数理统计中的回归分析与方差分析
- 格式:docx
- 大小:37.30 KB
- 文档页数:3
第8章 方差分析与回归分析一、方差分析1.在一个单因子试验中,因子A有三个水平,每个水平下各重复4次,具体数据如下:表8-1试计算误差平方和s e、因子A的平方和S A与总平方和S T,并指出它们各自的自由度.解:此处因子水平数r=3,每个水平下的重复次数m=4,总试验次数为n=mr=12.首先,算出每个水平下的数据和以及总数据和:T1=8+5+7+4=24.T2=6+10+12+9=37.T3=0+1+5+2=8.T=T l+T2+T3=24+37+8=69.误差平方和S e由三个平方和组成:于是而2.在一个单因子试验中,因子A有4个水平,每个水平下重复次数分别为5,7,6,8.那么误差平方和、A的平方和及总平方和的自由度各是多少?解:此处因子水平数r=4,总试验的次数n=5+7+6+8=26,因而有误差平方和的自由度因子A的平方和的自由度总平方和的自由度3.在单因子试验中,因子A有4个水平,每个水平下各重复3次试验,现已求得每个水平下试验结果的样本标准差分别为1.5,2.0,1.6,1.2,则其误差平方和为多少?误差的方差σ2的估计值是多少?解:此处因子水平数r=4,每个水平下的试验次数m=3,误差平方和S e由四个平方组成,它们分别为于是其自由度为,误差方差σ2的估计值为4.在单因子方差分析中,因子A有三个水平,每个水平各做4次重复试验.请完成下列方差分析表,并在显著性水平α=0.05下对因子A是否显著作出检验.表8-2 方差分析表解:补充的方差分析表如下所示:表8-3 方差分析表对于给定的显著性水平,查表知,故拒绝域为,由于,因而认为因子A是显著的.此处检验的p值为5.用4种安眠药在兔子身上进行试验,特选24只健康的兔子,随机把它们均分为4组,每组各服一种安眠药,安眠时间如下所示.表8-4 安眠药试验数据在显著性水平下对其进行方差分析,可以得到什么结果?解:这是一个单因子方差分析的问题,根据样本数据计算,列表如下:表8-5于是根据以上结果进行方差分析,并继续计算得到各均方以及F 比,列于下表:表8-6在显著性水平下,查表得,拒绝域为,由于故认为因子A (安眠药)是显著的,即四种安眠药对兔子的安眠作用有明显的差别.此处检验的p 值为6.为研究咖啡因对人体功能的影响,特选30名体质大致相同的健康男大学生进行手指叩击训练,此外咖啡因选三个水平:每个水平下冲泡l0杯水,外观无差别,并加以编号,然后让30位大学生每人从中任选一杯服下,2h后,请每人做手指叩击,统计员记录其每分钟叩击次数,试验结果统计如下表:表8-7请对上述数据进行方差分析,从中可得到什么结论?解:我们知道,对数据作线性变换不会影响方差分析的结果,这里将原始数据同时减去240,并作相应的计算,计算结果列入下表:表8-8于是可计算得到三个平方和把上述诸平方和及其自由度填入方差分析表,并继续计算得到各均方以及F比:表8-9若取查表知,从而拒绝域为,由于.故认为因子A(咖啡因剂量)是显著的,即三种不同剂量对人的作用有明显的差别.此处检验的p值为7.某粮食加工厂试验三种储藏方法对粮食含水率有无显著影响.现取一批粮食分成若干份,分别用三种不同的方法储藏,过一段时间后测得的含水率如下表:表8-10(1)假定各种方法储藏的粮食的含水率服从正态分布,且方差相等,试在下检验这三种方法对含水率有无显著影响;(2)对每种方法的平均含水率给出置信水平为0.95的置信区间.解:(1)这是一个单因子方差分析的问题,由所给数据计算如下表:表8-11三个平方和分别为。
概率论与数理统计知识点总结概率论与数理统计是数学的一个重要分支,主要研究各种随机现象的规律性及其数值描述。
下面将对概率论与数理统计的一些重要知识点进行总结。
一、概率论知识点总结1. 随机事件与概率- 随机事件:指在一定条件下具有不确定性的事件。
- 概率:用来描述随机事件发生的可能性大小的数值。
2. 古典概型与几何概型- 古典概型:指随机试验中,所有基本事件的可能性相等的情况。
- 几何概型:指随机试验中,基本事件的可能性不完全相等,与图形的属性有关的情况。
3. 随机变量与概率分布- 随机变量:定义在样本空间上的函数,用来描述试验结果与数值之间的对应关系。
- 离散随机变量:取有限个或可列个数值的随机变量。
