人教版数学七年级下册第六章 实数 期末复习知识点归纳及典型例题
- 格式:doc
- 大小:225.50 KB
- 文档页数:5
七年级数学下册第六章实数知识集锦单选题1、如图,若数轴上的点A,B,C,D表示数−1,1,2,3,则表示数4−√11的点应在()A.A,O之间B.B,C之间C.C,D之间D.O,B之间答案:D分析:先估算出4−√11的值,再确定出其位置即可.解:∵9<11<16,∴3<√11<4,∴−4<−√11<−3,∴4−4<4−√11<4−3,即0<4−√11<1∴表示数4−√11的点应在O,B之间.故选:D.小提示:本题考查的是实数与数轴.熟知实数与数轴上各点是一一对应关系,能够正确估算出√11的值是解答此题的关键.2、若一个正方形的面积是12,则它的边长是()A.2√3B.3C.3√2D.4答案:A分析:根据正方形的面积公式即可求解.解:由题意知:正方形的面积等于边长×边长,设边长为a,故a²=12,∴a=±2√3,又边长大于0∴边长a=2√3.故选:A.小提示:本题考查了正方形的面积公式,开平方运算等,属于基础题.3、对多项式x−y−z−m−n任意加括号后仍然只含减法运算并将所得式子化简,称之为“加算操作”,例如:(x−y)−(z−m−n)=x−y−z+m+n,x−y−(z−m)−n=x−y−z+m−n,…,给出下列说法:①至少存在一种“加算操作”,使其结果与原多项式相等;②不存在任何“加算操作”,使其结果与原多项式之和为0;③所有的“加算操作”共有8种不同的结果.以上说法中正确的个数为()A.0B.1C.2D.3答案:D分析:给x−y添加括号,即可判断①说法是否正确;根据无论如何添加括号,无法使得x的符号为负号,即可判断②说法是否正确;列举出所有情况即可判断③说法是否正确.解:∵(x−y)−z−m−n=x−y−z−m−n∴①说法正确∵x−y−z−m−n−x+y+z+m+n=0又∵无论如何添加括号,无法使得x的符号为负号∴②说法正确③第1种:结果与原多项式相等;第2种:x-(y-z)-m-n=x-y+z-m-n;第3种:x-(y-z)-(m-n)=x-y+z-m+n;第4种:x-(y-z-m)-n=x-y+z+m-n;第5种:x-(y-z-m-n)=x-y+z+m+n;第6种:x-y-(z-m)-n=x-y-z+m-n;第7种:x-y-(z-m-n)=x-y-z+m+n;第8种:x-y-z-(m-n)=x-y-z-m+n;故③符合题意;∴共有8种情况∴③说法正确∴正确的个数为3故选D .小提示:本题考查了新定义运算,认真阅读,理解题意是解答此题的关键.4、已知min {a,b,c }表示取三个数中最小的那个数,例加:min{−1,−2,−3}=−3,当min{√x,x 2,x}=181时,则x 的值为( )A .181B .127C .13D .19 答案:D分析:根据题意可知√x,x 2,x 都小于1且大于0,根据平方根求得x 的值即可求解.解:∵min{√x,x 2,x}=181∴√x,x 2,x 都小于1且大于0∴x 2<x <√x∴x 2=181∴x =19(负值舍去)故选D小提示:本题考查了求一个数的平方根,判断√x,x 2,x 的范围是解题的关键.5、定义:若10x =N ,则x =log 10N ,x 称为以10为底的N 的对数,简记为lgN ,其满足运算法则:lgM +lgN =lg(M ⋅N)(M >0,N >0).例如:因为102=100,所以2=lg100,亦即lg100=2;lg4+lg3=lg12.根据上述定义和运算法则,计算(lg2)2+lg2⋅lg5+lg5的结果为( )A .5B .2C .1D .0答案:C分析:根据新运算的定义和法则进行计算即可得.解:原式=lg2⋅(lg2+lg5)+lg5,=lg2⋅lg10+lg5,=lg2+lg5,=1,故选:C.小提示:本题考查了新定义下的实数运算,掌握理解新运算的定义和法则是解题关键.6、在四个实数−2,0,−√3,−1中,最小的实数是()A.−2B.0C.−√3D.−1答案:A分析:根据实数比较大小的方法直接求解即可.解:∵−2<−√3<−1<0,∴四个实数−2,0,−√3,−1中,最小的实数是−2,故选:A.小提示:本题考查了有理数大小比较:正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小.7、下列说法正确的是()A.−81平方根是−9B.√81的平方根是±9C.平方根等于它本身的数是1和0D.√a2+1一定是正数答案:D分析:A、根据平方根的概念即可得到答案;B、√81的平方根其实是9的平方根;C、平方根等于它本身的数与算术平方根是它本身的数要分清楚;D、先判断出a2+1>0,再利用算术平方根的性质直接得到答案.A、−81是负数,负数没有平方根,不符合题意;B、√81=9,9的平方根是±3,不符合题意;C、平方根等于它本身的数是0,1的平方根是±1,不符合题意;D、a2+1>0,正数的算术平方根大于0,符合题意.小提示:此题考查了平方根及算术平方根的定义及性质,熟练掌握相关知识是解题关键.8、按如图所示的运算程序,能使输出y值为1的是()A.m=1,n=1B.m=1,n=0C.m=1,n=2D.m=2,n=1答案:D分析:逐项代入,寻找正确答案即可.解:A选项满足m≤n,则y=2m+1=3;B选项不满足m≤n,则y=2n-1=-1;C选项满足m≤n,则y=2m+1=3;D选项不满足m≤n,则y=2n-1=1;故答案为D;小提示:本题考查了根据条件代数式求值问题,解答的关键在于根据条件正确地代入代数式及代入的值.9、−√64的立方根等于()A.−8B.−4C.−2D.±2答案:C分析:先求出−√64=−8,再求出-8的立方根即可得.3=−2,解:∵−√64=−8,√−8∴−√64的立方根等于-2,故选:C.小提示:本题考查了立方根的意义,解题的关键是掌握立方根.10、下列说法正确的是()A.-4是(-4)2的算术平方根B.±4是(-4)2的算术平方根C.√16的平方根是-2D.-2是√16的一个平方根答案:D分析:根据算术平方根、平方根的定义逐项判断即可得.A、(−4)2=16,16的算术平方根是4,则此项错误,不符题意;B、(−4)2=16,16的算术平方根是4,则此项错误,不符题意;C、√16=4,4的平方根是±2,则此项错误,不符题意;D、√16=4,4的平方根是±2,则−2是√16的一个平方根,此项正确,符合题意;故选:D.小提示:本题考查了算术平方根、平方根,掌握理解定义是解题关键.填空题11、根据图中呈现的运算关系,可知a=______,b=______.答案:-2020 -2020分析:根据立方根和平方根的定义进行求解即可.解:∵2020的立方根是m,a的立方根是-m,∴m3=2020,∴(−m)3=−m3=−2020,∴a=−2020;∵n的两个平方根分别为2020、b,∴b =−2020,所以答案是:-2020,-2020.小提示:本题主要考查了平方根和立方根,熟知二者的定义是解题的关键.12、比较大小:√22______√33(填写“>”或“<”或“=”).答案:>分析:比较两者平方后的值即可.解:∵(√22)2=12,(√33)2=13,∵12>13, ∴ √22>√33. 所以答案是:>.小提示:本题考查了实数的大小比较,解题的关键是灵活变通,比较两者平方后的结果.13、写出一个比√2大且比√15小的整数______.答案:2(或3)分析:先分别求出√2与√15在哪两个相邻的整数之间,依此即可得到答案.∵1<√2<2,3<√15<4,∴比√2大且比√15小的整数是2或3.所以答案是:2(或3)小提示:本题主要考查了实数的大小比较,也考查了无理数的估算的知识,分别求出√2与√15在哪两个相邻的整数之间是解答此题的关键.14、若√a +13与√a 2−53互为相反数,则a 3+5a 2﹣4的值为 _____.答案:12分析:先根据相反数的定义得√a +13+√a 2−53=0,再利用立方根的意义进行整理,最后利用整体代入的方法即可求得答案 .解:由题意得:√a +13+√a 2−53=03∴√a+13=−√a2−5∴a+1=﹣(a2﹣5).∴a2+a=4.∴a3+a2=4a.∴a3=﹣a2+4a.∴a3+5a2﹣4=﹣a2+4a+5a2﹣4=4a2+4a﹣4=4(a2+a)﹣4=4×4﹣4=12.所以答案是:12.小提示:本题考查的相反数的应用,立方根的应用,解题的关键是在于整理出所需形式,利用整体代入求解.15、若实数a的立方等于27,则a=________.答案:3分析:根据立方根的定义即可得.3=3,解:由题意得:a=√27所以答案是:3.小提示:本题考查了立方根,熟练掌握立方根的运算是解题关键.