了两个种群数量的变化规律.方程无解析解,一般用数值解法研究该问题,试用数值解法研究下面的问题:设0,,5.0,00,100212121========y x s s n n r r ,计算)(),(t y t x 并绘出它们的图形,求出时间t 充分大以后)(),(t y t x 的变化趋势.实例 线性差分方程模型Florida 沙丘鹤属于濒危物种,据报道,生态学家估计它在较好的环境下,每年平均增长率仅为1.94%,而在中及较差的环境下,每年平均增长率则分别为-3.24%,-3.82%,即它将逐渐减少.如果在某地的保护区内开始有100只鹤,建立描述其数量变化规律的模型,并作数值计算.而人工孵化为挽救这个濒危物种的措施之一,如果每年人工孵化5只鹤放入该保护区,那么在中环境下沙丘鹤的数量的变化规律? 问题分析及模型的建立记第k 年沙丘鹤的数量为k x ,正常环境下的平均增长率为r ,记r a +=1,则第1+k 年鹤的数量为k k ax x =+1 r a +=1 ,1,0=k在人工孵化条件下,设每年孵化的数量为b ,则 b ax x k k +=+1 模型的求解在较好,中,较差的环境下,以0382.0,0324.0,0194.0--=r 以及1000=x 代入,用MATALAB 计算并作图,程序为function y=exf(x0,n,r) %exf 的函数M 文件 a=1+r;x=x0; %赋初值 for k=1:nx(k+1)=a*x(k); end xk=(0:20)';y1=exf(100,20,0.0194); y2=exf(100,20,-0.0324); y3=exf(100,20,-0.0382);round([k,y1,y2,y3]); %对结果四舍五入取整 plot(k,y1,k,y2,':',k,y3,'--'),gtext('r=0.0194'),gtext('r=-0.0324'),gtext('r=-0.0382')结果分析讨论时间充分长的变化趋势∞→=0x a x kk 11>+=r a 0>r 00→=x a x kk 11<+=r a 0<r在人工孵化的情况,当11<+=r a 即 0<r ,得到 abx a a b x a a a b x a x k kk kk -=→--+=++++=-111]1[01用5%,24.3=-=b r 代入上式即可.一阶线性常系数差分方程的解,平衡点及其稳定性方程形式为b ax x k k +=+1这里b a ,为已知常数.令x x x k k ==+1得到代数方程b ax x +=的根abx -=1称为差分方程的平衡点. 差分方程的解可表为abca x kk -+=1 ,1,0=k这里c 由初始值0x 确定.如果∞→k 时x x k →,称平衡点x 为稳定的,否则平衡点x 为不稳定的. 差分方程的平衡点稳定1<⇔a如果第1+k 时段变量1+k x 不仅取决于第k 时段变量k x ,而且与以前时段变量有关,这得用高阶差分方程刻划.实例 高阶线性常系数差分方程模型一年生植物春季发芽,夏天开花,秋季产种,没有腐烂,风干,被人为获去的那些种子可以活过冬天,其中的一部分能在第二年春季发芽,开花,产种,其中的另一部分虽未能发芽,但如又能活过一个冬天,则其中一部分可在第三年春季发芽,开花,产种,如此继续.一年生植物只能活1年,而近似地认为,种子最多可以活过两个冬天,试建立数学模型研究这种植物数量的变化规律,及它能够一直繁殖下去的条件. 问题分析及模型的建立记一棵植物秋季产种的平均数为c ,种子能够活过一个冬天的比例为b ,一岁的种子能在春季发芽的比例为1a ,未能发芽但又能活过一个冬天的比例为b ,两岁的种子能在春季发芽的比例为2a .设21,,a a c 固定,而b 可在一定范围内变化.记第k 年的植物数量为k x ,按照种子最多可以活过两个冬天的假定,k x 与1-k x 和2-k x 有关,由1-k x 决定的部分为11-k bcx a ,而由2-k x 决定的部分则为212)1(--k bcx a b a .如果今年(0=k )种下(并成活)的植物数量为0x ,可以得到011bcx a x = 21211)1(---+=k k k bcx a b a bcx a x 2=k 记bc a p 1-=,bc a b a q )1(12--=,则001=+px x 021=++--k k k qx px x 2=k 模型的求解设20.018.0,25.0,5.0,1021-====b a a c 以及1000=x ,用MA TLAB 计算的程序为 function y=exf(x0,n,b) c=10;a1=0.5;a2=0.25; p=-a1*b*c;q=-a2*(1-a1)*c*b^2; x(1)=x0;x(2)=-p*x(1);for k=3:nx(k)=-p*x(k-1)-q*x(k-2);endxk=(0:19)';y1=exf(100,20,0.18);y2=exf(100,20,0.19);y3=exf(100,20,0.20);round([k,y1,y2,y3]),plot(k,y1,k,y2,':',k,y3,'--'),gtext('b=0.18'),gtext('b=0.19'),gtext('b=0.20')运算结果为结果分析:可以看到,对于不同的b ,k x 的变化规律有较大差别.设二阶差分方程有形如k k x λ=的解,即02=++q p λλ此方程称为差分方程的特征方程,根为2422,1q p p -±-=λ 称为差分方程的特征根,方程的解可表为k k k c c x 2211λλ+=这里常数21,c c 由初始条件10,x x 确定.本例用 bc a b a q bc a p )1(,121--=-= 5.0,101==a c 25.02=a 得到b 23052,1±=λ 当20.0,19.0,18.0=b 时,),(21λλ分别为)0477.0,0477.1(),0453.0,9953.0(),0430.0,9430.0(---18.0=b ,用90,10010==x x 代入可得64.951=c 36.42=c ,于是k k k x )043.0(36.4)943.0(64.95-+= ,1,0=k可以看出,当12,1<λ时0→k x ,当12,1>λ时∞→k x .得到植物能够繁殖的条件为191.0>b高阶线性常系数差分方程的解,平衡点及其稳定性方程为b x a x a x a x a k n k n n k n k =+++++--++11110特征方程为01110=++++--n n n n a a a a λλλ差分方程的解为x c c x k n n k k +++=λλ 11令 x x x k n k ===+ 得到的平衡点,n c c ,,1 由初始值n x x ,,1 确定,当所有的特征根的模小1时,平衡点为稳定的.实例 状态转移方程组模型随着计算机通信网络系统特别是Internet 网络的应用日益广泛,计算机网络可靠性分析以及提高系统的可靠性意义重大.研究和分析具有实用性的高可靠性计算机通信网络系统,是国际上非常活跃的一个研究方向,计算机随时可能发生三种状态,无故障,间歇故障和永久故障.因此,计算机一般处于三种工作状态,无故障工作,带故障工作和不工作,这三种状态之间的转移过程为试建立该系统的状态转移模型,并进行可靠性分析.