- 连续随机变量:取无限个数值的随机变量。
4. 期望与方差- 期望:反映随机变量平均取值的数值。
- 方差:反映随机变量取值偏离期望值的程度。
5. 大数定律与中心极限定理- 大数定律:指在独立重复试验中,随着试验次数增加,事件发生的频率趋近于其概率。
- 中心极限定理:指在独立随机变量之和的情况下,当随机变量数目趋于无穷时,这些随机变量之和的分布趋近于正态分布。
二、数理统计知识点总结1. 抽样与抽样分布- 抽样:指对总体进行有规则地选择一部分样本进行观察和研究的过程。
- 抽样分布:指用统计量对不同样本进行计算所得到的分布。
2. 参数估计与置信区间- 参数估计:根据样本推断总体的未知参数。
- 置信区间:对于总体参数估计的一个区间估计,用来表示这个参数的可能取值范围。
3. 假设检验与统计显著性- 假设检验:用来判断统计推断是否与已知事实相符。
- 统计显著性:基于样本数据,对总体或总体参数进行判断的一种方法。
4. 方差分析与回归分析- 方差分析:用来研究因素对于某一变量均值的影响程度。
- 回归分析:通过观察变量之间的关系,建立数学模型来描述两个或多个变量间的依赖关系。
5. 交叉表与卡方检验- 交叉表:将两个或多个变量的数据按照某种方式交叉排列而形成的表格。
变异系数:描述数据离散程度的相对指标,是标准差与均值之比,常用百分比表示。
样本容量:在一个总体X中抽取n个个体组成集合,所含个体的数目n称~。
点估计:以某个适当统计量的观测值作为未知参数的估计值。
相关分析:在统计中,用相关指标来表明相交变量之间的密切程度,其理论、计算和分析称~。
相关系数:在相关分析中,用来度量随机变量X与Y之间线性相关密切程度统计指标。
方差:各数据观测值与均值间离差的平方和的平均.极差:又称全距,是一组数据的最大值与最小值之差,用R来表示。
统计概率:设在相同的条件下进行大量重复试验,若事件A的频率逐渐稳定地趋于某个确定的常数P,则称P为事件A的——离散型随机变量:如果随机变量X的取值仅为有限个或可列无穷多个数值,即可以一一列举出来,则称X 是-——-总体:在数理统计中,讲研究的对象全体称为总体。
回归分析:研究具有相关关系的变量之间数量关系式的统计方法。
方差分析:对全部样本观测值的差异进行分解,将某种因素下各组样本观测值之间可能存在的因素所造成的系统性误差,与随机抽样所造成的随机误差加以区分比较,以推断该因素对试验结果的影响是否显著。
原理:当各总体均服从正态分布,且方差相同时,各总体之间的差异,就简单地体现在它们各自均值之间的差异,这就是方差分析的出发点。
显著性水平:在假设检验中,将事先给定的小概率称α~。
第一类错误:当原假设H0为真时,拒绝了H0的结论,称~。
第二类错误:当假设H0不为真时,却没有拒绝H0的结论,称~。
必然事件:每次试验中一定会发生的事件。
随机事件:在随机试验中,可能出现也可能不出现,而在大量重复试验中具有某种规律性的事件叫做随机事件随机试验:在相同条件下可重复进行,试验所有结果是事先明确可知的,且不只一个,每次试验恰好出现其中之一,但无法预测是一个试验。
小概率原理:小概率事件在一次试验中几乎不可能发生显著性水平:在假设检验中,将事先给定的小概率又称为显著性水平。
统计分析方法有哪几种统计分析方法是一种通过数理统计学方法对数据进行整理、描述、分析和演绎的过程。
下面我将介绍一些常用的统计分析方法,包括描述统计、推断统计、相关分析、回归分析、方差分析和聚类分析等。
1. 描述统计描述统计是对数据进行整理、描述和总结的方法。
常用的描述统计方法包括测量数据的中心趋势(如均值、中位数、众数)、离散程度(如方差、标准差、极差)、数据的分布形态(如正态分布、偏态分布)等。
通过描述统计可以对数据的特征有一个整体了解,为进一步的分析提供基础。
2. 推断统计推断统计是利用已有的样本数据,对总体的参数进行推断的方法。
常用的推断统计方法包括参数估计和假设检验。
参数估计是通过样本数据估计总体参数的值,常用的方法有点估计和区间估计。
假设检验是通过对样本数据进行分析,判断总体参数的值是否符合某个特定的假设,常用的方法有t检验、F检验等。
3. 相关分析相关分析是用来探究变量之间是否存在某种相关关系的方法。
常用的相关分析方法包括相关系数和回归分析。
