2019届中考数学总复习实数ppt课件
- 格式:ppt
- 大小:2.27 MB
- 文档页数:26
第二节实数的运算及大小比较本节知识导图河北中考命题规律考什么怎么考考点年份题号题型考查方式考频命题趋势实数的大小比较2017 19 填空题与新定义结合,考查比较大小,一元二次方程5年2考实数的运算中常考0次幂和-1次幂,与运算结合的简便运算考查2次,形式新颖灵活;而实数的大小比较常与其他知识结合考查,不单独考查.预计2020年实数的运算及大小比较仍会继续考查2016 11 选择题结合数轴比较两数的大小,并判断代数式的正负实数的运算2019 20 解答题填运算符号并计算,比较结果的大小5年5考2018 10④选择题涉及2的0次幂2016 17 填空题8的立方根2015 2C选择题1的立方根河北中考考题试做实数的大小比较1.(2016·河北中考)点A,B在数轴上的位置如图所示,其对应的数分别是a和b.对于以下结论:甲:b-a<0; 乙:a+b>0;丙:|a|<|b|; 丁:b a>0.其中正确的是(C)A.甲乙B.丙丁C.甲丙D.乙丁2.(2017·河北中考)对于实数p,q,我们用符号min{p,q}表示p,q两数中较小的数,如min{1,2}=1. 因此,min{-2,-3}=__-3__;若min{(x-1)2,x2}=1,则__-1或2__.实数的运算类型一纯运算3.(2017·河北中考)下列运算结果为正数的是(A)A.(-3)2B.-3÷2C.0×(-2 017) D.2-34.(2016·河北中考)计算:-(-1)=(D)A.±1 B.-2 C.-1 D.15.(2015·河北中考)计算:3-2×(-1)=(A)A.5 B.1 C.-1 D.66.(2017·河北中考)如图是国际数学日当天淇淇和嘉嘉的微信对话,根据对话内容,下列选项错误的是(D) A.4+4-4=6B.4+40+40=6C.4+34+4=6D.4-1÷4+4=67.(2019·河北中考)有个填写运算符号的游戏:在“1269”中的每个内,填入+,-,×,÷中的某一个(可重复使用),然后计算结果.(1)计算:1+2-6-9;(2)若1÷2×69=-6,请推算内的符号;(3)在“126-9”的内填入符号后,使计算所得数最小,直接写出这个最小数.解:(1)原式=3-6-9=-12;(2)∵1÷2×6=3,∴39=-6.∴内的符号是“-”;(3)-20.类型二与规律结合8.(2018·河北中考)如图,阶梯图的每个台阶上都标着一个数,从下到上的第1个至第4个台阶上依次标着-5,-2,1,9,且任意相邻四个台阶上数的和都相等.尝试(1)求前4个台阶上数的和是多少?(2)求第5个台阶上的数x是多少?应用求从下到上前31个台阶上数的和;发现试用含k(k为正整数)的式子表示出数“1”所在的台阶数.解:尝试(1)-5-2+1+9=3;(2)由题意,得-5-2+1+9=-2+1+9+x.解得x=-5;应用与(2)同理,得第6个到第8个台阶上的数依次是-2,1,9,可见台阶上的数从下到上按-5,-2,1,9四个数依次循环排列.∵31=7×4+3,∴前31个台阶上数的和为7×3+(-5-2+1)=15; 发现 4k -1.类型三 与数轴结合 9.(2019·唐山路南区模拟)已知有理数-3,1.(1)在如图所示的数轴上,标出表示这两个数的点,并分别用A ,B 表示;(2)若|m|=2,在数轴上表示数m 的点介于点A ,B 之间;表示数n 的点在点A 右侧且到点B 距离为6. ①计算m +n -mn ;②解关于x 的不等式mx +3<n ,并把解集表示在所给数轴上.解析:本题考查数轴与不等式的应用.(1)在数轴上表示出两点;(2)根据题目条件确定m ,n 的值.①代入m ,n 的值计算代数式的值;②代入m ,n 的值解不等式,并把解集在数轴上表示出来.解:(1)如图所示; (2)∵|m|=2,∴m =±2.∵数m 的点介于点A ,B 之间,∴m =-2. ∵数n 在点A 右侧且到点B 距离为6,∴n =7. ①m +n -mn =-2+7-(-2)×7=5+14=19; ②由-2x +3<7,解得x >-2.在数轴上表示:类型四 根据已知方法进行运算 10.(2016·河北中考)利用运算律有时能进行简便计算.例1 98×12=(100-2)×12=1 200-24 =1 176;例2 -16×233+17×233=(-16+17)×233 =233.请你参考黑板中老师的讲解,用运算律简便计算: (1)999×(-15);(2)999×11845+999×⎝⎛⎭⎫-15-999×1835. 