问题分析及模型的建立该问题属于状态转移问题,用马尔科夫状态转移原理,用)(),(21t P t P 和)(3t P分别表示系统处于无故障工作,带故障工作和不工作三种状态的概率,则有状态转移方程组⎪⎪⎪⎩⎪⎪⎪⎨⎧+++=++-=+++-=)()()()2()()()]([)()2()()()(]2)2[()(213212211t P t P dt t dP t P t P dtt dP t P t P dt t dP t p t p t p t t t p λλλλλλγλγλλλ 初始条件为0)0(,0)0(,1)0(321===P P P ,参数取值p λ 510-至410-, t λ 410-至310- γ 0.01至0.1模型的求解此为带参数的微分方程组模型.求解此方程组模型有两种方法:用特征根法求解析解;用数值解法求数值解.假定模型的参数取值为01.0,10,1045===--γλλt p ,则解析法的程序为lp=10^(-5);lt=10^(-3);gm=0.01;A=[-(lp+lt),gm,0;lt/2,-(gm+lp+lt),0;lp+lt/2,lp+lt,0];[l,v]=eig(A)e=inv(l)*[1;0;0]运算结果为数值解法的程序为%微分方程组的M 函数文件function xdot=eqs0(t,p,flag,lp,lt,gm)A=[-(lp+lt),gm,0;lt/2,-(gm+lp+lt),0;lp+lt/2,lp+lt,0];P=[p(1);p(2);p(3)];xdot=a*p;命令函数文件ts=[0 1000];p0=[1;0;0];lp=10^(-5);lt=10^(-3);gm=0.01[t,p]=ode23(‘eqs0’,ts,p0,[],lp,lt,gm)plot(t,1-p(:,3));xlabel(‘时间t(小时)’);ylabel(‘可靠度R(t)’);title(‘参数取值lp=0.0001;lt=0.001;gm=0.01’);grid on;运算结果为计算结果表明:在时间h t 1000=的情况,]0047.0,9369.0[)](),(),([321 t p t p t p显示系统工作概率为,4 插值与拟合模型实例问题分析及模型建立模型的求解5 最优化模型实例问题分析及模型建立模型的求解水箱的水流问题在许多供水单位由于没有测量流入或流出水箱的设备,而只能测量水箱的水位.试通过测得的某时刻水箱水位的数据,估计在任意时刻t 流出水箱的流量)(t f .某社区有一供水水箱,在居民用水过程,当水箱的水位下降到最低水位l 时,水泵就自动向水箱输水直到最高水位H ,此期间不能测量水泵的供水量,因此,当水泵正在输水时不容易建立水箱水位和用水量之间的关系.水泵每天输水一次或两次,每次约2小时.已知该水箱是一个高为40ft(英尺),直径为57ft 的圆柱体,表为该居民区一天水箱水位的数据,当水位降至27.00ft 时水泵开始工作,水位增到35.50ft 时,停止输水(1ft=0.3048m).表 社区某天水箱水位时间/s 水位/0.01ft 时间/s 水位/0.01ft 0 9.68 12.95 10.020.92 9.45 13.88 9.941.84 9.31 14.98 9.652.95 9.13 15.90 9.413.87 8.98 16.83 9.184.98 8.81 17.93 8.925.90 8.69 19.05 8.667.00 8.52 19.96 8.457.93 8.39 20.84 8.228.97 8.22 22.02 水泵供水9.98 水泵供水 22.96 水泵供水10.93 水泵供水 23.88 10.5910.95 10.82 24.99 10.3512.03 10.50 25.91 10.18问题分析及模型的建立由于水箱是正圆柱体,横截面积为常数,所以在水泵不工作时段,流量容易根据水位和时间的变化计算出来,但怎样估计水泵供水时段的流量比较困难.水泵供水时段的流量只能靠供水时段前后的流量经插值或拟合得到.因为水泵不工作时段的流量作为用于插值或拟合的原始数据,因此水泵不工作时段的流量越精确越好.这些流量可以用两种方法来计算:(1)对表的数据用数值微分计算出各时段的流量,从而拟合其他时刻或连续时间的流量;(2)先用表的数合数据拟合水位 时间函数,再求导数就可以得到连续时间的流量.有了每个时刻的流量,就可以计算水箱的总流量.水泵不工作时段的用水量可以由测量记录直接得到,由表的数据可以直接计算出;水泵工作时水箱的流量通过拟合出来的流量函数计算出.这样就可以计算出水箱的总流量.模型假设流量看做是时间的连续函数,为了便于计算,不妨将流量定义为单位时间流出的水的高度,即水位对时间变化率的绝对值,水箱的截面积为)()24.3.057(422m S ⨯⨯=π在计算总流量时将上面得到的结果乘以S 即可.流量只取决于水位差,与水位本身无关,即流出的水的流速正比于水面高度的平方根.题目给出水箱的最低和最高水位分别是8.1648m 和10.7352m(设出口的水位为0),计算得sqrt(10.7352/8.1648),大约为1,故可以忽略水位对流速的影响.流量估计方法用一种比较简单的方法计算水箱流量与时间的关,将表的数据分为5段,按时间t 排列:第一段:0—8.97;第二段:9.38—10.93;第三段:10.95—20.85;第四段:22.02—22.96;第五段:23.88—25.91.再对每一段的数据做如下的处理:设某段数据为{),(,),,(),,(1100n n y x y x y x },邻近数据中点的平均流速用公式流速=(左端点的水位-右端点的水位)/区间长度即 ii i i i i x x y y x x v --=++++111)2( 计算;每一段数据首尾点的流速用下面公式计算)/()43()(022100x x y y y x v -+-=)/()43()(221-----+-=n n n n n n x x y y y x v根据上面的公式,可以计算出时间与流速之间的数据如表表 时间与流速之间的数据表时间/h 流速/(cm/h) 时间/h 流速/(cm/h)0 29.89 11.50 29.850.46 22.05 12.49 31.521.38 18.47 13.52 29.032.395 16.22 14.52 26.503.52 16.29 15.50 26.094.52 15.30 16.47 24.795.45 13.05 17.38 23.676.45 15.45 18.49 23.507.465 13.98 19.52 25.208.45 16.45 20.50 23.858.97 19.29 20.85 22.259.98 水泵供水22.02 水泵供水10.93 水泵供水22.96 水泵供水10.95 30.50 25.91 13.15用两种计算方法建立模型(1)插值方法由表,对水泵不工作时段采取插值方法,可以得到任意时刻的流速,从而知道任意时刻的流量,这里分别采用拉格朗日(Lagrange)插值法,分段线性插值法和样条插值法作插值.对水泵工作时段2应用前后期的流速作插值,由于第5段水泵不工作时的数据太少,将其与水泵工作时段4合并一起作插值.这样就总共得对4段数据作插值(第1,3未供水时段,第2供水时段,第4,5时段的混合时段).(2)曲线拟合法拟合水位时间函数.根据表的测量记录知,一天有两次供水时段和三次未供水时段,分别对1,3未供水时段的测量数据直接作多项式拟合,可以得到水位函数,再由水位时间函数确定流量时间函数,这样也可以求出一天总用水的估计.模型求解的MA TLAB程序插值法以第一段未供水时数据为例分别用拉格朗日,线性多项式,样条插值方法计算出流量函数和用水量.