相关系数是用来衡量两个变量之间线性相关程度的指标,常用的相关系数有Pearson相关系数和Spearman相关系数。
回归分析是通过拟合一个数学模型,描述一个或多个自变量对因变量的影响程度和变化趋势。
4. 回归分析回归分析是一种用来探究因变量与自变量之间关系的统计方法。
在回归分析中,通过建立数学模型来描述因变量与自变量之间的关系,常用的回归分析方法有线性回归、多项式回归、逻辑回归等。
回归分析可以用来预测因变量的值,并分析自变量对因变量的影响程度和方向。
5. 方差分析方差分析是一种用来比较两个或多个组间差异显著性的方法。
方差分析可以用来判断一个因素对某个测量指标的影响是否显著,并比较不同水平之间差异的大小。
常用的方差分析方法有单因素方差分析、双因素方差分析、重复测量方差分析等。
6. 聚类分析聚类分析是一种将样本数据划分为若干个互不重叠的群组的方法。
聚类分析通过寻找数据中的相似性,将具有相似特征的样本划分到同一组,形成聚类结构。
考研数学一大纲重难点解析概率论与数理统计部分典型题型剖析概率论与数理统计是考研数学一大纲中的重要部分,也是考生们在备考过程中常常遇到的难点之一。
本文将重点解析概率论与数理统计的典型题型,帮助考生更好地掌握这一部分知识。
一、概率论1. 概率与事件概率论的基础是概率与事件的概念。
在此部分,考生需要掌握事件的基本概念、事件的运算、概率的定义、概率的性质等内容。
典型题型包括事件的互斥与独立性、事件的运算法则等。
考生在解答此类题目时应注意运用概率的基本性质,并进行合理的计算。
2. 随机变量及其分布律随机变量是概率论与数理统计的重要概念之一。
考生需要掌握随机变量的定义、离散随机变量与连续随机变量的概念、分布律的性质等知识点。
典型题型包括计算随机变量的期望、方差等。
考生在解答此类题目时应注意根据定义和性质进行计算,并合理运用公式。
3. 数理期望与方差数理期望与方差是随机变量的重要特征之一。
考生需要掌握数理期望与方差的概念、性质、计算方法等知识点。
典型题型包括利用数理期望与方差计算随机变量的相关性和条件概率等。
考生在解答此类题目时应注意计算过程的合理性,并运用数理期望与方差的性质进行推理。
4. 大数定律与中心极限定理大数定律与中心极限定理是概率论的重要理论。
考生需要掌握大数定律与中心极限定理的概念、条件以及应用方法。
典型题型包括利用大数定律和中心极限定理求解随机变量的极限分布等。
考生在解答此类题目时应注意运用大数定律和中心极限定理的条件,并进行合理的推导。
二、数理统计1. 参数估计参数估计是数理统计的重要内容之一。
考生需要掌握点估计和区间估计的概念、性质、计算方法等知识点。
典型题型包括利用最大似然估计和矩估计求解参数的估计量等。
考生在解答此类题目时应注意理解估计的概念和方法,并进行合理的计算与推导。
2. 假设检验假设检验是数理统计中的重要内容之一。
考生需要掌握假设检验的基本原理、步骤、常见假设检验方法等知识点。
数理统计中的回归分析与ANOVA 在数理统计学中,回归分析与ANOVA(Analysis of Variance,方差分析)是两个重要的统计方法。
回归分析用于研究自变量与因变量之间的关系,ANOVA则用于比较两个或多个样本均值之间的差异。
本文将分别介绍这两个方法及其在数理统计学中的应用。
回归分析是一种用于探究自变量与因变量之间关系的统计方法。
它试图通过建立一个数学模型来描述自变量与因变量之间的函数关系。
可根据自变量的数量和类型的不同,分为简单回归和多元回归。
简单回归分析只包含一个自变量,多元回归则包含两个或两个以上的自变量。
简单回归分析的数学模型可以表示为:Y = β0 + β1X + ε,其中Y为因变量,X为自变量,β0和β1为回归系数,ε为误差。
通过最小二乘法估计回归系数,可以得到拟合的直线方程。
此外,还可以计算回归系数的显著性,利用相关系数判断回归模型的拟合程度。
多元回归分析的模型为:Y = β0 + β1X1 + β2X2 + ... + βkXk+ ε。
与简单回归相比,多元回归包含了多个自变量,可以更全面地考虑自变量对因变量的影响。
同样,可以通过最小二乘法估计回归系数,并进行显著性检验和模型拟合度评估。
回归分析在实际应用中有很多用途。
例如,可以利用回归分析预测未来销售额、研究疾病发病率与环境因素的关系、评估股市指数与经济数据的相关性等。