解答题16、据说,我国著名数学家华罗庚在一次出国访问途中,看到飞机上邻座的乘客阅读的杂志上有一道智力题:求59319的立方根,华罗庚脱口而出:39.你知道他是怎么快速准确地计算出来的吗?请研究解决下列问题:(1)已知x3=10648,且x为整数.∵1000=103<10648<1003=1000000,∴x一定是一个两位数;∵10648的个位数字是8,∴x的个位数字一定是______;划去10648后面的三位648得10,∵8=23<10<33=27,∴x的十位数字一定是______;∴x=______.(2)y3=614125,且y为整数,按照以上思考方法,请你求出y的值.答案:(1)2#,2#,22#(2)y=85分析:(1)根据立方根的定义和题意即可得出答案;(2)根据(1)中的方法计算书写即可得出结果.(1)解:∵x3=10648,且x为整数.∵1000=103<10648<1003=1000000,∴x一定是一个两位数;∵10648的个位数字是8,∴x的个位数字一定是2;划去10648后面的三位648得10,∵8=23<10<33=27,∴x的十位数字一定是2;∴x=22.所以答案是:2,2,22.(2)∵1000=103<614125<1003=100000,∴y一定是两位数;∵614125的个位数字是5,∴y的个位数字一定是5;划去614125后面的三位125得614,∵512=83<614<93=729,∴y的十位数字一定是8;∴y=85.小提示:本题考查立方根,灵活运用立方根的计算是解题的关键.17、如图,把图(1)中两个小正方形纸片分别沿对角线剪开,将所得的4个直角三角形拼在一起,就得到如图(2)的大正方形.问题发现若大正方形的面积为32cm2,则小正方形的面积是__________cm2,边长为___________cm;知识迁移某兴趣小组想将图(1)中的一个小正方形纸片,沿与边平行的方向剪裁出面积为12cm2,且长宽之比为3∶2的长方形纸片.兴趣小组能否剪裁出符合要求的长方形纸片?请说明理由.拓展延伸如图(3)是由5个边长为1的小正方形组成的纸片,能否把它剪开并拼成一个大正方形?若能,请画出示意图,并写出边的长度,若不能,请说明理由.答案:问题发现:小正方形的面积为16cm2,边长为4cm知识迁移:不能裁出符合要求的长方形纸片拓展延伸:能把它剪开并拼成一个大正方形,示意图见解析,大正方形边长为√5分析:问题发现:先求出小正方形的面积,再根据正方形的面积等于边长的平方求边长;知识迁移:设长和宽分别为3x、2x,利用面积列方程,最后检验即可;拓展延伸:新的大正方形面积为5,则边长为√5,可以把它剪开并拼成一个大正方形.问题发现:小正方形的面积为32÷2=16cm2,∴小正方形的边长为4cm.所以答案是:16;4.知识迁移:设长和宽分别为3x、2x,由题意得:3x⋅2x=12,整理得:x2=2,∵实际问题x为正数,∴x=√2,∴长方形的长为3x=3√2≈5.19>4,即裁剪后的长方形的长大于小正方形的边长,∴不能裁出符合要求的长方形纸片.拓展延伸:能把它剪开并拼成一个大正方形,裁剪示意图如图所示:∵原图形的面积是5,∴裁剪后的正方形面积也是5,∴大正方形边长为√5.小提示:本题考查了算术平方根的实际应用、正方形的面积和正方形的有关画图,巧妙地根据网格的特点画出正方形是解此题的关键.18、求下列式子中的x :(1)25(x ﹣35)2=49;(2)12(x +1)2=32. 答案:(1)x 1=2,x 2=−45(2)x 1=7,x 2=﹣9分析:(1)两边同时除以25,再开平方解一元一次方程即可;(2)方程两边同时乘以2,再开平方解一元一次方程即可.(1)解: 25(x ﹣35)2=49,(x ﹣35)2=4925, x ﹣35=±75,x ﹣35=75或x ﹣35=﹣75,解得:x 1=2,x 2=−45;(2)12(x +1)2=32, (x +1)2=32×2,(x +1)2=64, x +1=±8,x +1=8或x +1=﹣8,解得:x 1=7,x 2=﹣9.小提示:此题考查了利用平方根定义解方程,正确理解并掌握平方根的定义是解题的关键.。
七年级下册人教版数学第六章实数知识要点及经典题型
摘要:
I.实数的分类
A.整数
B.有理数
C.无理数
II.实数的性质
A.实数的运算
B.实数的比较
C.实数的绝对值
III.经典题型解析
A.整数和有理数的运算
B.无理数的求解
C.实数的比较和排序
IV.实数的应用
A.生活中的实数应用
B.科学中的实数应用
C.实数与其他领域的联系
正文:
实数是数学中的一个重要概念,它在我们的日常生活中有着广泛的应用。
在七年级下册人教版数学中,第六章主要介绍了实数的相关知识要点和经典题
型。
首先,实数可以分为整数、有理数和无理数三类。
整数包括正整数、负整数和零;有理数是可以表示为两个整数之比的数,包括整数、分数和小数(有限小数和循环小数);无理数则是不能表示为两个整数之比的数,如圆周率π等。
其次,实数具有许多性质。
在实数的运算中,我们需要遵循交换律、结合律和分配律;在实数的比较中,我们可以根据它们的大小关系来进行排列;实数的绝对值是一个非负数,表示距离原点的距离。
接下来,本章通过解析经典题型,帮助学生更好地理解实数的知识要点。
例如,在整数和有理数的运算题目中,我们需要熟练掌握加法、减法、乘法和除法的运算规则;在无理数的求解题目中,我们需要运用一些特殊方法,如平方根、立方根等;在实数的比较和排序题目中,我们需要灵活运用实数的性质来进行比较。
最后,实数在我们的生活中有着广泛的应用。
例如,在购物时,我们需要计算价格;在科学研究中,实数在物理、化学等领域发挥着重要作用;在艺术领域,实数与音乐、绘画等也有着密切的联系。
2021学年人教版七年级数学下册《第6章实数》期末综合复习知识点分类训练(附答案)一.平方根1.若2a﹣1与﹣a+2都是正数x的平方根,求a的值和这个正数的值.2.已知|a﹣27|与2(b﹣36)2互为相反数,求的平方根.二.算术平方根3.正数n扩大到原来的100倍,则它的算术平方根()A.扩大到原来的100倍B.扩大到原来的10倍C.比原来增加了100倍D.比原来增加了10倍4.已知9.972=99.4009,9.982=99.6004,9.992=99.8001,求之值的个位数字为何?()A.0B.4C.6D.85.给出表格:a0.00010.011100100000.010.1110100(用利用表格中的规律计算:已知,则a+b=.含k的代数式表示)6.我们规定用(a,b)表示一对数对.给出如下定义:记m=,n=其中(a>0,b >0),将(m,n)与(n,m)称为数对(a,b)的一对“对称数对”.例如:(4,1)的一对“对称数对”为(,1)和(1,);(1)数对(9,3)的一对“对称数对”是;(2)若数对(3,y)的一对“对称数对”相同,则y的值为;(3)若数对(x,2)的一个“对称数对”是(,1),则x的值为;(4)若数对(a,b)的一个“对称数对”是(,3),求ab的值.7.观察与猜想:===2===3(1)与分别等于什么?并通过计算验证你的猜想(2)计算(n为正整数)等于什么?三.非负数的性质:算术平方根8.已知实数a,b为△ABC的两边,且满足﹣4b+4=0,第三边c=,则第三边c上的高的值是()A.B.C.D.9.已知:非负数a、b满足.求的值.四.立方根10.要使式子有意义,则m的取值范围是()A.m≥﹣2,且m≠2B.m≠2C.m≥﹣2D.m≥211.已知≈1.2639,≈2.7629,则≈.五.计算器—数的开方12.如图,某计算器中有、、三个按键,以下是这三个按键的功能.①:将荧幕显示的数变成它的算术平方根;②:将荧幕显示的数变成它的倒数;③:将荧幕显示的数变成它的平方.小明输入一个数据后,按照以下步骤操作,依次按照从第一步到第三步循环按键.若一开始输入的数据为10,那么第2018步之后,显示的结果是()A.B.100C.0.01D.0.113.用计算器探索:(1)=.(2)=.(3)=,…,由此猜想:=.14.(1)利用计算器计算:=;(2)利用计算器计算:=;(3)利用计算器计算:=;(4)利用计算器计算:=.六.无理数15.在实数:,,中无理数有x个,有理数有y个,非负数有z个,则x+y+z等于()A.12B.13C.14D.18七.实数16.下列说法正确的是()A.0.是无理数B.是分数C.是无限小数,是无理数D.0.13579…(小数部分由连续的奇数组成)是无理数17.有下列说法:①不存在最大的无理数,也不存在最小的无理数;②无限小数都是无理数;③无理数都是无限小数;④带根号的数都是无理数;⑤两个无理数的和还是无理数;⑥有绝对值最小的数;⑦比负数大的是正数.其中,错误的有()A.3个B.4个C.5个D.6个18.我们规定:相等的实数看作同一个实数.