由于MA TLAB没有直接提供拉格朗日插值法的命令函数,这里先给出用MATLAB语言实现的拉格朗日插值法的函数lglrcz.mfunction Y=lglrcz(X0,Y0,X)n=length(X0)m=length(X);for I=1:mz=X(i)s=0;for k=1:np=1.0for j=1:nif j~=kp=p*(z-X0(j))/(X0(k)-X0(j));endends=p*Y0(k)+sendY(i)=s;End%由表可得到t=[0 0.46 1.38 2.395 3.45 4.525 5.50 6.45 7.465 8.45 8.97];v=[29.89 20.75 18.45 16.22 16.25 15.32 13.05 15.45 13.98 16.25 19.25];t0=0:0.1:8.097lr=lglrcz(t,v,t0); %拉格朗日插值法lrjf=0.1*trapz(lr)fdcz=interp1(t,v,t0); %分段线性插值法fdczjf=0.1*trapz(fdcz)scz=interp1(t,v,t0,’spline’); %样条插值法sczjf=0.1*trapz(scz)plot(t,v,’*’,t0,lr,’r’,t0,fdcz,’g’,t0,scz,’b’)gtext(‘lglr’);gtext(‘fdxx’);gtext(‘syt’);其运算结果为一般情况,样条插值方法具有比较好的性质,大多数情况下都采用该方法.另外,其他时段的处理方法与第一段未供水时段的处理方法类似,只给出结果.表各时段和一天的总用水量(用水高度)第一未供水时段第二供水段第三供水时段第四混合段全天拉格朗日插值法145.622 258.866 54.2689 92.1335 550.6922分段线性插值法147.145 258.9697 49.6055 76.4688 532.1866样条插值法145.687 258.6557 53.35 81.7699 539.4652拟合法拟合水位时间函数t,分别为已输入的时刻和水位测量记录(由表得到,水泵供水的4个时刻不输入),第一设h未供水时段各时刻的水位可以由下面程序实现,如图所示t=[0 0.92 1.84 2.95 3.87 4.98 5.90 7.00 7.93 8.97 10.95 12.03 12.9513.88 14.98 15.90 16.85 17.93 19.04 19.96 20.85 23.88 24.99 25.66];h=[9.68 9.48 9.32 9.13 8.98 8.81 8.69 8.52 8.39 8.22 10.82 10.50 10.22 9.949.65 9.41 9.18 8.92 8.66 8.45 8.22 10.59 10.35 10.18];c1=polyfit(t(1:10),h(1:10),3);tp1=0:0.1:8.9x1=polyval(c1,tp1);pot(tp1,x1);变量X1存放了以0.1为步长计算出的各个时刻的水位高度.第二未供水时段时间水位图可以由下面程序实现,如图所示c2=polyfit(t(10:20),h(10:20),3);tp2=10.9:0.1:20.9X2=-polyval(c2,tp2);Plot(tp2,X2)确定流量时间函数c1=polyfit(t(1:10),h(1:10),3);c2=polyfit(t(10:20),h(10:20),3);a1=polyder(c1);a2=polyder(c2);tp1=0:0.01:8.97tp2=10.95:0.01:20.85X13=-polyval(a1,tp1);X013=-polyval(a1,[0:0.01:8.97]);Wgsysll=100*trapz(tp1,X013);X4=-polyval(a1,[7.93,8.97]);X23=-polyval(a2,tp2);X0=-polyval(a2,[10.95:0.01:20.85]);Wgsys=100*trapz(tp2,X0);X00=-polyval(a2,[10.95,12.03]);X=-polyval(a2,[19.96,20.85]);Plot(tp1,X13*100);Plot(tp2,X*100).结果如图第二供水段的流量则用前后时期的流量做拟合得到.为使流量函数在11,9==t t 连续,只取四个点,用三次多项式拟合得到第二供水时段的时间 流量如图.实现的程序为dygsdsj=[7.93 8.97 10.95 12.03];dygsdls=[X0,X];nhjg=polyfit(dygsdsj,dygsdls,3);nhsj=7.93:0.1:12.03nhlsjg=polyval(nhjg,nhsj);gssjl=8.97:0.01:10.95gsl=polyval(nhjg,[8.97:0.01:10.95]);gsysll=100*trapz(gssjl,gsl);plot(nhsj,100*nhlsjg)在第四供水时段之前取85.20,96.19=t 两点的流量,用第五未供水时段的三个记录做差分得到两个流量数据22.52,18.52,再用这四个数据做三次多项式拟合得到第四供水时段与第五未供水时段的时间 流量函数,如图,程序为t3=[19.96 20.85 t(22),t(23)];ls3=[X*100,22.52,18.52];nd=polyfit(t3,ls3,3);tp3=19.96:0.01:25.91;X=polyval(nd,tp3);Gsj=20.85:0.01:25;Gs2=polyval(nd,[20.85:0.01:25]);Gsys=trapz(gssj2,gs2);Plot(tp3,X);一天总用水量的估计分别对供水的两个时段和不供水的两个时段积分(流量对时间)并求和得到一天的总用水量ft(总用水高度,单位为cm).各时段用水量如表约为526.89352表各时段用水量及一天总用水量(单位:cm)时段落第一未供水时段第二供水时段第三未供水时段第四混合时段全天用水ft2用水高度145.65 260.66 46.60 73.9625 526.8925 微分方程模型最优化方法模型实例截断切割问题某公司经常得从一个长方体中加工出一个尺寸,位置预定的长方体(这两个长方体的对应表面是平行的),通常采用截断切割的加工方式,这里”截断切割”是指物体沿某个切割平面分成两部分.因此在一般情况下,得经过6次截断切割,分别截去原长方体的前,后,左,右,上,下的6个方向多余的部分.设水平切割单位面积的费用是垂直切割单位面积的r倍,且当先后两次垂直切割的平面不平行时,因调整刀具需额外费用e.如果截去各方向多余小块的先后顺序不同,则加工费用不同.试设计确定最优加工次序的方法,此处的最优是指加工费用最少(由工艺需求,与水平工作台接触的长方体底面是事先指定的).用下面实例验证所设计的方法:需加工长方体与成品长方体的长,宽,高分别为10,14.5,19和3,2 4,二者左面,前面,底面之间的距离分别为,6,7,9(单位:cm),垂直切割费用为1元/cm2,r 和e 的数据有四组.0,1==e r 0,5.1==e r 0,7==e r 152,5.1≤≤=e r 问题分析:这是一个优化问题,求切割顺序,使加工费用最低.决策变量为切割顺序,用),,(61x x X =表示切割顺序,i x 表示第i 次切割,可以分别表示前,后,左,右,上,下的切割,61,,x x 互不相同,可以取6,,1 的任意全排.目标函数:加工费用由切割费用和刀具调整费用构成.