回归分析提供了一种量化的方法,可以揭示自变量与因变量之间的关系,从而进行决策和预测。
ANOVA是一种用于比较两个或多个样本均值之间差异的方法。
它将总体方差分解为组内方差和组间方差,并通过比较组间方差与组内方差的大小来判断样本均值是否存在显著差异。
在ANOVA中,组间方差与组内方差的比值称为F值,可以进行假设检验。
在单因素ANOVA中,只有一个自变量(因素),例如,考察不同教育水平对收入的影响。
多因素或双因素ANOVA则考虑两个或多个自变量对因变量的影响,例如,同时考察教育水平和工作经验对收入的影响。
数理统计法种类数理统计法是数学分析和统计学原理的应用,通过对实验数据的收集、整理、分析和解释,从而得出科学结论的一种方法。
下面,我们将介绍数理统计法的种类。
一、描述性统计描述性统计是对数据进行描述的一种方法,它是所有统计分析的基础。
在描述性统计中,我们使用各种指标,如均值、中位数、众数、标准差和方差等,来揭示数据的分布和趋势,从而帮助我们更好地理解数据。
二、参数估计参数估计是基于统计分布来推断数据特征参数的一种方法。
在参数估计中,我们通过采样数据并应用概率分布来推断总体参数,如均值、标准差、比例等。
其中最常见的参数估计方法是最大似然估计。
三、假设检验假设检验是一种确定数据是否与某个假设相符或不符的方法。
在假设检验中,我们提出一个原假设和备择假设,并通过样本数据来判断原假设是否成立,从而决定是否拒绝原假设。
其中最常见的假设检验方法是 t 检验和 z 检验。
四、回归分析回归分析用于研究变量之间的关系和预测目标变量的值。
在回归分析中,我们将自变量和因变量之间的关系表达为一个数学方程,并通过拟合数据来确定方程参数。
其中最常见的回归分析方法是线性回归和多元回归。
五、方差分析方差分析用于比较各个组之间的差异以及确定因素对变量的影响。
在方差分析中,我们通过对不同组的差异进行分析来判断因素是否对变量有显著影响。
其中最常见的方差分析方法是单因素方差分析和双因素方差分析。
总结:数理统计法是科学研究中非常重要的一部分。
各种统计方法可以帮助我们更好地理解数据和问题,并从中得出结论。
同时,应用不同的统计方法和技术需要针对具体情况选择最适合的方法,以得到最可靠的结果。
高校统计学专业数理统计知识脉络梳理统计学是一门研究收集、整理、处理和分析数据的学科。
作为高校中的一门重要专业,统计学专业培养学生掌握数理统计知识,并能够运用这些知识解决实际问题。
本文将对高校统计学专业中的数理统计知识进行脉络梳理,旨在帮助读者更好地理解和应用统计学知识。
一、基础概念1.1 统计学的定义统计学是研究收集、整理、处理和分析数据的学科。
它旨在通过抽样调查和实验研究来推断总体的特征和规律。
1.2 数理统计的含义数理统计是统计学中的一个重要分支,它通过数学方法来研究和描述随机现象的规律性。
数理统计主要包括描述统计和推断统计两个方面。
二、描述统计2.1 数据的收集与整理描述统计的第一步是收集和整理数据。
这包括确定数据来源、设计调查问卷或实验方案、选择合适的抽样方法等。
2.2 数据的汇总与展示数据的汇总与展示是描述统计的关键环节。
常用的方法包括制表、绘图、计算常见统计指标等,以便更好地理解和解释数据。
2.3 统计指标的计算与解读描述统计的核心是计算和解读统计指标。
常见的统计指标包括均值、中位数、众数、标准差等,它们能够客观地描述和度量数据的特征。
三、推断统计3.1 参数估计推断统计的目标是根据样本数据对总体进行推断。
参数估计是推断统计的一种方法,它通过样本数据估计总体的未知参数。
3.2 假设检验假设检验是推断统计的另一种重要方法,它用于判断总体参数是否符合某种假设。
通过设定显著性水平和计算检验统计量,可以进行假设的接受或拒绝。
3.3 方差分析与回归分析方差分析和回归分析是推断统计的两个常用工具。
方差分析用于比较两个或多个总体均值之间的差异,而回归分析用于研究变量之间的关系和预测未来趋势。
四、抽样调查与实验设计4.1 抽样调查方法抽样调查是统计学中常用的数据收集方法。
常见的抽样方法包括随机抽样、分层抽样、整群抽样等,这些方法可以保证样本的代表性和可靠性。
4.2 实验设计与控制实验设计是统计学中用于研究因果关系的重要方法。