有下列六种说法:①数轴上有无数多个表示无理数的点;②带根号的数不一定是无理数;③每个有理数都可以用数轴上唯一的点来表示;④数轴上每一个点都表示唯一一个实数;⑤没有最大的负实数,但有最小的正实数;⑥没有最大的正整数,但有最小的正整数.其中说法错误的有(注:填写出所有错误说法的编号)19.在,,,…中,有理数的个数是()A.42B.43C.44D.4520.若一个自然数的算术平方根是m,则此自然数的下一个自然数(即相邻且更大的自然数)的算术平方根是()A.B.m2+1C.m+1D.21.把几个数用大括号括起来,中间用逗号断开,若:{1,2,8},{﹣0.2,,,20%},我们称之为集合,其中的数称其为集合的元素.如果一个集合满足:当有理数a是集合的元素时,有理数8﹣a也必是这个集合的元素,这样的集合我们称为“友好集合”.例如集合{8,0}就是一个友好集合.(1)请你判断集合{2,3},{﹣2,1,4,7,10} 是不是友好的集合;(2)请你再写出满足条件的两个友好集合的例子(不要写题目中已经出现的);(3)写出所有的友好集合中,元素个数最少的集合.八.实数的性质22.下列说法正确的是()A.一个数有立方根,那么它一定有平方根B.一个数立方根的符号与被开方数符号相同C.负数没有平方根,也没有立方根D.一个数的立方根有两个,它们互为相反数23.设a,b,c为不为零的实数,那么的不同的取值共有()A.6种B.5种C.4种D.3种24.对于结论:当a+b=0时,a3+b3=0也成立.若将a看成a3的立方根,b看成b3的立方根,由此得出这样的结论:“如果两数的立方根互为相反数,那么这两个数也互为相反数”(1)举一个具体的例子来判断上述结论是否成立;(2)若和互为相反数,且x+5的平方根是它本身,求x+y的立方根.25.已知=0,|z﹣1|=﹣,求x+y+z的平方根.九.实数与数轴26.实数a、b、c、d在数轴上的位置如图所示,下列关系式不正确的是()A.|a|>|b|B.|b﹣d|=|b|+|d|C.|a﹣c|=c﹣a D.|d﹣1|>|c﹣a| 27.在下列说法中:①0.09是0.81的平方根;②9的平方根是±3;③(﹣5)2的算术平方根是5;④是一个负数;⑤0的平方根和立方根都是0;⑥=±2;⑦全体实数和数轴上的点一一对应.其中正确的是.28.如图,正方形ABCD的边AB在数轴上,数轴上点A表示的数为﹣1,正方形ABCD的面积为16.(1)数轴上点B表示的数为;(2)将正方形ABCD沿数轴水平移动,移动后的正方形记为A'B'C'D',移动后的正方形A'B'C'D'与原正方形ABCD重叠部分的面积记为S.当S=4时,画出图形,并求出数轴上点A'表示的数;29.在一张长方形纸条上画一条数轴,并在两处虚线处,将纸条进行折叠,产生的两条折痕中,左侧折痕与数轴的交点记为A,右侧折痕与数轴的交点记为B.(1)若数轴上一点P(异于点B),且P A=AB,则P点表示的数为;(2)若数轴上有一点Q,使OA=3QB,求Q点表示的数;(3)若将此纸条沿两条折痕处剪开,将中间的一段纸条对折,使其左右两端重合,这样连续对折(n≥2)次后,再将其展开,请直接写出最左端的折痕和最右端的折痕之间的距离(用含n的式子表示,可以不用化简).30.【背景知识】数轴是初中数学学习的一个重要工具,利用数轴可以将数与形完美地结合.研究数轴我们发现了许多重要的规律,例如:若数轴上点A,B分别对应数a,b.则A,B 两点之间的距离为AB=|a﹣b|,线段AB的中点表示的数为.【问题情境】如图,数轴上点A,B分别对应数a,b.其中a<0,b>0.【综合运用】(1)当a=﹣8,b=2时,线段AB的中点对应的数是;(2)若该数轴上另有一点N对应着数n.①在(1)的条件下,若点N在点A,B之间,且满足NA﹣NB=8NO,则数n是;②当n=﹣3,a<﹣3,且AN=4BN时,求代数式a+4b+16的值;③当b=3,且BN=3AN时,小林演算发现代数式4n﹣3a是一个定值.老师点评:你的演算发现还不完整!请通过演算解释:为什么“小林的演算发现”是不完整的?31.若点A、B、C在数轴上对应的数分别为a、b、c满足|a+5|+|b﹣1|+|c﹣2|=0.(1)在数轴上是否存在点P,使得P A+PB=PC?若存在,求出点P对应的数;若不存在,请说明理由;(2)若点A,B,C同时开始在数轴上分别以每秒1个单位长度,每秒3个单位长度,每秒5个单位长度沿着数轴负方向运动.经过t(t≥1)秒后,试问AB﹣BC的值是否会随着时间t的变化而变化?请说明理由.十.实数大小比较32.a2=2,b3=3,c4=4,d5=5,且a、b、c、d为正数,则()A.a<b<c<d B.b<a<c<d C.d<a=c<b D.a=c<d<b十一.估算无理数的大小33.估算:(误差小于0.1)≈;(误差小于1)≈.34.已知实数的小数部分为a,的小数部分为b,则7a+5b的值为()A.B.0.504C.2﹣D.35.若[x]表示不大于x的最大整数,例如[4.2]=4,则[]=.36.6﹣的整数部分是a,小数部分是b.(1)a=,b=.(2)求3a﹣b2的值.37.已知a是的小数部分,求的值.十二.实数的运算38.计算:①|1﹣|+|﹣|+|﹣2|+|2﹣|;②(﹣2)3×+×(﹣)2﹣;③||﹣()3+﹣||﹣1;④+(﹣1)2021+﹣|﹣5|++.参考答案一.平方根1.解:∵2a﹣1与﹣a+2都是正数x的平方根,而正数x的平方根有两个:一正一负,∴2a﹣1+(﹣a+2)=0,∴a=﹣1,此时,这个正数为:x=(2a﹣1)2=9.2.解:∵|a﹣27|与2(b﹣36)2互为相反数∴|a﹣27|+2(b﹣36)2=0,∵|a﹣27|≥0,2(b﹣36)2≥0,∴a﹣27=0,2(b﹣36)2=0,解得a=27,b=36,∴原式==3+6=9,∴的平方根为±3.二.算术平方根3.解:设这个数是a,那么算术平方根为;扩大100倍后为100a,则=10,所以一个数扩大为原来的100倍,那么它的算术平方根扩大到10倍,所以比原来增加了10﹣1=9倍故选:B.4.解:∵9.972=99.4009,9.982=99.6004,9.992=99.8001,∴<<,∴9.98<<9.99,∴998<<999,即其个位数字为8.故选:D.5.解:,则a+b=10.1k,故答案为:10.1k.6.解:(1)∵=,∴数对(9,3)的一对“对称数对”是(,)与(,);故答案为:(,)与(,);(2)∵数对(3,y)的一对“对称数对”相同,∴=,∴y=,故答案为:;(3)∵数对(x,2)的一个“对称数对”是(,1),∴=1,∴x=1,故答案为:1;(4)∵数对(a,b)的一个“对称数对”是(,3),∴①或②,∴或,∴ab=6或.7.解:(1)=4,验证:===4,=5验证:===5;(2)===n.三.非负数的性质:算术平方根8.解:因为,所以a﹣1=0,b﹣2=0,解得a=1,b=2;因为a2+b2=12+22=5,,所以a2+b2=c2,所以△ABC是直角三角形,∠C=90°,设第三边c上的高的值是h,则△ABC的面积=,所以.故选:D.9.解:根据题意得:,解得:.原式=++=1﹣+﹣+﹣=¾.四.立方根10.解:∵有意义,∴m﹣2≠0,解得m≠2.故选:B.11..解:∵≈1.2639,∴==×=﹣×≈﹣0.12639.故答案为:﹣0.12639.五.计算器—数的开方12.解:根据题意得:102=100,=0.01,=0.1;0.12=0.01,=100,=10;…∵2018=6×336+2,∴按了第2018下后荧幕显示的数是0.01.故选:C.13.解:利用计算器计算得:(1)=22.(2)=333.(3)=4444,…,由此猜想:=7777777.故答案为:(1)22;(2)333;(3)444 4;(4)7777 777.14.解:(1)==10;(2)===100;(3)===1000;(4)=;故答案为:10;100;1000;.六.无理数15.解:无理数和有理数的和是实数,x+y=10,非负数,共八个,故x+y+z=10+8=18.故选:D.七.实数16.解:A、0.是有理数,故A选项错误;B、是无理数,故B选项错误;C、是无限小数,是有理数,故C选项错误;D、0.13579…(小数部分由连续的奇数组成)是无理数,故D选项正确.故选:D.17.解:①不存在最大的无理数,也不存在最小的无理数;①正确②无限小数都是无理数;无限不循环小数是无理数,故②错误.③无理数都是无限小数;③正确.④带根号的数都是无理数;④错误,⑤两个无理数的和还是无理数;相反数时和为0,故⑤错误.⑥有绝对值最小的数;故⑥正确⑦比负数大的是正数.0,不是正数,故⑦错误.错误的有②④⑤⑦故选:B.18.