高等几何学习指导.
- 格式:doc
- 大小:935.00 KB
- 文档页数:40
高等几何对初等几何相关指导作用分析摘要高等几何是利用克莱因的变换群的观点定义的几何学,其能从更高的角度探索初等几何,对初等几何的相关证明、理论依据和命题的构造方面具有很好的指导作用。
本文分析了高等几何对初等几何相关指导作用,阐明了其之间的相互关系,并利用高等几何的思想方法对初等几何命题进行变换,通过实例从高等几何在点线结合、交比、反射变换和射影变换方面对初等几何的指导作用进行了探究,并阐述了高等几何对初等几何的作用在现代中学数学教学中的意义。
【关键词】高等几何;初等几何;变换AbstractHigher geometry is the use of the transformation of the view of klein, the definition of geometry Angle from higher primary geometry, to explore the relevant proof, elementary geometry theory and structure of proposition has very good guidance. Based on the analysis of higher geometry elementary geometric related guidance, illustrates the relationship between higher geometry, and using the method of elementary geometry proposition to transform from higher geometry, through examples in point, line, combined with reflection and projective transform, to transform the guiding role of elementary geometry.【Keyword】higher geometry;elementary geometry;transform前言初等几何是一种可测量的几何,比较直观、易懂,而高等几何较抽象、难理解. 但高等几何是初等几何的延深课程,二者之间有很深的渊源.高等几何作为一门几何课程,有着自身的特殊作用,高等几何知识与初等几何知识的沟通,为我们提供了解决初等几何的一些方法.学好高等几何,就能在更高层面上认识几何学的基本特性,研究方法,内在联系,可以认识到几何学的本质,深化和发展几何空间概念,以便更深入地驾驭和掌握初等几何的内涵和外延。
高等几何复习要点第一章仿射坐标和仿射变换1.1 透视仿射对应单比,透视对应及其性质。
1.2仿射对应和仿射变换仿射对应、仿射变换及其性质。
1.3仿射坐标仿射坐标系的定义,单比的坐标表示,仿射坐标系下的直线方程,仿射变换的代数表示及其计算。
1.4仿射性质仿射性质和仿射不变量。
Ex.1.4:1-4第二章射影平面2.1射影直线和射影平面中心射影,影消线,无穷远元素,射影直线和射影平面,射影性质与射影不变量,Desargues定理及其逆定理。
Ex.2.1:1-3,62.2齐次坐标齐次点坐标,齐次线坐标。
Ex.2.2:4,52.3对偶原理对偶元素,对偶命题,对偶原则。
Ex.2.3:1,2第三章射影变换与射影坐标3.1交比和调和比点列(线束)的交比及其性质,调和共轭,交比的计算,交比是射影不变量,完全四点形与完全四线形的调和性。
Ex. 3.1: 2-53.2一维射影变换一维基本型,一维基本型的透视对应与射影对应及其关系,Pappus定理,一维射影变换,对合。
Ex.3.2: 1-33.3一维射影坐标齐次射影坐标,交比的坐标表示,一维射影对应(变换)的代数表示,对合对应的参数间的关系。
Ex.3.3: 1-43.4二维射影变换与二维射影坐标二维基本型,二维基本型的透视对应与射影对应及其关系,二维射影坐标(齐次射影坐标),二维射影对应(变换)的代数表示,自对应(不变)元素。
P.84,例;Ex.3.4: 1-3第四章变换群与几何学4.1 变换群4.2变换群与几何学射影几何、仿射几何和欧式几何的比较,基本不变量(不变性,不变图形)Ex.4.2: 3,5第五章二次曲线的射影理论5.1二次曲线的射影定义二阶曲线的方程,二阶曲线的矩阵形式,二阶曲线的射影定义,二阶曲线与直线相关位置;二级曲线及其与二阶曲线的关系。
Ex.5.1:3,4,55.2 Pascal和 Brianchon定理Pascal定理及其逆定理的应用, Brianchon定理。