问题的已知条件有需加工长方体与成品长方体对应表面平行切割费用与切割面的面积成正比,具体地说就是垂直切割费用为1元/cm2,水平切割费用为r 元/cm2,且仅当先后两次垂直切割的切割面不平行时,才需调整刀具,调整刀具的费用为e .水平工作台接触的长方体底面是事先指定的.不考虑第一次切割前的刀具调整费用.数学模型设需加工的长方体的长为a ,宽为b ,高为c 为常数,需加工长方体与成品长方体两者的前,后,左,右,上,下面之间的距离为212121,,,,,c c b b a a 也为常数.可变参数有:水平切割费用r 元/平方厘米,调整刀具的费用e .在切割方式X ,对应的加工费用可表示为),,(r e X f .可得组合优化模型求切割方式min X X =,使加工费用),,(r e X f 达到最小,即),,(min r e X f SX ∈ 这里},,6,,1),,({61j i x x x x x X S j i i ≠≠===由于集合S 为有限集,只有720!6=种切割方式,当r e ,取定,切割顺序给定,很容易算出加工费用.可以依次求出各切割方式下的切割费用,比较最小者,就可得到最小费用的加工顺序. 解程序为情形一 0=e先用穷举法求出720种切割方式的费用,存放在数组c ,再用函数min(c)和find(c==minc)求最小费用及其对应的切割方式.%jieduan e=0% a0 三维向量,各分量为需加工长方体的长,宽,高% a1 三维向量,各分量为成品长方体的长,宽,高% d1 三维向量,各分量为需加工与成品长方体两者的前面,左面,底面之间的距离.% r 水平切割单位面积的切割费用% minc 最小费用%min X 列数为6的矩阵,各行为最小费用对应的切割顺序a0=[10, 14.5,19];a1=[3,2 4];d1=[6,7,9];r=1;d2=a0-a1-d1; d=[d1 d2];d=d([1,4,2 5,3,6]);p=0%可行的加工顺序表.For I=1:6For j=1:6,if(j-i)~=0,For k=1:6,if(k-I)*(k-j)~=0,For l=1:6,if(l-i)*(l-k)~=0,For l=1:6, if(m-i)*(m-j)*(m-k)*(m-l)~=0;For n=1:6If(n-i)*(n-j)*(n-k)*(n-l)*(n-m)~=0,P=p+1;X(p,:)=[I,j,k,l,m,n];End,end,end,end,end,end,end,end,end.%加工顺序表X 对应的切割费用表f=[1,1,2 2 3,3 ];for p=1:720o=X(p,:);const=0;a=a0;foe I=1:6j=o(i);a3=a;a3(f(j))=[];if f(j)==3const=cost+r*a3(1)*a3(2);elseconst=const+a3(1)*a3(2);enda(f(j))=a(f(j)-d(j));endc(p)=cost;end.%求最小费用及其对应的加工顺序minc=min(c),find(c==minc);minx=x(ans,:);运算结果为.因此,当0,1==e r 时,最优加工顺序为 下 前 左 上 后 右 或 下 前 上 左 后 右切割费用为374元情形二 0≠e加工费用是由切割费用和调整刀具的费用两者组成,即e z r Xf r e X f ⨯+=),0,(),,(这里,z 为加工顺序是X 时的调整刀具次数,全体切割顺序按调整刀具次数划分为三类,同类的刀具调整费用是相同的.可以先分别求出在0=e 时,每一类的最小费用及相应的加工顺序,它们就是各类的最优加工顺序.再用每一类的最小切割费用加上相应的刀具调整费用,得到加工总费用.各类的最优加工顺序进行比较,就可得整体的最优加工顺序.0>e 时,%jieduan e>0function[min,minx1,minx2 minx3]=cutordel(a0,a1,d,r)minc=[inf,inf,inf];minx1=[];minx2=[];minx3=[];k1=0;k2=0;k3=0;v1=[1 3 6];%三类可行的加工顺序表x1,x2 x3及相应的切割费用表.%c1 c2 c3for i1=1:6,ol=v1(i1);v2=v;v2(i)=[];for i2=:5,o2=v2(i2);v3=v2;v3(i2)=[];for i3=1:4,o3=v3(i3);v4=v3;v4(i3)=[];for i4=1:3,o4=v4(i4);v5=v4;v5(i4)=[];for i5=,o5=v5(i5);o6=(3-i5);x=[o1,o2 o5 o6];c=cost(x,a0,a1,d1,r);z=adjustnum(x);switch zcase 1k1=k1+1;x1(k1,:)=x;c1(k1)=c;case 2k2=k+1;x2(k2:)=x;c2(k2)=c;case 3k3=k3+1;x3(k3,:)=x;c3(k3)=c;end,end,end,end,end.Minc=[min(c1),min(c2),min(c3)];Find(c1==minc(1));Minx1=x1(ans,:);find(c2==minc(2));Minx2=x2(ans,:);find(c3=minc(3));Minx3=x3(ans,:).求切割顺序是x 时,切割费用的子函数const 为function c=const(x,a0,a1,d1,r)c=0;d2=a0-a1-d1;a=a0;for p=1:6switch x(p)case 1c=c+a(2)*a(3);a(1)=a(1)-d1(1);case 2c=c+a(2)*a(3);a(1)=a(1)-d2;case 3c=c+a(1)*a(3); a(2)=a(2)-d(2);case 4c=c+a(1)*a(3);a(2)=a(2)-d2(2);case 5c=c+r*a(1)*a(2);a(3)=a(3)-d1(3);case 6c=c+r*a(1)*a(2);a(3)=a(3)-d2(3);endend.%求加工顺序x的调整刀具次数的子函数adjustnum(x)为function z=adjustnum(x)z=-1;v0=0;for p=:6if x(p)<5if x(p)<3v=1;elsev=2;endif(v0-v)~=0z=z+1;v0=v;endendend在MA TLAB输入命令a0=[10 14.5 19];a1=[3 2 4];d1=[6 7 9];r=1.5;[minc minx1 minx2 minx3]=cutrode(a0,a1,d1,r)运算结果为因此,每一类的最小费用分别为:C1(e)=+e 此时调整一次刀具。
模型分析方法模型分析方法是指在实际问题中,通过建立数学模型,运用数学方法和计算机技术进行分析和求解的一种方法。
模型分析方法的应用范围非常广泛,涉及到经济、管理、工程、科学等各个领域。
在实际工作中,我们常常需要运用模型分析方法来解决各种实际问题,因此掌握模型分析方法是非常重要的。
首先,模型分析方法的建立是解决实际问题的第一步。
在建立模型时,我们需要根据实际问题的特点和要求,选择合适的数学模型。
数学模型可以是线性模型、非线性模型、动态模型等不同类型的模型,我们需要根据实际问题的特点来选择合适的模型类型。
在选择模型类型的同时,还需要确定模型的参数和变量,这些参数和变量需要能够准确地反映实际问题的特点,从而保证模型的有效性和准确性。
其次,模型分析方法的求解是解决实际问题的关键步骤。