解:①数轴上有无数多个表示无理数的点是正确的;②带根号的数不一定是无理数是正确的,如=2;③每个有理数都可以用数轴上唯一的点来表示是正确的;④数轴上每一个点都表示唯一一个实数是正确的;⑤没有最大的负实数,也没有最小的正实数,原来的说法错误;⑥没有最大的正整数,有最小的正整数,原来的说法正确.故答案为:⑤.19.解:∵12=1,22=4,32=9,...,442=1936,452=2025,∴、、、...、中,有理数为1,2, (44)故选:C.20.解:∵自然数的算术平方根为m,∴自然数是m2,∴下一个自然数是m2+1,它的算术平方根是.故选:A.21.解:(1)∵8﹣2=6,6不是集合中的元素,∴集合{2,3}不是友好的集合;∵8﹣(﹣2)=10,10是集合中的元素,8﹣1=7,7是集合中的元素,8﹣4=4,4是集合中的元素,8﹣7=1,1是集合中的元素,8﹣10=﹣2,﹣2是集合中的元素,∴{﹣2,1,4,7,10} 是友好的集合;(2)例如{2,6,8,0}、{5,3};(3)元素个数的集合就是只有一个元素的集合,设其元素为x;则有8﹣x=x,可得x=4;故元素个数最少的集合是{4}.八.实数的性质22.解:A、一个数有立方根,那么它不一定有平方根,故原说法错误;B、一个数立方根的符号与被开方数符号相同,故此选项正确;C、负数没有平方根,但有立方根,故原说法错误;D、一个数的立方根有1个,故原说法错误;故选:B.23.解:①当a>0,b>0,c>0时,原式=1+1+1=3;②当a>0,b>0,c<0时,原式=1+1﹣1=1;③当a>0,b<0,c>0时,原式=1﹣1+1=1;④当a>0,b<0,c<0时,原式=1﹣1﹣1=﹣1;⑤当a<0,b>0,c>0时,原式=﹣1+1+1=1;⑥当a<0,b>0,c<0时,原式=﹣1+1﹣1=﹣1;⑦当a<0,b<0,c>0时,原式=﹣1﹣1+1=﹣1;⑧当a<0,b<0,c<0时,原式=﹣1﹣1﹣1=﹣3.∴的不同的取值共有4种.故选:C.24.解:(1)如=0,则2+(﹣2)=0,即2与﹣2互为相反数;所以“如果两数的立方根互为相反数,那么这两个数也互为相反数”成立;(2)∵和互为相反数,∴=0,∴8﹣y+2y﹣5=0,解得:y=﹣3,∵x+5的平方根是它本身,∵x+5=0,∴x=﹣5,∴x+y=﹣3﹣5=﹣8,∴x+y的立方根是﹣2.25.解:∵|z﹣1|≥0,,而|z﹣1|=﹣,∴x﹣2y+4=0①,又=0,∴2y﹣1=﹣(1﹣3x)②,由①②得,x=2,y=3,由|z﹣1|=0得,z=1,∴x+y+z=2+3+1=6,所以,x+y+z的平方根为.九.实数与数轴26.解:A.因为OA>OB,所以|a|>|b|,故A正确;B.|b﹣d|=OB+OD=|b|+|d|,故B正确;C..|a﹣c|=|a+(﹣c)|=﹣a+c=c﹣a,故C正确;D.|d﹣1|=OD﹣OE=DE,|c﹣a|=|c+(﹣a)|=OC+OA,故D不正确.故选:D.27.解:①0.9是0.81的平方根,故①错误;②9的平方根是±3,故②正确;③(﹣5)2的算术平方根是5,故③正确;④无意义,故④错误;⑤0的平方根和立方根都是0,故⑤正确;⑥=2,故⑥错误;⑦全体实数和数轴上的点一一对应,故⑦正确;故答案为:②③⑤⑦.28.解:(1)∵正方形ABCD的面积为16.∴AB=BC=CD=DA=4,∴点B所表示的数为:﹣1﹣4=﹣5,故答案为:﹣5;(2)当S=4时,①若正方形ABCD向右平移,如图1,重叠部分中AB′=1,AA′=3.则点A′表示﹣1+3=2;②若正方形ABCD向左平移,如图2,重叠部分中A′B=1,AA′=3,则点A′表示的数为﹣1﹣3=﹣4.故点A′所表示的数为﹣4或2.29.解:(1)由图可知AB=3﹣(﹣1)=4,∵P A=AB,P不与B重合,∴P表示的数为﹣1﹣4=﹣5,故答案为:﹣5,(2)由图可知OA=2﹣(﹣1)=3,∵OA=3QB,∴QB=1,∴Q表示的数为3+1=4或3﹣1=2,(3)AB=4,对折n次后,最左端和最右端的线段长均为4×=,∴最左端的折痕和最右端的折痕之间的距离为4﹣2×=4﹣,故答案为:4﹣.30.解:(1)=﹣3;故答案为:﹣3;(2)①依题意得:NA=n+8,NB=2﹣n,NO=|n|,因为NA﹣NB=8NO,所以(n+8)﹣(2﹣n)=8|n|,解得n=1或.故答案为:1或;②当n=﹣3,a<﹣3时,AN=﹣3﹣a,BN=b+3,∵AN=4BN,∴﹣3﹣a=4(b+3),∴a+4b=﹣15,∴a+4b+16=﹣15+16=1.③∵BN=3AN,∴n<b.则有以下两种情况:当a<n<b时:AN=n﹣a,BN=3﹣n,有:3﹣n=3(n﹣a),即:4n﹣3a=3,∴代数式4n﹣3a是一个定值;当n<a时:AN=a﹣n,BN=3﹣n,有:3﹣n=3(a﹣n),即:3a﹣2n=3.∴代数式3a﹣2n也是一个定值.综上所述:“小林的演算发现”是不完整的.31.解:(1)∵|a+5|+|b﹣1|+|c﹣2|=0,∴a+5=0,b﹣1=0,c﹣2=0,解得a=﹣5,b=1,c=2,设点P表示的数为x,∵P A+PB=PC,①P在AB之间,[x﹣(﹣5)]+(1﹣x)=2﹣x,x+5+1﹣x=2﹣x,x=2﹣1﹣5,x=﹣4;②P在A的左边,(﹣5﹣x)+(1﹣x)=2﹣x,﹣5﹣x+1﹣x=2﹣x,﹣x=2﹣1+5,x=﹣6;③P在BC的中间,(5+x)+(x﹣1)=2﹣x,2x+4=2﹣x,3x=﹣2,x=﹣(舍去);④P在C的右边,(x+5)+(x﹣1)=x﹣2,2x+4=x﹣2,x=﹣6(舍去).综上所述,x=﹣4或x=﹣6.(2)∵运动时间为t(t≥1),A的速度为每秒1个单位长度,B的速度为每秒3个单位长度,C的速度为每秒5个单位长度,∴点A表示的数为﹣5﹣t,点B表示的数为1﹣3t,点C表示的数为2﹣5t,①当1﹣3t>﹣5﹣t,即t<3时,AB=(1﹣3t)﹣(﹣5﹣t)=﹣2t+6,BC=(1﹣3t)﹣(2﹣5t)=2t﹣1,AB﹣BC=(﹣2t+6)﹣(2t﹣1)=7﹣4t,∴AB﹣BC的值会随着时间t的变化而变化.②当t≥3时,AB=(﹣5﹣t)﹣(1﹣3t)=2t﹣6,BC=(1﹣3t)﹣(2﹣5t)=2t﹣1,AB﹣BC=(2t﹣6)﹣(2t﹣1)=﹣5,∴AB﹣BC的值不会随着时间t的变化而变化.综上所述,当1≤t<3时,AB﹣BC的值会随着时间t的变化而变化.当t≥3时,AB﹣BC的值不会随着时间t的变化而变化.十.实数大小比较32.解:∵a2=2,c4=4,∴c2=2=a2,a=c,又∵a6=(a2)3=8,b6=(b3)2=9,∴b>a=c,比较b与d的大小:∵b15=(b3)5=243,d15=(d5)3=125,∴b>d,比较a与d的大小:∵a10=(a2)5=32,d10=(d5)2=25,∴a>d∴d<a=c<b.故选:C.十一.估算无理数的大小33.解:∵16<20<25,∴4<<5,又误差要求小于0.1,可计算4.52=20.25,4.42=19.36,所以≈4.4或4.5;∵729<900<1000,∴9<<10.因为要求误差小于1,∴≈﹣9或﹣10.34.解:2<<3,∴7<5+<8,∴1<<,∴的整数部分是1,小数部分是a=﹣1=,同理求出的小数部分是b=﹣1=,∴7a+5b=7×+5×=﹣,故选:D.35.解:∵9<10<16,∴3<<4,则[]=3,故答案为:336.解:(1)∵4<5<9,∴2<<3.∴﹣2>﹣>﹣3.∴6﹣2>6﹣>6﹣3,∴4>6﹣>3.∴a=3,b=3﹣.(2)3a﹣b2=3×3﹣(3﹣)2=9﹣(9﹣6+5)=6﹣5.37.解:∵a是的小数部分,∴a=﹣1,∴﹣1<1,∴>a,∴==﹣a=﹣(﹣1)=+1﹣(﹣1)=2.十二.实数的运算38.解:①原式=﹣1+﹣+2﹣+﹣2=﹣1;②原式=﹣8×4﹣4×﹣3=﹣32﹣1﹣3=﹣36;③原式=﹣+2.5﹣﹣1=;④原式=﹣1+﹣5+﹣=﹣5。
