方法
考法 切线的判定及性质
提分特训
1.[2021武汉中考]如图, AB是☉O的直径,C,D是☉O上两点,点C是的
中点,过点C作AD的垂线,垂足是点E.连接AC交BD于点F.
(1)求证:CE是☉O的切线;
(2)若 =
6,求cos∠ABD的值.
前往
考点
方法
真题
作业
方法
考法 切线的判定及性质
2
+−
的半径r=
(其中a,b为直角边长,c为斜边长).
2
前往
考点
方法
真题
作业
考点
考点4
正多边形和圆的相关计算 基础点
设正n边形的外接圆半径为R,边长为a,边心距为r.
180°
R·cos
或
边心距r
a 2
2
−( )
2
周长C
na
面积S
1
nar
2
前往
考点
方法
真题
作业
考点
考点4
正多边形和圆的相关计算 基础点
在Rt△OBG中,由勾股定理得OG2+BG2=OB2.
∴(r-
3 2
2
2
2
2t) +(2t) =r ,解得r= t,
2
2 2 2
∴cos∠ABD= = 3 2 = .
3
2
前往
考点
方法
真题
作业
方法
考法 切线的判定及性质
提分特训
2.如图,点O是菱形ABCD的对角线AC上的一点,以点O为圆心,OA为
作业
真题
命题点1 切线的判定(5年3考)