在模型建立完成后,我们需要利用数学方法和计算机技术对模型进行求解。
求解的过程中,我们需要选择合适的求解方法,如数值方法、优化方法、模拟方法等,这些方法可以根据模型的特点和求解的要求来选择。
在求解过程中,我们需要对模型进行稳定性分析和敏感性分析,以保证模型的可靠性和有效性。
最后,模型分析方法的应用是解决实际问题的最终目的。
在模型建立和求解完成后,我们需要将模型的分析结果应用到实际问题中。
在应用过程中,我们需要对分析结果进行解释和评价,从而得出结论并提出建议。
同时,我们还需要对模型的应用效果进行监测和评估,以不断改进和完善模型分析方法。
总之,模型分析方法是解决实际问题的重要方法,它涉及到模型的建立、求解和应用等多个方面。
掌握模型分析方法对于提高问题解决能力和工作效率具有重要意义,因此我们应该不断学习和提高模型分析方法的应用能力。
希望本文的介绍能够对大家有所帮助,谢谢阅读。
初中数学模型分析大全!数学模型是对实际问题进行数学建模和分析的方法,通过模型能够更好地理解和解决实际问题。
下面是一些常见的初中数学模型分析。
1.几何模型分析几何模型分析是根据实际问题的几何特征建立数学模型,通过几何方法进行分析。
例如,求解正方形的对角线长度、计算圆的面积和周长等。
2.比例模型分析比例模型分析是根据实际问题中的数量比例关系建立数学模型,并通过比例关系进行计算和分析。
例如,求解比例尺、计算物体放大或缩小的尺寸等。
3.图论模型分析图论模型分析是通过图的结构和关系建立数学模型,解决实际问题。
例如,解决城市交通问题、计算网络拓扑结构等。
4.随机模型分析随机模型分析是对实际问题中的随机性进行建模和分析。
例如,通过骰子模型分析掷骰子的概率分布、通过抽样模型分析人口统计数据等。
5.线性规划模型分析线性规划模型分析是通过线性规划方法解决实际问题。
例如,通过线性规划分析最优化问题、资源分配问题等。
6.统计模型分析统计模型分析是根据概率统计理论建立数学模型,并通过统计方法进行分析和推断。
例如,通过回归分析模型分析变量之间的相关性等。
7.最优化模型分析最优化模型分析是通过最优化理论建立数学模型,解决实际问题中的最优化问题。
例如,通过最小二乘法分析数据曲线拟合、通过线性规划分析资源分配问题等。
8.动力系统模型分析动力系统模型分析是根据物体运动的动力学特征建立数学模型,并通过动力学分析解决实际问题。
例如,通过微分方程模型分析弹簧振动、分析物体运动规律等。
总结起来,初中数学模型分析包括几何模型分析、比例模型分析、图论模型分析、随机模型分析、线性规划模型分析、统计模型分析、最优化模型分析和动力系统模型分析等。
通过建立数学模型和使用相应的方法进行分析,可以更好地解决实际问题,并提高数学思维能力和解决问题的能力。
常用数学模型的数学方法数学模型是数学的一种应用形式,它是对实际问题所做的一种数学抽象。
利用数学模型可以解决很多实际问题,如金融学、工程设计、物理学、经济学等等领域都可以使用数学模型。
在实际应用过程中,我们需要运用各种数学方法来构建数学模型。
下面将介绍几种常用的数学模型及其求解方法。
一、线性回归模型线性回归模型是一种通过分析自变量与因变量之间的线性关系来预测结果的模型。
具体来说,就是通过实验或数据采集,建立自变量与因变量之间的线性方程,然后根据已知数据拟合这个方程,从而得到预测值。
在建立线性回归模型时,我们需要使用最小二乘法来确定方程的系数。
最小二乘法是一种基本的数学统计方法,它的核心思想是使残差平方和最小化。
在建立线性回归模型时,我们可以使用Excel等软件进行计算和拟合,也可以使用Python等编程语言进行代码编写。
二、差分方程模型差分方程模型可以用来描述动态系统中各个变量之间的关系。
与线性回归模型不同,差分方程模型考虑了时间因素的影响,因此也叫做时间序列模型。
差分方程模型的求解需要用到微积分中的一些技巧,如Euler 法、Runge-Kutta法等数值解法。
同时,还需要掌握常微分方程的基本理论与方法,如欧拉公式、拉普拉斯变换、Z变换等。
三、优化模型优化模型是指在满足一定条件下,寻找一组或一些最优解的问题。
这类问题在经济学、工程学、物理学等领域中都有广泛的应用。
在求解优化模型时,需要使用线性规划、非线性规划、整数规划等数学方法。
同时,还需要掌握一些算法和数据结构知识,如单纯形法、分支定界法、动态规划等算法。
四、统计模型统计模型是用来研究数据的一种方法。
在实际应用中,数据总是包含着一定的规律和趋势,而统计模型就是通过对数据的分析来确定这些规律和趋势的。
在统计模型中,我们需要用到各种统计方法,如假设检验、方差分析、回归分析等。
同时,还需要掌握一些统计软件的使用,如SPSS、Stata等软件。
总体来说,数学模型的建立以及求解都需要掌握一定的数学和计算机知识。
数学模型分类(六大类)优化模型、微分方程模型、统计模型、概率模型、图论模型、决策模型数学建模常用方法一、机理分析法––从基本物理定律以及系统的结构数据来推导出模型。
1.比例分析法--建立变量之间函数关系的最基本最常用的方法。
2.代数方法--求解离散问题(离散的数据、符号、图形)的主要方法。
3.逻辑方法--是数学理论研究的重要方法,对社会学和经济学等领域的实际问题,在决策,对策等学科中得到广泛应用。
4.常微分方程--解决两个变量之间的变化规律,关键是建立"瞬时变化率"的表达式。
5.偏微分方程--解决因变量与两个以上自变量之间的变化规律。
6.量纲分析法二、数据分析法––从大量的观测数据利用统计方法建立数学模型。
1.回归分析法--用于对函数f(x)的一组观测值(xi,fi)i="1,2,…,n,确定函数的表达式,由于处理的是静态的独立数据,故称为数理统计方法。
2.时序分析法--处理的是动态的相关数据,又称为过程统计方法。
三、仿真和其他方法1.计算机仿真(模拟)--实质上是统计估计方法,等效于抽样试验。
①离散系统仿真--有一组状态变量。
②连续系统仿真--有解析表达式或系统结构图。
2.因子试验法--在系统上作局部试验,再根据试验结果进行不断分析修改,求得所需的模型结构。
3.人工现实法--基于对系统过去行为的了解和对未来希望达到的目标,并考虑到系统有关因素的可能变化,人为地组成一个系统。
四、综合评价方法1.层次分析法2.模糊综合评判法3.数据包络分析法4.人工神经网络评价法5.灰色综合评价法6.上述综合评价方法的两两集成数学建模常用算法1.蒙特卡罗算法(该算法又称随机性模拟算法,是通过计算机仿真来解决问题的算法,同时可以通过模拟可以来检验自己模型的正确性,是比赛时必用的方法)2.数据拟合、参数估计、插值等数据处理算法(比赛中通常会遇到大量的数据需要处理,而处理数据的关键就在于这些算法,通常使用Matlab作为工具)3.线性规划、整数规划、多元规划、二次规划等规划类问题(建模竞赛大多数问题属于最优化问题,很多时候这些问题可以用数学规划算法来描述,通常使用Lindo、Lingo软件实现)4.图论算法(这类算法可以分为很多种,包括最短路、网络流、二分图等算法,涉及到图论的问题可以用这些方法解决,需要认真准备)5.动态规划、回溯搜索、分治算法、分支定界等计算机算法(这些算法是算法设计中比较常用的方法,很多场合可以用到竞赛中)6.最优化理论的三大非经典算法:模拟退火法、神经网络、遗传算法(这些问题是用来解决一些较困难的最优化问题的算法,对于有些问题非常有帮助,但是算法的实现比较困难,需慎重使用)7.网格算法和穷举法(网格算法和穷举法都是暴力搜索最优点的算法,在很多竞赛题中有应用,当重点讨论模型本身而轻视算法的时候,可以使用这种暴力方案,最好使用一些高级语言作为编程工具)8.一些连续离散化方法(很多问题都是实际来的,数据可以是连续的,而计算机只认的是离散的数据,因此将其离散化后进行差分代替微分、求和代替积分等思想是非常重要的)9.数值分析算法(如果在比赛中采用高级语言进行编程的话,那一些数值分析中常用的算法比如方程组求解、矩阵运算、函数积分等算法就需要额外编写库函数进行调用)10.图象处理算法(赛题中有一类问题与图形有关,即使与图形无关)。