一、选择题1.给出下列各数①0.32,②227,③π,④5,⑤0.2060060006(每两个6之间依次多个0),⑥327,其中无理数是( ) A .②④⑤ B .①③⑥ C .④⑤⑥D .③④⑤ 2.下列各式计算正确的是( )A .31-=-1B .38= ±2C .4= ±2D .±9=3 3.下列说法中错误的有( )①实数和数轴上的点是一一对应的;②负数没有立方根;③算术平方根和立方根均等于其本身的数只有0;④49的平方根是7±,用式子表示是497=±.A .0个B .1个C .2个D .3个4.数轴上有O 、A 、B 、C 四点,各点位置与各点所表示的数如图所示.若数线上有一点D ,D 点所表示的数为d ,且|d ﹣5|=|d ﹣c |,则关于D 点的位置,下列叙述正确的是?( )A .在A 的左边B .介于O 、B 之间C .介于C 、O 之间D .介于A 、C 之间5.已知n 是正整数,并且n -1<326+<n ,则n 的值为( )A .7B .8C .9D .106.数轴上表示下列各数的点,能落在A ,B 两个点之间的是( )A .3B 7C 11D 137.关于x 的多项式32711159x mx x --+与多项式22257x nx --相加后不含x 的二次和一次项,则()mn n -+平方根为( )A .3B .3-C .3±D .3±8.30.31,3π,27-912-38 1.212212221…(每两个1之间依次多一个2)中,无理数的个数为( ) A .1 B .2C .3D .4 9.如图是一个按某种规律排列的数阵:根据数阵排列的规律,第n (n 是整数,且n ≥3)行从左向右数第(n ﹣2)个数是( )(用含n 的代数式表示)A 21n -B 22n -C 23n -D 24n - 10.已知:m 、n 为两个连续的整数,且5m n <,以下判断正确的是( ) A 545 B .3m =C 50.236D .9m n += 11.若1a >,则a ,a -,1a 的大小关系正确的是( ) A .1a a a >-> B .1a a a>-> C .1a a a >>- D .1a a a ->> 12.下列各数中是无理数的是( ) A .227 B .1.2012001 C .2π D 8113.一个正方体的体积为16,那么它的棱长在( )之间A .1和2B .2和3C .3和4D .4和5 14.已知|x |=2,y 2=9,且xy <0,则x +y 的值为( ) A .1或﹣1 B .-5或5 C .11或7 D .-11或﹣7 15.下列各组数中都是无理数的为( )A .0.07,23,π;B .0.7•,π2;C 26,π;D .0.1010101……101,π3二、填空题16.阅读下面的文字,解答问题:无理数是无限不循环小数,因此无理数的小数部分我们不可能全部地写出来,比如π、2等,而常用“……”或者“≈”212的小数部分,你同意小刚的表示方法吗? 2的整数部分是1,将这个数减去其整数部分,差就是小数部分. 459<<,即253<<, 5252也就是说,任何一个无理数,都可以夹在两个相邻的整数之间.根据上述信息,请回答下列问题:(113______,小数部分是_______;(2)107+也是夹在两个整数之间的,可以表示为107a b <+<,则a b +=_____; (3)若404x y -=+,其中x 是整数,且01y <<.求:x y -的相反数. 17.把下列各数填在相应的集合里:4,3.5,0,3π,5-4,10%,2-3,2016,﹣2.030030003…(每两个3之间依次多一个0) 正分数集合{ …}负有理数集合{ …}非负整数集合{ …}无理数集合{ …}.18.对于实数x ,规定[x ]表示不大于x 的最大整数,如[4]=4,[3]=1,如[﹣2.5]=﹣3,现对82进行如下操作:82−−−→第一次[82]=9−−−→第二次[9]=3−−−→第三次[3]=1,这样对82只需进行3次操作后变为1,类似地,按照以上操作,只需进行3次操作后变为2的所有正整数中,最大的正整数是__.19.已知a 、b 满足2|3|0a b -++=,则(a +b )2021的值为________.20.已知57+的整数部分为a ,57-的小数部分为b ,则2ab b +=_________. 21.一个正数的两个平方根分别为27a -与34a -+,则这个正数为_______. 22.计算:(1)3243333225⎛⎫+-- ⎪⎝⎭; (2)381|13|6463+----.23.根据如图所示的程序计算,若输出y 的值为16,则输入x 的值为 ______.24.观察下面一列数:-1,2,-3,4,-5,6,-7……,将这列数排成下图形式.按照此规律排下去,那么第_________行从坐标数第_________个数是-2019.25.已知有理数1a ≠,我们把11a-称为a 的差倒数,如:2的差倒数是1112=--,1-的差倒数是()11112=--,如果13a =-,2a 是1a 的差倒数,4a 是3a 的差倒数,4a 是5a 的差倒数…依此类推,那么的12342017201820192020a a a a a a a a -+-⋅⋅⋅+-+-值是______.26.规定一种关于a 、b 的新运算:2*2a b b ab a =+-+,那么()3*2-=______.三、解答题27.计算:(1()23-.(2)()21183⎤⎛⎫-⨯-⎥ ⎪⎝⎭⎥⎦. 28.求下列各式中x 的值:(1)()214x -=;(2)3381x =-.29.已知1x -的算术平方根是3,24x y ++的立方根也是3,求23x y -的值. 30.解答下列各题.(1)已知2x +3与x -18是某数的平方根,求x 的值及这个数.(2)已知20c d -=,求d +c 的平方根.。
第六章实数【知识点一】实数的分类1、按定义分类:【知识点二】实数的相关概念1・相反数(1) 代数意义:只有符号不同的两个数,我们说其中一个是另一个 的相反数。
0的相反数是Q 。
(2) 几何意义:在数轴上原点的两侧,与原点距离相箋的两个点表 示的两个数互为相反数,或数轴上,互为相反数的两个数所对应 的点关于原点对称。
(3) 互为相反数的两个数之和等于0。
若a 、b 互为相反数,则 a+b=0。
2.绝对值 |a|>0o 正数的绝对值等于它本身,负数的绝对值等于它的相反数,0的绝对值等于Q 。
3•倒数(1)0没有倒数(2)乘积是1的两个数互为倒数。
若a 、 有理数 厂正有理数L 负有理数 厂正无理数 L负无理数有限小数和无限循坏小数无限不循环小数 2、按性质符号分类: 厂正有理数 正实数三0 I 正无理数注:0既不是止数也不是负数.负实数 负有理数 负无理数b互为倒数则ab=l o4•平方根(1)如果一个数的平方等于a,这个数就叫做a的平方根.一个正数有两个平方根,它们互为相反数;0有一个平方根,它是0本身;负数没有平方根.a(a>0)的平方根记作土侖。
(2)—个正数a的正的平方根,叫做a的算术平方根。
0的算术平方根是0。
a(a>0)的算术平方根记作返。
5 •立方根如果x3=a,那么x叫做a的立方根.一个正数有二个正的立方根;一个负数有二个鱼的立方根;零的立方根是雯.a的立方根记作需。
如果两个被开方数互为相反数,则它们的立方根也互为相反数,反之亦然。
即有畅"扬。
【知识点三】实数与数轴数轴定义:规定了原点,正方向和单位长度的直线叫做数轴, 数轴的三要素缺一不可。
【知识点四】实数大小的比较1.对于数轴上的任意两个点,靠生边的点所表示的数较大。
2.正数都大于0,负数都小于0,两个正数,绝对值较大的那个正数大;两个负数,绝对值大的反而小.3•无理数的比较大小:对于开平方,被开方数越大,它的算术平方根越大。
【本文档由书林工作坊整理发布,谢谢你的下载和关注!】平方根(基础)【学习目标】1.了解平方根、算术平方根的概念,会用根号表示数的平方根.2.了解开方与乘方互为逆运算,会用开方运算求某些非负数的平方根,会用计算器求平方根.【要点梳理】知识点一、平方根和算术平方根的概念 1.算术平方根的定义如果一个正数x 的平方等于a ,即2x a =,那么这个正数x 叫做a 的算术平方根(规定0的算术平方根还是0);a a a 的算术平方根”,a 叫做被开方数.要点诠释:a a a 0,a ≥0. 2.平方根的定义如果2x a =,那么x 叫做a 的平方根.求一个数a 的平方根的运算,叫做开平方.平方与开平方互为逆运算. a (a ≥0)的平方根的符号表达为(0)a a ≥a 是a 的算术平方根.知识点二、平方根和算术平方根的区别与联系 1.区别:(1)定义不同;(2)结果不同:a a2.联系:(1)平方根包含算术平方根;(2)被开方数都是非负数;(3)0的平方根和算术平方根均为0.要点诠释:(1)正数的平方根有两个,它们互为相反数,其中正的那个叫它的算术平方根;负数没有平方根. (2)正数的两个平方根互为相反数,根据它的算术平方根可以立即写出它的另一个平方根.因此,我们可以利用算术平方根来研究平方根.知识点三、平方根的性质20||000a a a a a a a >⎧⎪===⎨⎪-<⎩()20a aa =≥知识点四、平方根小数点位数移动规律被开方数的小数点向右或者向左移动2位,它的算术平方根的小数点就相应地向右或者向左移动1位.62500250=62525= 6.25 2.5=0.06250.25=.【典型例题】类型一、平方根和算术平方根的概念1、下列说法错误的是( )A.5是25的算术平方根B.l 是l 的一个平方根C.()24-的平方根是-4 D.0的平方根与算术平方根都是0【答案】C ;【解析】利用平方根和算术平方根的定义判定得出正确选项.A.