《高等几何》复习大纲、样题及答案全《高等几何》复习大纲仿射坐标与仿射变换一、要求1.掌握透视仿射对应概念和性质,以及仿射坐标的定义和性质。
熟练掌握单比的定义和坐标表示。
2.掌握仿射变换的两种等价定义;熟练掌握仿射变换的代数表示,以及几种特殊的仿射变换的代数表示。
3.掌握图形的仿射性质和仿射不变量。
二、考试容1.单比的定义和求法。
2.仿射变换的代数表示式,以及图形的仿射性质和仿射不变量。
3.仿射变换的不变点和不变直线的求法。
射影平面一、要求1.掌握中心射影与无穷远元素的基本概念,理解无穷远元素的引入。
2.熟练掌握笛萨格(Desargues)定理及其逆定理的应用。
3.熟练掌握齐次点坐标的概念及其有关性质。
4.理解线坐标、点方程的概念和有关性质。
5.掌握对偶命题、对偶原则的理论。
二、考核容1.中心投影与无穷远元素中心投影,无穷远元素,图形的射影性质。
2.笛萨格(Desargues)定理应用笛萨格(Desargues)定理及其逆定理证明有关结论。
3.齐次点坐标齐次点坐标的计算及其应用。
4.线坐标线坐标的计算及其应用。
5.对偶原则作对偶图形,写对偶命题,对偶原则和代数对偶的应用。
射影变换与射影坐标一、要求1.熟练掌握共线四点与共点四线的交比与调和比的基本概念、性质和应用。
2.掌握完全四点形与完全四线形的调和性及其应用。
3.掌握一维射影变换的概念、性质,代数表示式和参数表示式。
4.掌握二维射影变换的概念、性质以及代数表示式。
5.理解一维、二维射影坐标的概念以及它们与仿射坐标、笛氏坐标的关系。
二、考试容1.交比与调和比交比的定义、基本性质及其计算方法,调和比的概念及其性质。
2.完全四点形与完全四线形完全四点形与完全四线形的概念及其调和性。
3.一维基本形的射影对应一维射影对应的性质,与透视对应的关系,以及代数表示式。
4.二维射影变换5.二维射影对应(变换)与非奇线性对应的关系。
6.射影坐标一维射影坐标、二维射影坐标。
名师指导:高考数学立体几何学习指导数学学习归结到一点就是要多做题。
你可能现在觉得添加一两条辅助线是太具有创造性了,有点想不到的感觉,但是等你经过了大量的练习以后,你会觉得原来那些辅助线的添加其实很有逻辑,并不是不可触及的。
哲学上这个过程叫做量变引起质变,你若想你的几何水平有一个质的提高,能够解出原来认为很不可思意的题,你就必须在量上下功夫,通过量的积累才能达到质的飞跃…祝你成功!
平面
平面的基本性质:掌握三个公理及推论,会说明共点、共线、共面问题。
(1).证明点共线的问题,一般转化为证明这些点是某两个平面的公共点(依据:由点在线上,线在面内,推出点在面内),这样可根据公理2证明这些点都在这两个平面的公共直线上。
(2).证明共点问题,一般是先证明两条直线交于一点,再证明这点在第三条直线上,而这一点是两个平面的公共点,这第三条直线是这两个平面的交线。
(3).证共面问题一般先根据一部分条件确定一个平面,然后再证明其余的也在这个平面内,或者用同一法证明两平面重合
精心整理,仅供学习参考。
高等代数与解析几何学习辅导可以通过以下几种方式进行:
1. 寻找资源:可以上网搜索一些学习资料,如书籍、教材等,用于辅助学习。
2. 自学:可以对照书本自学,仔细阅读,并结合实例进行练习,加深对知识的理解。
3. 向老师求助:可以向老师提出问题,老师会给予宝贵的帮助。
4. 找指导老师:可以找一位指导老师,请他帮你讲解知识,并给出学习指导。
5. 网上学习:可以通过网络学习系统,如慕课网、腾讯课堂等,进行学习。
6. 加入学习群:可以加入一些学习群,与其他学习者交流学习心得,互相鼓励,共同进步。
高等几何教案与课后答案教案章节:第一章绪论教学目标:1. 了解高等几何的研究对象和基本概念。
2. 掌握几何图形的性质和相互关系。
3. 理解几何变换的基本原理。
教学内容:1. 高等几何的研究对象和基本概念。
2. 几何图形的性质和相互关系。
3. 几何变换的基本原理。
教学步骤:1. 引入高等几何的概念,引导学生思考几何图形的性质和相互关系。
2. 讲解几何图形的性质和相互关系,举例说明。
3. 介绍几何变换的基本原理,解释其应用。
教学方法:1. 采用讲授法,系统地讲解高等几何的基本概念和性质。
2. 利用图形和实例,直观地展示几何图形的相互关系。
3. 通过练习题,巩固学生对几何变换的理解。
教学评估:1. 课堂提问,检查学生对高等几何概念的理解。
2. 课后作业,评估学生对几何图形性质和相互关系的掌握。
3. 期中期末考试,全面检验学生对几何变换的应用能力。
课后答案:1. 高等几何是研究几何图形的性质、相互关系和几何变换的学科。