数学建模与数据分析方法在当今的信息时代,数据已经成为了我们生活和工作中不可缺少的一部分。
在各个领域,我们都会产生大量的数据,这些数据包含了丰富的信息和价值。
然而,在海量的数据面前,我们如何进行有效的分析和利用呢?这时候,数学建模与数据分析方法就能够帮助我们挖掘数据中的价值。
一. 数学建模数学建模指的是通过数学方法模拟现实问题,解决实际问题的过程。
在实际应用中,数学建模是一种非常优秀的解决问题的方法,可以应用到各个领域,例如医学、工程科学、自然科学、经济学等等。
在数学建模中,我们需要寻找问题的数学模型,即将实际问题输入到数学模型中,根据相应的算法和计算方法求解。
数学建模可以帮助我们在现实问题中寻找数学规律和模式,从而达到对问题的深入理解和有效解决。
例如,在医学领域,数学建模可以用于预测疾病流行趋势、设计药物剂量等等。
在工程科学领域,数学建模可以用于模拟和优化机械设计、建筑结构计算等等。
在自然科学领域,数学建模可以用于预测自然灾害、生态环境演变等等。
二. 数据分析数据分析指的是对数据进行处理、分析和解释的过程。
数据分析中,我们需要通过多种数据处理方法对数据进行清洗、整理,同时通过统计学和机器学习等分析手段,对数据进行深入解释与挖掘。
数据分析对于提高决策的准确性、优化业务流程、增加竞争优势等都具有重要的影响。
在数据分析中,我们需要掌握多种数据处理和分析方法。
例如,数据预处理,包括数据清洗、数据整合、数据转换等步骤;统计分析,包括描述性统计、假设检验、线性回归、卡方检验等等;机器学习,包括聚类、分类、回归、决策树等等。
不同的分析方法可以针对不同的数据类型和应用场景,在实际应用中起到重要的作用。
例如,在金融领域,数据分析可以用于风险评估、投资组合优化等等。
在健康领域,数据分析可以用于疾病预测、治疗决策等等。
在社交媒体领域,数据分析可以用于用户行为模式分析、推荐系统推荐精准度优化等等。
三. 数学建模与数据分析的结合数学建模和数据分析是两个相辅相成的领域。
数学建模的基本方法1.类比法数学建模的过程就是把实际问题经过分析、抽象、概括后,用数学语言、数学概念和数学符号表述成数学问题,而表述成什么样的问题取决于思索者解决问题的意图。
类比法建模一般在具体分析该实际问题的各个因素的基础上,通过联想、归纳对各因素进行分析,并且与已知模型比较,把未知关系化为已知关系,在不同的对象或完全不相关的对象中找出同样的或相似的关系,用已知模型的某些结论类比得到解决该"类似'问题的数学方法,最终建立起解决问题的模型。
2.量纲分析法量纲分析是20世纪初提出的在物理领域中建立数学模型的一种方法,它是在经验和实验的基础上,利用物理定律的量纲齐次性,确定各物理量之间的关系。
它是一种数学分析方法,通过量纲分析,可以正确地分析各变量之间的关系,简化实验和便于成果整理。
2解题方法类比法:数学建模的过程就是把实际问题经过分析、抽象、概括后,用数学语言、数学概念和数学符号表述成数学问题,而表述成什么样的问题取决于思索者解决问题的意图。
类比法建模一般在具体分析该实际问题的各个因素的基础上,通过联想、归纳对各因素进行分析,并且与已知模型比较,把未知关系化为已知关系,在不同的对象或完全不相关的对象中找出同样的或相似的关系,用已知模型的某些结论类比得到解决该"类似'问题的数学方法,最终建立起解决问题的模型。
量纲分析法:量纲分析是20世纪初提出的在物理领域中建立数学模型的一种方法,它是在经验和实验的基础上,利用物理定律的量纲齐次性,确定各物理量之间的关系。
它是一种数学分析方法,通过量纲分析,可以正确地分析各变量之间的关系,简化实验和便于成果整理。
3层次结构法1. 递阶层次结构原理:一个复杂的结构问题可以分解为它的组成部分或因素,即目标、准则、方案等.每一个因素称为元素.按照属性的不同把这些元素分组形成互不相交的层次,上一层的元素对相邻的下一层的全部或部分元素起支配作用,形成按层次自上而下的逐层支配关系.具有这种性质的层次称为递阶层次.2. 测度原理:决策就是要从一组已知的方案中选择理想方案,而理想方案一般是在一定的准则下通过使效用函数极大化而产生的.然而关于社会、经济系统的决策模型来说,经常难以定量测度.因此,层次分析法的核心是决策模型中各因素的测度化.3. 排序原理:层次分析法的排序问题,实质上是一组元素两两比较其重要性,计算元素相对重要性的测度问题4常见方法一、蒙特卡罗算法蒙特卡罗算法又称随机性模拟算法,是通过计算机仿真来解决问题的算法,同时可以通过模拟可以来检验自己模型的正确性,是比赛时必用的方法。
数学建模的常用模型与求解方法知识点总结数学建模是运用数学方法和技巧来研究和解决现实问题的一门学科。
它将实际问题抽象化,建立数学模型,并通过数学推理和计算求解模型,从而得出对实际问题的理解和解决方案。
本文将总结数学建模中常用的模型类型和求解方法,并介绍每种方法的应用场景。
一、线性规划模型与求解方法线性规划是数学建模中最常用的模型之一,其基本形式为:$$\begin{align*}\max \quad & c^Tx \\s.t. \quad & Ax \leq b \\& x \geq 0\end{align*}$$其中,$x$为决策变量向量,$c$为目标函数系数向量,$A$为约束系数矩阵,$b$为约束条件向量。
常用的求解方法有单纯形法、对偶单纯形法和内点法等。
二、非线性规划模型与求解方法非线性规划是一类约束条件下的非线性优化问题,其目标函数或约束条件存在非线性函数。
常见的非线性规划模型包括凸规划、二次规划和整数规划等。
求解方法有梯度法、拟牛顿法和遗传算法等。
三、动态规划模型与求解方法动态规划是一种用于解决多阶段决策问题的数学方法。
它通过将问题分解为一系列子问题,并利用子问题的最优解构造原问题的最优解。
常见的动态规划模型包括最短路径问题、背包问题和任务分配等。
求解方法有递推法、记忆化搜索和剪枝算法等。
四、图论模型与求解方法图论是研究图及其应用的一门学科,广泛应用于网络优化、城市规划和交通调度等领域。
常见的图论模型包括最小生成树、最短路径和最大流等。
求解方法有贪心算法、深度优先搜索和广度优先搜索等。
五、随机模型与概率统计方法随机模型是描述不确定性问题的数学模型,常用于风险评估和决策分析。
概率统计方法用于根据样本数据对随机模型进行参数估计和假设检验。
常见的随机模型包括马尔可夫链、蒙特卡洛模拟和马尔科夫决策过程等。
求解方法有蒙特卡洛法、马尔科夫链蒙特卡洛法和最大似然估计等。
六、模拟模型与求解方法模拟模型是通过生成一系列随机抽样数据来模拟实际问题,常用于风险评估和系统优化。
模型分析方法模型分析方法是指在研究某一问题或者现象时,使用数学模型和相关的分析方法进行研究和分析的过程。
在现实生活中,我们经常会遇到各种各样的问题和现象,而模型分析方法可以帮助我们更好地理解和解决这些问题。
在本文中,我们将介绍一些常见的模型分析方法,并探讨它们在实际应用中的作用和意义。
首先,我们来介绍一下常见的模型分析方法之一——统计分析方法。
统计分析方法是指通过对数据的收集、整理和分析,来揭示数据之间的规律和关系。