因为25=5,所以本说法正确;B.因为±1=±1,所以l 是l 的一个平方根说法正确;C.因为±()24-=±16=±4,所以本说法错误;D.因为0±=0,0=0,所以本说法正确;【总结升华】此题主要考查了平方根、算术平方根的定义,关键是明确运用好定义解决问题. 举一反三:【变式】判断下列各题正误,并将错误改正:(1)9-没有平方根.( )(2)164=±.( ) (3)21()10-的平方根是110±.( ) (4)25--是425的算术平方根.( ) 【答案】√ ;×; √; ×, 提示:(2)164=;(4)25是425的算术平方根. 2、 填空:(1)4-是 的负平方根. (2116表示 的算术平方根,116= . (3181的算术平方根为 . (43x =,则x = ,若23x =,则x = .【思路点拨】(3)181就是181的算术平方根=19,此题求的是19的算术平方根. 【答案与解析】(1)16;(2)11;164(3)13 (4) 9;±3【总结升华】要审清楚题意,不要被表面现象迷惑.注意数学语言与数学符号之间的转化.举一反三:【变式1】下列说法中正确的有( ):①3是9的平方根. ② 9的平方根是3.③4是8的正的平方根.④ 8-是64的负的平方根.A .1个B .2个C .3个D .4个 【答案】B ;提示:①④是正确的.【变式2】求下列各式的值:(1)325 (2)8136+(3)0.040.25- (4)40.36121⋅【答案】(1)15;(2)15;(3)-0.3;(4)6553、使代数式1x +有意义的x 的取值范围是______________. 【答案】x ≥1-;【解析】x +1≥0,解得x ≥1-.【总结升华】当式子a 有意义时,a 一定表示一个非负数,即a ≥0,a ≥0. 举一反三:【变式】(2015春•中江县期中)若+(3x+y ﹣1)2=0,求5x+y 2的平方根.【答案】解:∵+(3x+y ﹣1)2=0, ∴,解得,,∴5x+y 2=5×1+(﹣2)2=9,∴5x+y 2的平方根为±=±3.类型二、利用平方根解方程4、(2015春•鄂州校级期中)求下列各式中的x 值(1)169x2=144(2)(x﹣2)2﹣36=0.【思路点拨】(1)移项后,根据平方根定义求解;(2)先将(x﹣2)看成一个整体,移项后,根据平方根定义求解.【答案与解析】解:(1)169x2=144,两边同时除以169,得1442x=169开平方,得x=(2)(x﹣2)2﹣36=0,移项,得(x﹣2)2=36开平方,得x﹣2=±6,解得:x=8或x=﹣4.【总结升华】本题考查了平方根,根据是一个正数的平方根有两个.类型三、平方根的应用5、要在一块长方形的土地上做田间试验,其长是宽的3倍,面积是1323平方米.求长和宽各是多少米?【答案与解析】解:设宽为x,长为3x,由题意得,x·3x=132332x=1323x=±21x=-21(舍去)答:长为63米,宽为21米.【总结升华】根据面积由平方根的定义求出边长,注意实际问题中边长都是正数.【本文档由书林工作坊整理发布,谢谢你的下载和关注!】立方根【学习目标】1. 了解立方根的含义;2. 会表示、计算一个数的立方根,会用计算器求立方根.【要点梳理】要点一、立方根的定义如果一个数的立方等于a,那么这个数叫做a的立方根或三次方根.这就是说,如果3=,那么x叫做a的立方根.求一个数的立方根的运算,叫做开立方.x a要点诠释:一个数a3a a是被开方数,3是根指数. 开立方和立方互为逆运算.要点二、立方根的特征立方根的特征:正数的立方根是正数,负数的立方根是负数,0的立方根是0.要点诠释:任何数都有立方根,一个数的立方根有且只有一个,并且它的符号与这个非零数的符号相同. 两个互为相反数的数的立方根也互为相反数. 要点三、立方根的性质33a a -=-33a a =()33a a =要点诠释:第一个公式可以将求负数的立方根的问题转化为求正数的立方根的问题. 要点四、立方根小数点位数移动规律被开方数的小数点向右或者向左移动3位,它的立方根的小数点就相应地向右或者向左移动1位.例如,30.000 2160.06=,30. 2160.6=,3 2166=,3216000 60=. 【典型例题】 类型一、立方根的概念1、(2016春•吐鲁番市校级期中)下列语句正确的是( ) A .如果一个数的立方根是这个数本身,那么这个数一定是0 B .一个数的立方根不是正数就是负数 C .负数没有立方根D .一个不为零的数的立方根和这个数同号,0的立方根是0 【思路点拨】根据立方根的定义判断即可. 【答案】D ;【解析】A .如果一个数的立方根是这个数本身,那么这个数一定是0或1或-1,故错误;B .一个数的立方根不是正数就是负数,错误,还有0;C .负数有立方根,故错误;D .正确.【总结升华】本题考查了立方根,解决本题的关键是熟记立方根的定义. 举一反三:【变式】下列结论正确的是( )A .64的立方根是±4B .12-是16-的立方根 C .立方根等于本身的数只有0和1D .332727-=-【答案】D.类型二、立方根的计算2、求下列各式的值:(1)327102-- (2)3235411+⨯ (3)336418-⋅ (4)23327(3)1-+--- (5)10033)1(412)2(-+÷-- 【答案与解析】解:(1)310227-- (2)3321145⨯+ (3)331864⋅-3642743==33=116425=729=9⨯+ 1=241=2⎛⎫⨯- ⎪⎝⎭-(4)23327(3)1-+---=331=1-++(5)310031(2)2(1)4--÷+-3=21247=1=33÷++【总结升华】立方根的计算,注意符号和运算顺序,带分数要转化成假分数再开立方.举一反三:【变式】计算:(1)30.008-=______;(2)=364611______; (3)=--312719______.(4)=-33511)(______. 【答案】(1)-0.2;(2)54;(3)23;(4)45. 类型三、利用立方根解方程3、(2015春•北京校级期中)(x ﹣2)3=﹣125.【思路点拨】利用立方根的定义开立方解答即可. 【答案与解析】 解:(x ﹣2)3=﹣125, 可得:x ﹣2=﹣5, 解得:x=﹣3.【总结升华】此题考查立方根问题,关键是先将x ﹣2看成一个整体. 举一反三:【变式】求出下列各式中的a :(1)若3a =0.343,则a =______;(2)若3a -3=213,则a =______; (3)若3a +125=0,则a =______;(4)若()31a -=8,则a =______.【答案】(1)a =0.7;(2)a =6;(3)a =-5;(4)a =3. 类型四、立方根实际应用4、在做物理实验时,小明用一根细线将一个正方体铁块拴住,完全浸入盛满水的圆柱体烧杯中,并用一量筒量得铁块排出的水的体积为643cm ,小明又将铁块从水中提起,量得烧杯中的水位下降了169πcm .请问烧杯内部的底面半径和铁块的棱长各是多少?【思路点拨】铁块排出的643cm 水的体积,是铁块的体积,也是高为169πcm 烧杯的体积. 【答案与解析】解:铁块排出的643cm 的水的体积,是铁块的体积.设铁块的棱长为y cm ,可列方程364,y =解得4y =设烧杯内部的底面半径为x cm ,可列方程216649x ππ⨯=,解得x =6. 答:烧杯内部的底面半径为6cm ,铁块的棱长 4cm .【总结升华】应该熟悉体积公式,依题意建立相等关系(方程),解方程时,常常用到求平方根、立方根,要结合实际意义进行取舍.本题体现与物理学科的综合. 举一反三:【变式】将棱长分别为和的两个正方体铝块熔化,制成一个大正方体铝块,这个大正方体的棱长为____________.(不计损耗) 333a b +.【本文档由书林工作坊整理发布,谢谢你的下载和关注!】实数(基础)【学习目标】1. 了解无理数和实数的意义;2. 了解有理数的概念、运算法则在实数范围内仍适用 . 【要点梳理】要点一、有理数与无理数有限小数和无限循环小数都称为有理数.无限不循环小数又叫无理数. 要点诠释:(1)无理数的特征:无理数的小数部分位数无限.无理数的小数部分不循环,不能表示成分数的形式.(2)常见的无理数有三种形式:①含π类.②看似循环而实质不循环的数,如:1.313113111…….③带有根号的数,但根号下的数字开方开不尽,如5.要点二、实数有理数和无理数统称为实数. 1.实数的分类 按定义分:实数⎧⎨⎩有理数:有限小数或无限循环小数无理数:无限不循环小数按与0的大小关系分:实数0⎧⎧⎨⎪⎩⎪⎪⎨⎪⎧⎪⎨⎪⎩⎩正有理数正数正无理数负有理数负数负无理数2.实数与数轴上的点一一对应.数轴上的任何一个点都对应一个实数,反之任何一个实数都能在数轴上找到一个点与之对应.