统 计 分 析(方差分析和回归分析)三、典型题解例1:某水产研究所为了比较四种不同配合饲料对鱼的饲喂效果,选取了条件基本相同的鱼20尾,随机分成四组,投喂不同饲料,经一个月试验以后,各组鱼的增重结果列于下表.饲喂不同饲料的鱼的增重 (单位:10g )饲料鱼的增重(x ij )合计.i x 平均.i x A 1 31.9 27.9 31.8 28.4 35.9 155.9 31.18 A 2 24.8 25.7 26.8 27.9 26.2 131.4 26.28 A 3 22.1 23.6 27.3 24.9 25.8 123.7 24.74 A 427.0 30.829.024.528.5139.827.96合计..x =550.8解:这是一个单因素等重复试验,因素数4s =,重复数05n =.各项平方和及自由度计算如下:220/550.8/(45)15169.03C T n s ==⨯=总平方和 222231.927.928.5T ij S x T C =∑∑-=+++-67.19903.151697.15368=-=组间平方和22222011(155.9131.4123.7139.8)515283.315169.03114.27A jS x C C n =-=+++-=-=∑ 组内平方和 199.67114.2785.40E T A S S S =-=-= 总自由度 0154119T f n s =-=⨯-= 处理间自由度 1413A f s =-=-= 处理内自由度 19316E T A f f f =-=-=用A S 、E S 分别除以A f 和E f 便得到处理间均方A MS 及处理内均方E MS ./114.27/338.09/85.40/16 5.34A A A E E E MS S f MS S f ======因为/38.09/5.347.13A E F MS MS ===;根据13A f f ==,216E f f ==,查表得F >F 0.01(3,16) =5.29,,表明四种不同饲料对鱼的增重效果差异极显著,用不同的饲料饲喂,增重是不同的.例2:抽测5个不同品种的若干头母猪的窝产仔数,结果见下表,试检验不同品种母猪平均窝产仔数的差异是否显著.五个不同品种母猪的窝产仔数品种号 观 察 值x ij (头/窝) x i..i x1 8 13 12 9 9 51 10.2 2 7 8 10 9 7 41 8.23 13 14 10 11 12 60 12 4 13 9 8 8 10 48 9.65 121115 14136513 合计T =265解:这是一个单因素试验,因素数5s =,重复数05n =.现对此试验结果进行方差分析如下:计算各项平方和与自由度220/265/(55)2809.00C T sn ==⨯=22222222222.0(8131413)2809.002945.002809.00136.0011(5141604865)2809.0052882.202809.0073.20T ij A jS x C S x C n =-=++++-=-==-=++++-=-=∑∑∑ 136.0073.2062.80E T A S S S =-=-=0155124,1514,24420T A E T A f sn f s f f f =-=⨯-==-=-==-=-=列出方差分析表,进行F 检验不同品种母猪的窝产仔数的方差分析表变异来源 平方和 自由度 均方 F 值品种间 73.20 4 18.30 5.83 误差 62.80 20 3.14 总变异136.0024根据14A f f ==,220E f f ==查临界F 值得:F 0.05(4,20) =2.87,F 0.05(4,20) =4.43,因为F >F 0.01(4,20),表明品种间产仔数的差异达到1%显著水平.例3:以A 、B 、C 、D 4种药剂处理水稻种子,其中A 为对照,每处理各得4个苗高观察值(cm),其结果如下表,试分解其自由度和平方和.