解:(1)原式=(1 000-1)×(-15) =-15 000+15=-14 985;(2)原式=999×⎣⎡⎦⎤11845+⎝⎛⎭⎫-15-1835 =999×100=99 900.平方根与立方根11.(2013·河北中考)下列运算中,正确的是( D )A .9=±3B .3-8=2C .(-2)0=0D .2-1=1212.(2016·河北中考)8的立方根为__2__.中考考点清单实数的运算1.加法:同号两数相加,取__相同__的符号,并把绝对值__相加__.异号两数相加,绝对值相等时和为__0__;绝对值不相等时,取__绝对值较大加数__的符号,并用较大的绝对值__减去__较小的绝对值.一个数同0相加,__仍得这个数__.2.减法:减去一个数,等于加上这个数的__相反数__.3.乘法:两数相乘,同号得__正__,异号得__负__,并把绝对值相乘.任何数同0相乘,仍得0. 4.除法:除以一个数(不等于0)等于乘这个数的__倒数__. 5.乘方:求n 个__相同因数__的积的运算叫做乘方.6.混合运算的顺序:有括号的先算__括号里面的__,无括号则先算__乘方或开方__,再算__乘除__,最后算__加减__,同级运算则按__从左到右__顺序依次计算.7.有理数的一切运算性质和运算律都适用于__实数__运算. 8.运算律(1)加法交换律:a +b =b +a ;(2)加法结合律:a +b +c =(a +b)+c =a +(b +c); (3)乘法交换律:ab =ba ;(4)乘法结合律:(ab)c =a(bc);(5)(乘法对加法的)分配律:a(b +c)=ab +ac.【方法点拨】实数运算四步:(1)观察运算种类;(2)确定运算顺序;(3)把握每个小单元的运算法则及符号;(4)灵活运用运算律.零次幂、负整数指数幂9.若a ≠0,则a 0=__1__;若a ≠0,n 为正整数,则a -n =__1an __.【易错警示】(1)防止出现以下类似的错误:①3-2=-19;②2a -2=12a 2;(2)负数的奇次幂是负数,负数的偶次幂是正数.特别地,-1的奇次幂为-1,偶次幂为1,如(-1)3=-1,(-1)2=1.实数的大小比较与非负数的性质10.实数的大小比较(1)数轴比较法:在数轴上表示的两个数,右边的数总比左边的数大.(2)性质比较法:①正数>0>负数;②两个负数比较大小,绝对值大的数反而小.在一组数中,求最大的数时,一般在正数中找,求最小的数时,一般在负数中找.(3)差值比较法:a -b >0⇔a >b ;a -b <0⇔a <b ;a -b =0⇔a =b.(4)平方比较法:a 2>b ⇔a >b(a >0,b >0)(主要应用于无理数估算及含有无理数的大小比较). (5)立方比较法:a 3>b ⇔a >3b.11.非负数:常见的非负数有a 2,|a|,a(a ≥0),最小的非负数是0. 若几个非负数的和为0,则每个非负数都为0.例如a 2+|b|+c =0,则a 2=|b|=c =0,有a =0,b =0,c =0,反之亦然.平方根、算术平方根、立方根及其性质12.平方根、算术平方根、立方根⎩⎪⎨⎪⎧a 的平方根为⎩⎨⎧±a (a ≥0),其中 a 为a 的算术平方根无意义(a<0)a 的立方根为3a (a 为任意实数)13.平方根的性质:(1)正数有两个平方根,它们互为相反数;(2)0的平方根是0;(3)负数没有平方根.14.立方根的性质:任意一实数都有立方根,且立方根与该实数符号相同;3a3=__a__,(3a)3=__a__,3-a=__-3a__.典题精讲精练实数的运算【例1】(2019·陕西中考)计算:-2×3-27+|1-3|-(12)-2.【解析】本题考查实数的混合运算.先求立方根,根据绝对值的概念去掉绝对值符号,写出负整数指数幂,再进行实数的混合运算.【解答】解:原式=-2×(-3)+(3-1)-4=6+3-5=1+ 3.1.(2019·淄博中考)比-2小1的数是(A)A.-3 B.3 C.-1 D.12.(2019·石家庄内四区模拟)下列运算结果是负数的是(D)A.(-2)×(-3) B.(-3+2)2C.2-3D.-(-2)+(-3)实数的大小比较【例2】(2019·扬州中考)下列各数中,小于-2的数是(A)A.- 5 B.- 3C.- 2 D.-1【解析】本题考查实数的大小比较.比-2小的数应该是负数,且绝对值大于2的数,分析各选项可得-5<-2<-3<-2<-1.3.在-2,-1,0,1这四个数中,最小的数是(A)A.-2 B.-1 C.0 D.14.实数a,b,c在数轴上的对应点的位置如图所示,则正确的结论是(B)A.