要点三、实数大小的比较对于数轴上的任意两个点,右边的点所表示的实数总是比左边的点表示的实数大. 正实数大于0,负实数小于0,两个负数,绝对值大的反而小. 要点四、实数的运算有理数关于相反数和绝对值的意义同样适合于实数.当数从有理数扩充到实数以后,实数之间不仅可以进行加、减、乘、除(除数不为0)、乘方运算,而且正数及0可以进行开平方运算,任意一个实数可以进行开立方运算.在进行实数的运算时,有理数的运算法则及运算性质等同样适用. 【典型例题】类型一、实数概念1、指出下列各数中的有理数和无理数: 332222,,,9,8,9,0,,12,55,0.1010010001 (7)3π-【思路点拨】对实数进行分类时,应先对某些数进行计算或化简,然后根据它的最后结果进行分类,不能仅看到根号表示的数就认为是无理数.π是无理数,化简后含π的代数式也是无理数.【答案与解析】有理数有3222,9,8,0,,73--无理数有32,,9,12,55,0.1010010001π-……【总结升华】有限小数和无限循环小数都称为有理数.无限不循环小数又叫无理数. 常见的无理数有三种形式:①含π类.②看似循环而实质不循环的数,如:0.1010010001…….③带有根号的数,但根号下的数字开方开不尽,如55,39,2,12-.举一反三: 【变式】(2015春•聊城校级月考)在下列语句中: ①无理数的相反数是无理数; ②一个数的绝对值一定是非负数; ③有理数比无理数小;④无限小数不一定是无理数. 其中正确的是( )A .②③B .②③④C .①②④D .②④ 【答案】C ;解:①因为实数包括有理数和无理数,无理数的相反数 不可能式有理数,故本选项正确; ②一个数的绝对值一定≥0,故本选项正确;③数的大小,和它是有理数还是无理数无关,故本选项是错误的; ④无限循环小数是有理数,故本选项正确.类型二、实数大小的比较2、比较520.5的大小. 【答案与解析】解:作商,得5250.5=51>,即5210.5>50.5>. 【总结升华】根据若a ,b 均为正数,则由“1a b >,1a b =,1ab<”分别得到结论“a b >,a b =,a b <,”从而比较两个实数的大小.比较大小的方法有作差法和作商法等,根据具体情况选用适当的方法.举一反三:【变式】比较大小___ 3.14π-- 7___54__2323___32 32 9___0- 3___10-- |43|___(7)--- 【答案】<; >; <; <; <; >; <.3、(2015•枣庄)实数a ,b ,c 在数轴上对应的点如图所示,则下列式子中正确的是( )A .ac >bcB .|a ﹣b|=a ﹣bC .﹣a <﹣b <cD .﹣a ﹣c >﹣b ﹣c【答案】D ;【解析】解:∵由图可知,a <b <0<c , ∴A 、ac <bc ,故A 选项错误; B 、∵a <b , ∴a ﹣b <0,∴|a ﹣b|=b ﹣a ,故B 选项错误; C 、∵a <b <0,∴﹣a >﹣b ,故C 选项错误; D 、∵﹣a >﹣b ,c >0,∴﹣a ﹣c >﹣b ﹣c ,故D 选项正确. 故选:D .【总结升华】本题考查的是实数与数轴,熟知数轴上各点与实数是一一对应关系是解答此题的关键.类型三、实数的运算4、化简:(1)|2 1.4|- (2)|7|74||-- (3)|12|+|23|+|32|--- 【答案与解析】 解:|2 1.4|-2 1.4=-|7|74||-- =|74+7|- =274-|12|+|23|+|32|---2132231=-+-+-=.【总结升华】有理数关于相反数和绝对值的意义同样适合于实数.有理数的运算法则及运算性质等同样适用.5、若2|2|3(4)0a b c ---=,则a b c -+=________.【思路点拨】由有限个非负数之和为零,则每个数都应为零可得到方程中a ,b ,c 的值.【答案】3; 【解析】解:由非负数性质可知:203040a b c -=⎧⎪-=⎨⎪-=⎩,即234a b c =⎧⎪=⎨⎪=⎩,∴ 2343a b c -+=-+=.【总结升华】初中阶段所学的非负数有|a |,2,a a ,非负数的和为0,只能每个非负数分别为0 . 举一反三:【变式】已知2(16)|3|30x y z ++++-=,求xyz 的值.【答案】解:由已知得1603030x y z +=⎧⎪+=⎨⎪-=⎩,解得1633x y z =-⎧⎪=-⎨⎪=⎩.∴xyz =(16)(3)312-⨯-⨯=.【本文档由书林工作坊整理发布,谢谢你的下载和关注!】实数全章复习与巩固(基础)【学习目标】1.了解算术平方根、平方根、立方根的概念,会用根号表示数的平方根、立方根.2.了解开方与乘方互为逆运算,会用平方运算求某些非负数的平方根,会用立方运算求某些数的立方根,会用计算器求平方根和立方根.3.了解无理数和实数的概念,知道实数与数轴上的点一一对应,有序实数对与平面上的点一一对应;了解数的范围由有理数扩大为实数后,概念、运算等的一致性及其发展变化.4.能用有理数估计一个无理数的大致范围. 【知识网络】【要点梳理】类型项目平方根 立方根 被开方数 非负数任意实数符号表示a ±3a性质一个正数有两个平方根,且互为相反数;零的平方根为零; 负数没有平方根;一个正数有一个正的立方根; 一个负数有一个负的立方根; 零的立方根是零;重要结论⎩⎨⎧<-≥==≥=)0()0()0()(22a a a a a a a a a333333)(aa a a aa -=-==要点二:实数有理数和无理数统称为实数. 1.实数的分类 按定义分:实数⎧⎨⎩有理数:有限小数或无限循环小数无理数:无限不循环小数按与0的大小关系分:实数0⎧⎧⎨⎪⎩⎪⎪⎨⎪⎧⎪⎨⎪⎩⎩正有理数正数正无理数负有理数负数负无理数要点诠释:(1)所有的实数分成三类:有限小数,无限循环小数,无限不循环小数.其中有限小数和无限循环小数统称有理数,无限不循环小数叫做无理数.(2532等;②有特殊意义的数,如π;③有特定结构的数,如0.1010010001…(3)凡能写成无限不循环小数的数都是无理数,并且无理数不能写成分数形式.(4)实数和数轴上点是一一对应的.2.实数与数轴上的点一 一对应.数轴上的任何一个点都对应一个实数,反之任何一个实数都能在数轴上找到一个点与之对应.3.实数的三个非负性及性质:在实数范围内,正数和零统称为非负数。
人教版七年级数学下册第六章实数知识点汇总【知识点一】实数的分类 1、按定义分类: 2.按性质符号分类:注:0既不是正数也不是负数.【知识点二】实数的相关概念1.相反数(1)代数意义:只有符号不同的两个数,我们说其中一个是另一个的相反数.0的相反数是0.(2)几何意义:在数轴上原点的两侧,与原点距离相等的两个点表示的两个数互为相反数,或数轴上,互为相反数的两个数所对应的点关于原点对称.(3)互为相反数的两个数之和等于0.a、b互为相反数a+b=0.2.绝对值|a|≥0.3.倒数(1)0没有倒数(2)乘积是1的两个数互为倒数.a、b互为倒数.▲▲平方根【知识要点】1.算术平方根:正数a的正的平方根叫做a的算术平方根,记作“a”。
2. 如果x2=a,则x叫做a的平方根,记作“±a”(a称为被开方数)。
3. 正数的平方根有两个,它们互为相反数;0的平方根是0;负数没有平方根。
4. 平方根和算术平方根的区别与联系:区别:正数的平方根有两个,而它的算术平方根只有一个。
联系:(1)被开方数必须都为非负数;(2)正数的负平方根是它的算术平方根的相反数,根据它的算术平方根可以立即写出它的负平方根。
(3)0的算术平方根与平方根同为0。
5. 如果x3=a,则x叫做a的立方根,记作“3a”(a称为被开方数)。
6. 正数有一个正的立方根;0的立方根是0;负数有一个负的立方根。
7. 求一个数的平方根(立方根)的运算叫开平方(开立方)。
8.立方根与平方根的区别:一个数只有一个立方根,并且符号与这个数一致;只有正数和0有平方根,负数没有平方根,正数的平方根有2个,并且互为相反数,0的平方根只有一个且为0.9. 一般来说,被开放数扩大(或缩小)n倍,算术平方根扩大(或缩小)n倍,例如502500,525==.10.平方表:(自行完成)____________________________________________________________________________________________________题型规律总结:1、平方根是其本身的数是0;算术平方根是其本身的数是0和1;立方根是其本身的数是0和±1。
第六章实数----知识点总结
一、算术平方根
1. 算术平方根的定义: 一般地,如果 的 等于a ,即 ,那么这个正数x 叫
做a 的算术平方根.a 的算术平方根记为 ,读作“根号a ”,a 叫做 .