在实际应用中,统计分析方法被广泛应用于各个领域,比如市场调研、财务分析、医学研究等。
通过统计分析方法,我们可以更好地了解数据的特点和规律,从而为决策提供依据。
其次,我们要介绍的是数学建模方法。
数学建模是指利用数学工具和方法,对现实生活中的问题进行抽象和描述,构建数学模型,并通过模型分析方法对问题进行研究和分析。
数学建模方法在工程技术、物理学、生物学等领域都有着广泛的应用。
通过数学建模方法,我们可以将复杂的现实问题简化为数学模型,从而更好地理解和解决问题。
此外,还有一种常见的模型分析方法是仿真方法。
仿真方法是指利用计算机技术和数学模型,对现实生活中的问题进行模拟和实验。
仿真方法在工程设计、交通规划、人工智能等领域都有着重要的应用价值。
通过仿真方法,我们可以在虚拟的环境中进行实验和测试,从而更好地评估不同方案的效果和可行性。
最后,我们要介绍的是优化方法。
优化方法是指通过建立数学模型,寻找最优解或者最优决策的方法。
优化方法在生产调度、资源配置、运输路线规划等领域都有着广泛的应用。
通过优化方法,我们可以有效地提高资源利用效率,降低成本,提高生产效率。
综上所述,模型分析方法是一种重要的研究和分析工具,它在现实生活中有着广泛的应用。
通过统计分析方法、数学建模方法、仿真方法和优化方法,我们可以更好地理解和解决各种问题和现象,为决策提供科学依据。
因此,掌握和应用模型分析方法对于提高我们的分析能力和决策水平具有重要意义。
数学模型方法分析简述函数关系可以说是一种变量相依关系的数学模型.数学模型方法是处理科学理论问题的一种经典方法,也是处理各类实际问题的一般方法.掌握数学模型方法是非常必要的.在此,对数学模型方法作一简述.数学模型方法(Mathematical Modeling)称为MM方法.它是针对所考察的问题构造出相应的数学模型,通过对数学模型的研究,使问题得以解决的一种数学方法.一、数学模型的含义数学模型是针对于现实世界的某一特定对象,为了一个特定的目的,根据特有的内在规律,做出必要的简化和假设,运用适当的数学工具,采用形式化语言,概括或近似地表述出来的一种数学结构.它或者能解释特定对象的现实性态,或者能预测对象的未来状态,或者能提供处理对象的最优决策或控制.数学模型既源于现实又高于现实,不是实际原形,而是一种模拟,在数值上可以作为公式应用,可以推广到与原物相近的一类问题,可以作为某事物的数学语言,可译成算法语言,编写程序进入计算机.二、数学模型的建立过程建立一个实际问题的数学模型,需要一定的洞察力和想像力,筛选、抛弃次要因素,突出主要因素,做出适当的抽象和简化.全过程一般分为表述、求解、解释、验证几个阶段,并且通过这些阶段完成从现实对象到数学模型,再从数学模型到现实对象的循环.可用流程图表示如下:表述根据建立数学模型的目的和掌握的信息,将实际问题翻译成数学问题,用数学语言确切地表述出来.这一个关键的过程,需要对实际问题进行分析,甚至要做调查研究,查找资料,对问题进行简化、假设、数学抽象,运用有关的数学概念、数学符号和数学表达式去表现客观对象及其关系.如果现有的数学工具不够用时,可根据实际情况,大胆创造新的数学概念和方法去表现模型.求解选择适当的方法,求得数学模型的解答.解释数学解答翻译回现实对象,给实际问题的解答.验证检验解答的正确性.例如,哥尼斯堡一条普雷格尔河,这条河有两个支流,在城中心汇合成大河,河中间有一小岛,河上有七座桥,如图1所示.18世纪哥尼斯堡的很多居民总想一次不重复地走过这七座桥,再回到出发点.可是试来试去总是办不到,于是有人写信给当时著名的数学家欧拉,欧拉于1736年,建立了一个数学模型解决了这个问题.他把A、B、C、D这四块陆地抽象为数学中的点,把七座桥抽象为七条线,如图2所示.CB图1 图2人们步行七桥问题,就相当于图2的一笔画问题,即能否将图2所示的图形不重复地一笔画出来,这样抽象并不改变问题的实质.哥尼斯堡七桥问题是一个具体的实际问题,属于数学模型的现实原型.经过理想化抽象所得到的如图2所示的一笔画问题便是七桥问题的数学模型.在一笔画的模型里,只保留了桥与地点的连接方式,而其他一切属性则全部抛弃了.所以从总体上来说,数学模型只是近似地表现了现实原型中的某些属性,而就所要解决的实际问题而言,它是更深刻、更正确、更全面地反映了现实,也正由此,对一笔画问题经过一定的分析和逻辑推理,得到此问题无解的结论之后,可以返回到七桥问题,得出七桥问题的解答,不重复走过七座桥回到出发点是不可能的. 数学模型,从广义上讲,一切数学概念、数学理论体系、各种数学公式、各种方程式、各种函数关系,以及由公式系列构成的算法系统等等都可以叫做数学模型.从狭义上讲,只有那些反映特定问题或特定的具体事物系统的数学关系的结构,才叫做数学模型.在现代应用数学中,数学模型都作狭义解释.而建立数学模型的目的,主要是为了解决具体的实际问题.三、函数模型的建立研究数学模型,建立数学模型,进而借鉴数学模型,对提高解决实际问题的能力,以及提高数学素养都是十分重要的.建立函数模型的步骤可分为:(1) 分析问题中哪些是变量,哪些是常量,分别用字母表示;(2) 根据所给条件,运用数学或物理知识,确定等量关系;(3) 具体写出解析式)(x f y =,并指明定义域.例1 重力为P 的物体置于地平面上,设有一与水平方向成α角的拉力F ,使物体由静止 开始移动,求物体开始移动时拉力F 与角α之间的函数模型(图3). 解 由物理知,当水平拉力与摩擦力平衡时,物体开始移动,而摩擦力是与正压力αsin F P -成正比的(设摩擦系数为μ),故有)sin (cos αμαF P F -=,即 αμαμsin cos +=P F (0°<α<90°).建立函数模型是一个比较灵活的问题,无定法可循,只有多做些练习才能逐步掌握.图3例2 在金融业务中有一种利息叫做单利.设p 是本金,r 是计息的利率,c 是计息期满应付的利息,n 是计息期数,I 是n 个计息期(即借期或存期)应付的单利,A 是本利和.求本利和A 与计息期数n 的函数模型解 本金计息期满的利息计息期的利率= ,即=r p c .由此得 pr c =,单利与计息数成正比,即n 个计息期应付的单利I 为cn I =,因为 pr c =,所以 prn I =,本利和为 I p A +=,即 prn p A +=,可得本利和与计息期数的函数关系,即单利模型)1(rn p A +=.四、数学建模方法数学建模就是建立数学模型,建立数学模型的过程就是数学建模的过程(见数学建模过程流程图).数学建模是一种数学的思考方法,是运用数学的语言和方法,通过抽象、简化建立能近似刻画并解决实际问题的数学模型的一种强有力的数学手段.常用的数学建模方法如下:(一) 机理分析法 从基本物理定律以及系统的结构数据来推导出数学模型的方法1. 比例分析法 —— 建立变量之间函数关系的最基本、最常用的方法.2. 代数方法——求解离散问题(离散的数据、符号、图形)的主要方法.3. 逻辑方法——是数学理论研究的重要方法,用以解决社会学和经济学等领域的实际问题,在决策论,对策论等学科中得到广泛应用.4. 常微分方程——解决两个变量之间的变化规律,关键是建立“瞬时变化率”的表达式.5. 偏微分方程——解决因变量与两个以上自变量之间的变化规律.(二) 数据分析法 从大量的观测数据利用统计方法建立数学模型的方法1. 回归分析法——用于对函数()f x 的一组观测值(,())(1,2,)i i x f x i n = ,确定函数的表达式,由于处理的是静态的独立数据,故称为数理统计方法.2. 