高量6--连续性方程
- 格式:ppt
- 大小:1.59 MB
- 文档页数:69
第3章流体动力学基础教学要点一、教学目的和任务1、本章目的1)使学生掌握研究流体运动的方法2)了解流体流动的基本概念3)通过分析得到理想流体运动的基本规律4)为后续流动阻力计算、管路计算打下牢固的基础2、本章任务1)了解描述流体运动的两种方法;2)理解描述流体流动的一些基本概念,如恒定流与非恒定流、流线与迹线、流管、流束与总流、过水断面、流量及断面平均流速等;3)掌握连续性方程、伯努利方程、动量方程,并能熟练应用于求解工程实际问题动量方程的应用二、重点、难点1、重点:流体流动中的几个基本概念,连续性方程,伯努利方程及其应用,动量方程及其应用。
2、难点:连续性方程、伯努利方程以及与动量方程的联立应用。
三、教学方法本章讲述流体动力学基本理论及工程应用,概念多,容易混淆,而且与实际联系密切。
所以,必须讲清楚每一概念及各概念之间的联系和区别,注意讲情分析问题和解决问题的方法,选择合适的例题和作业题。
流体动力学:是研究流体运动规律及流体运动与力的关系的力学。
研究方法:实际流体→理想流体→实验修正→实际流体流体动力学:研究流体运动规律及流体与力的关系的力学。
3.1 流体运动要素及研究流体运动的方法一、流体运动要素表征流体运动状态的物理量,一般包括v、a、p、ρ、γ和F等。
研究流体的运动规律,就是要确定这些运动要素。
(1)每一运动要素都随空间与时间在变化;(2)各要素之间存在着本质联系。
流场:将充满运动的连续流体的空间。
在流场中,每个流体质点均有确定的运动要素。
二、研究流体运动的两种方法研究流体运动的两种方法:拉格朗日法和欧拉法。
(1,质点的运动要素是初始点坐标和时间的函数。
用于研究流体的波动和震荡等(2)欧拉法(“站岗”的方法)欧拉法是以流场中每一空间位置作为研究对象,而不是跟随个别质点。
其要点:分析流动空间某固定位置处,流体运动要素随时间的变化规律;分析流体由某一空间位置运动到另一空间位置时,运动要素随位置的变化规律。
连续性方程公式
连续性方程公式是一种基本的方程,它描述了不受外力影响,封闭系统中物质的连续流动。
连续性方程公式表明,物质的流动受到物质密度、流速和压力等物理量的影响。
这个方程公式为科学家提供了深入了解物质流动规律的重要方法。
连续性方程公式是微分方程的一种,它是高等数学中关于流体动力学的核心理论。
连续性方程的一般形式为:
T/t + VT=(λT)
其中,T代表一个物质的总数,t时间,V物质的流速,λ物质的导热系数,代表的是梯度算子。
连续性方程的特点是它表明物质的流动受到物质的产品因子(即流速)和物质之间的相互作用(即压力)的影响。
连续性方程公式在工程中同样重要,其用于解释流体系统中的动量和能量传输,以及热传导和物理过程中物质的流动。
解决连续性方程可以帮助科学家们更好地掌握物质流动的规律,例如连续性方程可以用来解释流体中的热传导及其作用。
在飞机设计方面,连续性方程也有重要意义。
在飞机翼的设计中,连续性方程被用来模拟气动流动,以保证飞机翼的低阻力性能、高抗性性能和低摩擦系数等。
当飞机在空中飞行时,连续性方程可以帮助飞行员准确地控制飞机的垂直和水平姿态,同时实现最佳油耗。
在热力学和化学方面,连续性方程也拥有重要的应用。
例如,连续性方程可以用来解释气体的扩散和流动,以及物质在某一温度压力
下的变化。
连续性方程还可以用来求解流体的稳定性,解释温度的变化以及流体环境中的热量传递。
总之,连续性方程是物理学、工程学和化学中一类重要的方程。
它具有丰富的实际应用,为研究物质流动提供了有力的支持。