水稻不同药剂处理的苗高(cm )药 剂苗高观察值总和i T平均i yA 18 21 20 13 72 18B 20 24 26 22 92 23C 10 15 17 14 56 14D 28 27 29 3211629T =336 =y 21解:计算各项平方和与自由度20T C n s ===⨯23367056442T ijS y C C =-=+++-=∑∑222182132602201()()kT i i S n y y T n C C =-=-=+++-=∑∑2222729256116/4504或 A S =⨯-+-+-+-=22224[(1821)(2321)(1421)(2921)]504 2221111()knnkkE ij i iji T A S y y y T n S S =-=-=-=-=∑∑∑∑60250498进而可得均方:T MS ==602/1540.13 A MS ==504/3168.00 E MS ==98/128.17总方差自由度44115T f =⨯-=,药剂间自由度413A f =-=,药剂内自由度15312E f =-=例4:为研究雌激素对子宫发育的影响,现有4窝不同品系未成年的大白鼠,每窝3只,随机分别注射不同剂量的雌激素,然后在相同条件下试验,并称得它们的子宫重量,见下表,试作方差分析.各品系大白鼠不同剂量雌激素的子宫重量(g)品系(A )雌激素注射剂量(mg/100g)(B )合计x i. 平均.i x B 1(0.2)B 2(0.4)B 3(0.8)A 1 106 116 145 367 122.3 A 2 42 68 115 225 75.0 A 3 70 111 133 314 104.7 A 442 63 87 192 64.0 合计x .j 260 358 480 1098 平均j x .65.089.5120.0解:这是一个双因素单独观测值试验结果.A 因素(品系)有4个水平,即a =4;B 因素(雌激素注射剂量)有3个水平,即b =3,共有a ×b =3×4=12个观测值.方差分析如下:计算各项平方和与自由度22/1098/(43)100467.0000C T ab ==⨯=22222222222222.(1061166387)100467.0000113542100467.000013075.000011(367225314192)100467.00003106924.6667100467.00006457.666711(260358480)100467.00004T ij A j B j S x C S x C b S x C a =-=++++-=-==-=+++-=-==-=++-∑∑∑∑106541.0000100467.00006074.0000=-=13075.00006457.66676070000543.3333143111,14131312,11326e T A B T A B e T A B S S S S f ab f a f b f f f f =--=--==-=⨯-==-=-==-=-==--=--=列出方差分析表,进行F 检验方差分析表变异来源平方和 自由度 均方 F 值A 因素(品系) 6457.6667 3 2152.5556 23.77B 因素(剂量)6074.0000 2 3037.0000 33.54误差 543.3333 6 90.5556总变异13075.000011根据13A f f ==,26E f f ==查临界F 值,F 0.01(3,6)=9.78;根据12B f f ==,26E f f ==查临界F 值,F 0.01(2,6)=10.92.因为A 因素的F 值23.77>F 0.01(3,6),差异极显著;B 因素的F 值33.54>F 0.01(2,6),差异极显著.说明不同品系和不同雌激素剂量对大白鼠子宫的发育均有极显著影响.例7:在某个地区抽取了9家生产同类产品的企业,其月产量和单位产品成本的资料如表8-1,建立月产量x 和单位产品成本y 之间的直线方程.并估计当月产量x=10(千件)时,单位产品成本的数值.22293332.953.7613ˆ 6.46()9370.6553.7n xy x y bn x x -⋅⨯-⨯===--⨯-∑∑∑∑∑ 5.97x =,68.11y =,ˆ68.11( 6.46) 5.97106.68ay bx =-=--⨯= 所以回归方程为:ˆ106.68 6.46yx =- 当10x =(千件),ˆ106.68 6.4642.08yx =-=(元).