时序分析法——处理的是动态的相关数据,又称为过程统计方法.(三)仿真和其他方法1. 计算机仿真(模拟)——实质上是统计估计方法,等效于抽样试验.① 离散系统仿真——有一组状态变量.② 连续系统仿真——有解析表达式或系统结构图.2. 因子试验法——在系统上作局部试验,再根据试验结果进行不断分析修改,求得所需的模型结构.3. 人工现实法——基于对系统过去行为的了解和对未来希望达到的目标,并考虑到系统有关因素的可能变化,人为地组成一个系统.五、名师谈数学建模竞赛1.全国人大常委会副委员长、著名数学家丁石孙建模竞赛,我认为是一个非常有意义的活动.很多人都知道,数学是非常重要的.我们教了几十年的数学,曾经花了很多力气想使得大家能够认识到数学的重要性,但是我们没有找到一个合适的方法.我觉得,建模竞赛是一个很好的方法,使得更多的学生,包括他们有关的朋友,能够认识到数学的真正用处.因为,数学对于学生的培养,不只是数学定理、数学公式,这其实是次要的,像刚才同学所说的,更重要的是培养同学一个正确的思想方法,而且依据自己所学到的知识,能够不断创新,不断地找出新的途径.这不是在课堂里死啃几个定理就能够解决的.我们用什么办法才能让更多的人,更多的学生认识到这个事情呢?我觉得,建模竞赛是一个很好的方法.2.前教育部副部长周远清数学建模竞赛的特点是题目由工程技术、管理科学中的实际问题简化加工而成,对数学知识要求不深,一般没有事先设定的标准答案,但留有充分余地供参赛者发挥其聪明才智和创造精神.由于竞赛是由三名大学生组成一队,在三天时间内分工合作,共同完成一篇论文,因而也培养了学生的合作精神.加之竞赛评奖以假设的合理性、建模的创造性、结果的正确性和文字表述的清晰程度为主要标准,因此,这项活动的开展有利于对学生知识、能力和素质的全面培养,既丰富、活跃了广大同学的课外生活,也为优秀学生脱颖而出创造了条件.3.中国工业与应用数学学会理事长、中科院院士曾庆存同学们不要忘记,中华文化是博大精深的,很可能下个世纪是中西文化的合璧.现在已经有很多苗头,光靠西方的演绎或者是还原论的东西解决不了问题,说不定要借助于东方的文化,正像莱布尼茨借助于中国的哲学一样,还有控制论、系统论是借助于中国的思维.希望同学们看怎么样能够把中华文化的精华和西方的结合起来,我看我们大有前途.下个世纪,有人说是知识经济,是美国人提出来的,我们可以同意,也可以不同意.但有一点,知识在经济或者社会发展当中所占的比例是越来越大,甚至会起决定性的作用,而知识思维的方式,不管是定量的或是定性的描述,都离不开数学.我希望同学们加把劲,把我国实现中等发达的过程更缩短一点.4.叶其孝、姜启源教授谈大学生数学建模竞赛数学建模:不仅仅是一项竞赛.数学建模,专家给它下的定义是:“通过对实际问题的抽象、简化,确定变量和参数,并应用某些‘规律’建立起变量、参数间的确定的数学问题(也可称为一个数学模型),求解该数学问题,解释验证所得到的解,从而确定能否用于解决问题多次循环、不断深化的过程.”简而言之,就是建立数学模型来解决各种实际问题的过程.1985年,美国率先举办了大学生数学建模竞赛.1992年中国工业与应用数学学会开始组织全国大学生数学建模竞赛.1994年起,这项竞赛由教育部高教司和中国工业与应用数学学会共同组织.姜启源教授介绍说,全国大学生数学建模竞赛是面向全国大学生的群众性科技活动.参赛者应根据题目要求,完成一篇包括模型的假设、建立和求解、计算机方法的设计和计算机实现、结果的分析和检验、模型的改进等方面的论文(即答卷).竞赛题目一般来源于工程技术和管理科学等方面经过适当简化加工的实现问题,有较大的灵活性供参赛者发挥其创造性,结果的正确性和文字表述的清晰程度为主要标准.全国大学生数学建模竞赛的规模逐年扩大,参赛学生也从几百人增加到几千人.每年还有不少学生参加美国大学生的数学建模竞赛,成绩优秀,在国际上产生了很大的影响.为什么这样的单项竞赛能够产生如此的吸引力呢?开展这项竞赛并开设相关的课程,对高等院校的教学工作会起什么样的作用?对大学生全面素质的提高又有什么样的帮助?对记者的问题,叶其孝教授回答说,这种竞赛对参加者来说,是一种综合的训练,在相当程度上模拟了大学生毕业以后的工作环境.参赛者不要求预先掌握深入的专门知识,只需要学过普通高校的数学课程;更主要的是要靠参赛者自己动脑子,自己查找文献资料,同队成员讨论研究,齐心协力完成答卷.因此,它对学生的能力培养是多方面的.叶教授将之归纳为:应用数学进行分析、推理、证明和计算的能力;“双向翻译”(即用数学语言表达实际问题,用普通人能理解的语言表达数学的结果)的能力;应用计算机及相应数学软件的能力;应变能力(即独立查找文献,消化和应用的能力);组织、协调、管理特别是及时妥协的能力;交流表达的能力;写作的能力;创造性、想像力、联想力和洞察力.它还可以培养学生坚强的意志,培养自律、“慎独”的优秀品质,培养正确的数学观.数学模型是联系实际问题与数学的桥梁,是各种应用问题严密化、精确化、科学化的途径,是发现问题、解决问题和探索新真理的工具.数学模型具有解释、判断、预测等重要功能,它在各个领域的应用会越来越广泛.其主要原因是:(1)社会生活的各个方面正在日益数量化,人们对各种问题的要求愈来愈精确;(2)计算机的发展为精确化提供了条件;(3)很多无法实验或费用很大的实验问题,用数学模型进行研究是一个有效途径.很多像牛顿一样伟大的科学家都是建立和应用数学模型的大师,他们将各个不同的科学领域同数学有机地结合起来,在不同的学科中取得了巨大的成就.如力学中的牛顿定律,电磁学中的麦克斯韦方程组,化学中的门捷列夫周期表,生物学中的孟德尔遗传定律等都是经典学科中应用数学模型的光辉范例.目前在计算机的帮助下数学模型在生态、地质、航空等方面有了更加广泛和深入的应用.因此,从某种意义上讲,数学建模是培养现代化高科技人才的重要途径.数学建模课程可以培养和提高学生下列能力:(1)洞察能力.许多提出的问题往往不是数学化的,这就是需要建模工作者善于从实际工作提供的原形中抓住其数学本质;(2)数学语言翻译能力,即把经过一定抽象和简化的实际用数学的语言表达出来,形成数学模型,并对数学的方法和理论推导或计算得到的结果,能用大众化的语言表达出来,在此基础上提出解决某一问题的方案或建议;(3)综合应用分析能力.用已学到的数学思想和方法进行综合应用分析,并能学习一些新的知识;(4)联想能力.对于不少的实际问题,看起来完全不同,但在一定的简化层次下,它们的数学模型是相同的或相似的.这正是数学应用广泛性的体现,这就是培养学生有广泛的兴趣,多思考,勤奋踏实地工作,通过熟能生巧达到触类旁通的境界;(5)各种当代科技最新成果的使用能力.目前主要是应用计算机和相应的各种软件包,这不仅能够节省时间,得到直观形象的结果,有利与用户深入讨论,而且能够养成自觉应用最新科技成果的良好习惯.由于数学建模是以解决实际问题和培养学生应用数学的能力为目的的,它的教学内容和方式是多种多样的.从教材来看,有的强调数学方法,有的强调实际问题,有的强调分析解决问题的过程;从教学方式来看,有的以讲为主,有的以练为主,有的在数学实验室中让学生探索,有的带领学生到企事业中去合作解决真正的实际问题.尽管数学建模已有了很久的历史,数学建模课程却还是很年轻的一门课程.在70 年代末和80年代初,英国著名的剑桥大学专门为研究生开设了数学建模课程,差不多同时,欧美一些发达国家开始把数学建模的内容列入研究生、大学生以至中学生的教学计划中去,并于1983年开始举行两年一度的“数学建模教学和应用国际会议”进行定期交流.数学建模教学及其各种活动发展异常迅速,成为当代数学教育改革的主要方向之一.。