|a|>4 B.c-b>0 C.ac>0 D.a+c>0与数轴有关的运算【例3】如图,已知A,B两点在数轴上,点A表示的数为-10,OB=3OA,点M以每秒3个单位长度的速度从点A向右运动,点N以每秒2个单位长度的速度从点O向右运动(点M,N同时出发).(1)数轴上点B对应的数是________;(2)经过几秒,点M,N到原点O的距离相等?【解析】(1)根据点A 表示的数及OB =3OA 可得点B 表示的数;(2)设运动时间为t s .根据“路程=速度×时间”可得点M ,N 在数轴上表示的数,分两种情况求出t 的值.【解答】解:(1)30;[∵点A 表示的数为-10,∴OA =10.∵OB =3OA ,∴OB =30.∴点B 对应的数是30.] (2)设运动时间为t s ,则点M 在数轴上表示的数为-10+3t ,点N 在数轴上表示的数为2t.当M ,N 分别位于原点两侧时,由点M ,N 到原点的距离相等可得-10+3t +2t =0,解得t =2; 当M ,N 位于原点同侧,即在原点右侧M ,N 两点重合时,-10+3t =2t ,解得t =10. ∴经过2 s 或10 s ,点M ,N 到原点O 的距离相等.5.如图,数轴上a ,b ,c 三个数所对应的点分别为A ,B ,C ,已知b 是最小的正整数,且a ,c 满足(c -6)2+|a +2|=0.(1)求代数式a 2+c 2-2ac 的值;(2)若将数轴折叠,使得点A 与点B 重合,则与点C 重合的点表示的数是________; (3)请在数轴上确定一点D ,使得AD =2BD ,则点D 表示的数是________.解:(1)∵(c -6)2+|a +2|=0,∴a +2=0,c -6=0,解得a =-2,c =6. ∴a 2+c 2-2ac =4+36+24=64;(2)-7;[∵b 是最小的正整数,∴b =1. ∵(-2+1)÷2=-0.5,∴6-(-0.5)=6.5,-0.5-6.5=-7.∴点C 与数-7表示的点重合.](3)0 或4.[设点D 表示的数为x.若点D 在点A 的左侧,则-2-x =2(1-x),解得x =4(舍去);若点D 在A ,B 之间,则x -(-2)=2(1-x),解得x =0;若点D 在点B 的右侧,则x -(-2)=2(x -1),解得x =4.综上所述,点D 表示的数是0或4.]平方根、算术平方根与立方根【例4】(1)4的平方根是±2; (2)3-27的绝对值是3; (3)|-9|的平方根是±3.【解析】根据平方根、立方根的定义和绝对值的性质求解填空.6.-18的立方根是-12.请完成限时训练A 本P A 3,选做B 本P B 2~B 3。
2019年中考数学精品专题复习第一章 数与式第一讲 实数及有关概念★★★核心知识回顾★★★知识点一、实数的分类 1.按实数的定义分类:⎧⎧⎧⎫⎪⎪⎪⎪⎪⎪⎪⎪⎨⎬⎪⎨⎪⎪⎨⎪⎪⎪⎩⎭⎪⎪⎪⎩⎪⎩整数有限小数或无限循环小数有理数实数:无限不循环小数 2.按实数的正负分类:⎧⎧⎪⎪⎨⎪⎪⎩⎪⎨⎪⎧⎪⎪⎨⎪⎪⎩⎩正实数正无理数实数零负有理数负实数知识点二、实数的基本概念和性质1.数轴:规定了 、 、 的直线叫做数轴,实数和数轴上的点是一一对应的。
2.相反数:(1)只有 不同的两个数叫做互为相反数,a 的相反数是 ,0的相反数是 ; (2)a+b=0⇔a 、b 互为 ;(3)在数轴上,表示相反数的两个点位于原点两侧,且到原点的距离 。
3.倒数:(1)乘积为 的两个数互为倒数,用数学语言表述为:1ab =,则a ,b 互为 ; (2)1和 的倒数还是它本身, 没有倒数。
4.绝对值:(1)一般地,数轴上表示数a 的点与原点的 叫做数a 的绝对值。
(2)(0)||0(0)(0)a a a a >⎧⎪==⎨⎪<⎩(3)因为绝对值表示的是距离,所以一个数的绝对值是 数,我们学过的非负数有三个: 、 和 。
知识点三、平方根、算术平方根、立方根 1.平方根: (1)一般地,如果一个数的 等于a ,那么这个数就叫做a 的平方根或二次方根,记作 ; (2)正数的平方根有两个,它们互为 ,0的平方根为 , 没有平方根。
2.算术平方根:(1)一般地,如果一个正数x 的平方等于a ,即2x a =,那么这个正数x 叫做a 的算术平方根,记作 ;(2)正数的算术平方根为 ,0的算术平方根为 。
3.立方根: (1)一般地,如果一个数的立方等于a ,那么这个数就叫做a 的立方根或三次方根,记作 ; (2)正数的立方根为 , 0的立方根为 ,负数立方根为 ;每个实数有且只有一个立方根。
知识点四、科学记数法科学记数法:把一个较大或较小的数写成写成10na ⨯的形式(其中a 大于或等于1且小于10,n 是正整数),使用的是科学记数法。