例8:为研究某一化学反应过程中,温度()x C ο对产品得率(%)Y 的影响,测得数据如下:(1) 求变量Y 关于x 的线性回归方程. (2) 2σ的无偏估计.(3) 检验回归方程的回归效果是否显著(取0.05α=). 解: (1)10n =,经计算得101101010102211111450, 673, 218500, 47225, 101570ii i iii i i i i i xy x y x y ==========∑∑∑∑∑21218500145082501011015701450673398510xx xy S S =-⨯==-⨯⨯=故得ˆ0.48303xx xyS bS ==,11ˆ67314500.48303 2.739351010a=⨯-⨯⨯=- 于是得到回归直线方程ˆ 2.739350.48303yx =-+ 或写成ˆ67.30.48303(145)yx =+- (2)由以上计算计算结果得2221111()472256731932.110nn yy i i i i S y y n ===-=-⨯=∑∑ 又已知3985xyS =,ˆ0.48303b=,故 2ˆ7.23ˆ0.9082yy xy S bSn σ-===-(3)待检验假设0: 0H b =,1: 0H b ≠由(1)和(2)知2ˆˆ0.48303, 8250, 0.9xx bS σ===.查表得0.0520.025(2)(8) 2.3060t n t -==假设0: 0H b =的拒绝域为|| 2.3060ˆˆ||xx t S bσ=≥现在0.48303||825046.25 2.30600.90t =⨯=> 故拒绝0: 0H b =,认为回归效果是显著的.例9:某商品的需求量(单位:件)y 与价格x (单位:元)的统计资料如下所示y543 580 618 695 724 812 887 991 1186 1904 x45515461667074788589求需求函数的回归方程.解:画散点图,根据散点图选择曲线类型by ax-=来描绘需求量y 与价格x 的关系经变换,得''ln ln ln y y a b x x αβ==-=+ 利用最小二乘法的α和β的估计值ˆ9.1206α=, ˆ0.6902β=- 所以ˆˆ9141.685ae α==,ˆˆ0.6902b β=-=. 故需求回归方程为:0.6902ˆ9141.658yx -=,将y 与ˆy的值加以对比如下: y543 580 618 695 724 812 887 991 1186 1904ˆy5365836146827427719171050 1198 1886可见y 与ˆy数据相近,效果较好. 四、练习题1.把下面的方差分析表填写完整,方差来源平方和自由度修正(方差)组间 131.37 (1) (3) 组内 (2) 15 (4) 总和332.4819临界值参考答案:(1)4(2)201.11(3)32.84(4)13.412.一批由相同材料织成的布料,使用染整工艺1B ,2B ,3B ,分别处理后进行强度试验,实测数据(单位:2/kg m )为:工艺1B :0.94 0.86 0.90 1.26 1.04 工艺2B :1.28 1.72 1.60 1.60工艺3B :1.02 0.86 1.00 1.22 1.33 1.10试分析不同染整工艺下布料强度的差异显著性?(0.1α=) 参考答案:0.10.7615(2,11)2.86FF ,不显著.3.为考察苗猪品种对增重的影响,今选择1A ,2A ,3A 等3个品种各5头发育良好体重相等的苗猪作实验,在同等条件下喂养一段时间后重新过磅,其实际增重(单位:kg )为:工艺1A :129 122 140 140 129 工艺2A :123 135 124 104 114 工艺3A :147 131 138 150 124试问猪的品种对增重的影响是否显著?(05.0=α) 参考答案:0.14.0064(2,12)2.81FF ,显著.4.设四名工人操作机器321,,A A A 各一天, 其日产量如表8.7所示, 问不同机器或不同工人对日产量是否有显著影响(0.1α=)?参考答案:0.19.3183(3,6) 3.29AF F ,显著; 0.11.8992(2,6)3.46BF F ,不显著8.