规定:0的算术平方根是0.
也就是,在等式a x =2 (x ≥0)中,规定a x =。
理解: a x =2 (x ≥0) a x =
a 是x 的平方 x 的平方是a x 是a 的算术平方根 a 的算术平方根是x 2. a 的结果有两种情况:当a 是完全平方数时,a 是一个有限数;
当a 不是一个完全平方数时,a 是一个无限不循环小数。
3. 当被开方数扩大(或缩小)时,它的算术平方根也扩大(或缩小);
4. 夹值法及估计一个(无理)数的大小(方法: )
二、平方根
1. 平方根的定义:如果 的平方等于a ,那么这个数x 就叫做a 的 .即:如果 ,
那么x 叫做a 的 .
理解: a x =2 <—> a x ±=
a 是x 的平方 x 的平方是a x 是a 的平方根 a 的平方根是x
2.开平方的定义:求一个数的 的运算,叫做 .开平方运算的被开方数必须是 才
有意义。
3. 平方与开平方 :±3的平方等于9,9的平方根是±3
4. 一个正数有 平方根,即正数进行开平方运算有两个结果;
一个负数 平方根,即负数不能进行开平方运算
5. 符号:正数a 的正的平方根可用a 表示,a 也是a 的算术平方根;
正数a 的负的平方根可用-a 表示.
6. 平方根和算术平方根两者既有区别又有联系:
区别在于正数的平方根有两个,而它的算术平方根只有一个;
联系在于正数的正平方根就是它的算术平方根,而正数的负平方根是它的算术平方根的相反数。
三、立方根
1. 立方根的定义:如果 的 等于a ,这个数叫做a 的 (也叫
做 ),即如果 ,那么x 叫做a 的立方根。
2. 一个数a “三次根号a ”,
其中a 叫被开方数,3叫根指数,不能省略,若省略表示平方。
理解: a x =3 <—> 3a x =
a 是x 的立方 x 的立方是a x 是a 的立方根 a 的立方根是x
3. 一个正数有一个正的立方根;0有一个立方根,是它本身;
一个负数有一个负的立方根;任何数都有唯一的立方根。
4. 利用开立方和立方互为逆运算关系,求一个数的立方根,就可以利用这种互逆关系,检验其正确性,求负数的立方根,可以先求出这个负数的绝对值的立方根,再取其相反数,
即)0a =>。
四、实数
1. 有理数的定义:任何有限小数或无限循环小数也都是有理数。
2. 无理数的定义:无限不循环小数叫无理数
3. 实数的定义:有理数和无理数统称为实数
⎧⎧⎫⎨⎬⎪⎨⎩⎭⎪→⎩整数有理数有限小数或无限循环小数实数分数无理数无限不循环小数
4.
,π
是正无理数,
,π-是负无理数。
由于非0有理数和无理数都有正负之分,实数也可以这样分类:
⎪⎪⎪⎩
⎪⎪⎪⎨⎧⎩⎨⎧⎩⎨⎧负无理数负有理数负实数正无理数正有理数正实数实数0
5. 实数与数轴上点的关系:
每一个无理数都可以用数轴上的一个点表示出来,
数轴上的点有些表示有理数,有些表示无理数,
实数与数轴上的点就是一一对应的,即每一个实数都可以用数轴上的一个点来表示;反过来,数轴上的每一个点都是表示一个实数。
与有理数一样,对于数轴上的任意两个点,右边的点所表示的实数总比左边的点表示的实数大
6. 数a 的相反数是a -,这里a 表示任意一个实数。
7. 实数的绝对值:一个正实数的绝对值是本身;
一个负实数的绝对值是它的相反数;
0的绝对值是0。
8. 无限小数是有理数( ) 无限小数是无理数( )
有理数是无限小数( ) 无理数是无限小数( )
数轴上的点都可以用有理数表示( ) 有理数都可以由数轴上的点表示( ) 数轴上的点都可以用无理数表示( ) 无理数都可以由数轴上的点表示( )
数轴上的点都可以用实数表示( ) 实数都可以由数轴上的点表示( )
五、考点分析
类型一、有关概念的识别
例1.下面几个数:57223064.0010010001.1,7231.03,,,,π-⋅⋅ ,其中,无理数的个数有
A 、1
B 、2
C 、3
D 、4
【变式1】下列说法中正确的是( ) A 、81的平方根是±3 B 、1的立方根是±1 C 、11±= D 、5-是5的平方根的相反数
【变式2】如图,以数轴的单位长线段为边做一个正方形,以数轴的原点为圆心,正方形对角线长为半径画弧,交数轴正半轴于点A ,则点A 表示的数是( ) A 、1.5 B 、1.4 C 、2 D 、3 类型二、计算类型题
例2.设a =26,则下列结论正确的是( )
A. B. C. D. 举一反三:
【变式1】1)1.25的算术平方根是__________;平方根是__________.2) -27立方根是__________.
3)___________, ___________,___________.
【变式2】求下列各式中的
(1)252=x (2)()912
=-x (3)643-=x
类型三、数形结合
例3. 点A 在数轴上表示的数为53,点B 在数轴上表示的数为2,则A ,B 两点的距离为______ 举一反三:
【变式1】如图,数轴上表示1,2的对应点分别为A ,B ,点B 关于点A 的对称点为C ,则点C 表示的数是( ).
A .12-
B .21-
C .22-
D .22-
类型四、实数非负性的应用
例4.已知()026262
=++-+-z y y x x ,求()33
z y x --的值。
【变式1】已知()01522
=++++-c b a ,求c b a -+的值。
类型五、易错题
例5.判断下列说法是否正确
(1)()2
3-的算术平方根是-3 ( ) (2)225的平方根是±15 ( ) (3)当x=0或2时,02=-x x ( ) (4)2
3是分数 ( ) 类型六、实数应用题
例6.有一个边长为11cm 的正方形和一个长为13cm ,宽为8cm 的矩形,要作一个面积为这两个图形的面积之和的正方形,问边长应为多少。
类型七、引申提高
例7. 把下列无限循环小数化成分数:①0.6• ②0.23•• ③0.107••
一、填空题
1、(-0.7)2的平方根是
2、若2a =25,b =3,则a+b=
3、已知一个正数的两个平方根分别是2a ﹣2和a ﹣4,则a 的值是
4、ππ-+-43= ____________
5、若m 、n 互为相反数,则n m +-5=_________
6、大于-2,小于10的整数有______个。
7、一个正数x 的两个平方根分别是a+2和a-4,则a= ,x= 。
二、选择题
1、以下语句及写成式子正确的是( )
A 、7是49的算术平方根,即749±=
B 、7是2)7(-的平方根,即7)7(2=-
C 、7±是49的平方根,即749=±
D 、7±是49的平方根,即749±=
2、下列语句中正确的是( )
A 、9-的平方根是3-
B 、9的平方根是3
C 、 9的算术平方根是3±
D 、9的算术平方根是3
3、下列语句中正确的是( )
A 、任意算术平方根是正数
B 、只有正数才有算术平方根
C 、∵3的平方是9,∴9的平方根是3
D 、1-是1的平方根
三、利用平方根解下列方程.
()()21211690x --= ()()2243110x +-=。