某地高校教育经费(x )与高校学生人数(y )连续6年的统计资料如下:要求:(1)建立议程回归直线方程,估计教育经费为500万元的在校学生数; (2)计算估计标准误差.参考答案:(1)Y=-17.92+0.096X , 29.84338(2)2ˆ0.8649σ= 9. 以下是子代和父代受教育年限的抽样调查求:(1)子代受教育年限(Y )关于父代受教育年限(X )的回归直线. (2)2σ的无偏估计.(3)判断该结论是否具有推论意义(0.05α=).参考答案:(1)Y=3+0.6X ,(2)2ˆ0.93σ=(3)0025|| 3.928(3) 3.1824t t =>=,显著. 10. 设对某产品的价格P 与供给量S 的一组观察数据如下表:据此求:(1)该产品的价格P 关于供给量S 的回归直线.(2)2σ的无偏估计.(3)是否具有推论意义?(0.05α=).参考答案:(1)Y=-0.1754+6.2281X ,(2)2ˆ11.84σ=(3)0025||0.3722(6) 2.4469t t =<=,不显著.11.以下是生活期望值与个人成就的抽样调查求:(1)回归直线 (2)2σ的无偏估计.(3)是否具有推论意义(0.05α=).参考答案:(1)Y=0.2668+0.8748X ,(2)2ˆ 5.089σ=(3)0025||0.2703(6) 2.4469t t =<=,不显著.。
数理统计中的回归分析与方差分析回归分析是数理统计中常用的一种分析方法,旨在研究两个或多个变量之间的关系,并通过建立回归模型来预测或解释因变量的值。
方差分析则是一种用于比较两个或多个样本均值之间差异的统计方法。
本文将详细介绍回归分析和方差分析的原理和应用。
一、回归分析
回归分析是研究自变量与因变量之间的关系的统计方法。
在回归分析中,我们通常通过建立回归模型来描述自变量与因变量之间的线性关系。
回归模型可以用以下一般形式表示:
Y = β0 + β1X1 + β2X2 + ... + βnXn + ε
其中,Y表示因变量,X1、X2、...、Xn表示自变量,β0、β1、
β2、...、βn表示回归系数,ε表示误差项。
回归分析可以分为简单线性回归和多元线性回归两种类型。
简单线性回归是指只有一个自变量的情况,多元线性回归是指有两个或多个自变量的情况。
回归分析的应用十分广泛。
例如,在经济学领域,回归分析可以用来研究GDP与消费水平之间的关系;在医学研究中,回归分析可以用来预测某种疾病的发生率与患者年龄的相关性。
通过回归分析,我们可以得到回归系数的估计值,并检验各个回归系数是否显著。
二、方差分析
方差分析是一种用于比较两个或多个样本均值之间差异的统计方法。
方差分析的基本思想是将总体方差分解为组间方差和组内方差两部分,通过检验组间方差和组内方差的比值来确定多个样本均值是否有显著
差异。
在方差分析中,我们通常将数据分为一个因变量和一个或多个自变量。
其中,因变量是我们希望比较的量,自变量则是影响因变量的因素。
方差分析可以用于不同条件下的均值比较,例如,不同药物对治
疗效果的比较、不同肥料对农作物产量的影响等。
方差分析可以分为单因素方差分析和多因素方差分析。
单因素方差
分析是指只有一个自变量的情况,多因素方差分析是指有两个或多个
自变量的情况。
方差分析的结果通常可以通过F检验来判断是否存在显著差异。
如
果F值大于临界值,就说明组间存在显著差异。
三、回归分析与方差分析的联系和区别
尽管回归分析和方差分析是两种不同的统计方法,但它们也存在一
定的联系和区别。
首先,回归分析和方差分析都是用于研究变量之间关系的统计方法。
回归分析关注的是因变量与自变量之间的关系,而方差分析则关注的
是不同组别之间的均值差异。
其次,回归分析和方差分析在应用场景上有所不同。
回归分析常用
于预测和解释变量之间的关系,例如预测销售额与广告投入的关系;
方差分析则常用于比较多个组别之间的差异,例如不同学习方法对学
生成绩的影响。
最后,回归分析和方差分析所使用的统计模型和检验方法也有所不同。
回归分析通常使用最小二乘法估计回归系数,并进行显著性检验;方差分析则依靠F检验来判断组别之间的差异是否显著。
总结起来,回归分析和方差分析是数理统计中常用的两种方法。
回
归分析用于研究变量之间的关系和预测,而方差分析用于比较不同组
别之间的均值差异。
这两种方法在应用场景、统计模型和检验方法上
都有所不同。