2. 几何图形包括点、线、面及其相关性质。
3. 几何变换包括平移、旋转、反射等,它们可以改变几何图形的形状和位置。
教案章节:第二章直线与平面教学目标:1. 掌握直线的性质和方程。
2. 理解平面的性质和方程。
3. 学会利用直线和平面解决几何问题。
教学内容:1. 直线的性质和方程。
2. 平面的性质和方程。
3. 直线与平面的相互关系。
教学步骤:1. 讲解直线的性质和方程,举例说明。
2. 介绍平面的性质和方程,解释其应用。
3. 分析直线与平面的相互关系,引导学生思考。
教学方法:1. 采用讲授法,系统地讲解直线和平面的性质。
2. 利用图形和实例,直观地展示直线与平面的相互关系。
3. 通过练习题,巩固学生对直线与平面几何问题的解决能力。
教学评估:1. 课堂提问,检查学生对直线性质的理解。
2. 课后作业,评估学生对平面方程的掌握。
3. 期中期末考试,全面检验学生对直线与平面几何问题的解决能力。
课后答案:1. 直线的性质包括方向、斜率、截距等,直线的方程可以表示为y = kx + b。
《高等几何》(第二版)自学指导Ⅱ目录·第七章二次曲线的仿射性质·第八章二次曲线的度量性质第七章二次曲线的仿射性质本章主要内容如下(所讨论的二次曲线非退化):一、中心1、定义:中心为无穷远直线的极点2、存在性:椭圆、双曲线有唯一中心,抛物线以无穷远点为中心3、性质:平分过中心的弦4、方程:中心是方程组a 11 x+a 12 y+a 13=0的解a 12 x+a22 y+a 23=0二、直径与共轭直径1、定义(1)无穷远点的极线(非无穷远线)称为直径(2)如何两直径之一的极点在另一直径上,则此两直径称为共轭直径。
2、存在性(1)二次曲线有无穷多条直径(2)有心二次曲线有共轭直径,无心二次曲线无共轭直径3、性质(1)有心二次曲线的直径过中心,无心二次曲线的直径彼此平行(2)共轭直径平分与另一条直径平行的弦;平行于过另一端点的切线。
4、求法:按照定义三、渐近线1、定义:以Γ与l∞的交点为切点的Γ的切线2、存在性:双曲线有两条实渐近线,椭圆有两条虚渐近线,抛物线以无穷远线为渐近线。
3、性质:渐近线过中心,且调和分割任一对共轭直径4、求法: (1)见EX72 (2)按照定义求四、仿射分类 虚椭圆A33 ≠0椭圆 A 33 >0 有心二次曲线二次曲线 双曲线A 33 <0A 33 =0 抛物线;无心二次曲线例1 判断二阶曲线0133221=++x x x x x x 的类型,试求曲线的中心,并求出过点(0,1,1)的直径及其共轭直径。
解 ,0021212102121210≠=ij a ,41210212131==A 4121212132=-=A ,410212133-==A 。
因为|A|≠0,A 33<0,所以方程表示双曲线,中心为(1,1,-1)设过点(0,1,1)的直径为0)(323222121313212111=+++++k x a x a x a x a x a x a ,于是得2212121-=+-=k所求直径为:02321=+-x x x 设所求共轭直径为0)(323222121313212111='+++++k x a x a x a x a x a x a则 221)2(2122121211=-⨯-=++-='ka a ka a k故共轭直径为:032321=++x x x例2 求平分二次曲线02322=-++-y x y x 与直线02=+y x 平行的弦的直径的方程。
大学二年级数学教案学习高等几何的基本理论与证明一、引言在大学数学的学习中,高等几何是一个重要的专题。
掌握高等几何的基本理论与证明对深入理解数学的本质和发展起着至关重要的作用。
本文将围绕大学二年级数学教案学习的主题,探讨高等几何的基本理论与证明。
二、高等几何的基本概念高等几何是几何学的一门重要分支,它研究高维空间中的几何性质与关系。
在学习高等几何之前,我们首先需要了解一些基本概念。
1. 高等几何的维数在传统的几何学中,我们研究的是二维和三维空间的图形和性质。
而在高等几何中,我们将研究的对象扩展到了更高的维度,例如四维、五维等等。
维数是指空间中所需要的坐标数量。
每个维度对应一个坐标轴,例如二维空间对应二个坐标轴(x轴和y轴),三维空间对应三个坐标轴(x轴、y轴和z轴)。
2. 几何空间的拓扑性质拓扑学研究的是空间中的连续性质与变形关系。
在高等几何中,我们将关注几何空间的拓扑性质,例如紧致性、连通性、同胚等。
这些性质的研究对于了解几何空间的结构以及其性质具有重要的意义。
3. 高等几何的基本要素高等几何的基本要素包括点、直线、面以及高维空间中的各种图形。
我们将通过研究这些基本要素的性质和关系,来理解高等几何的构建和推导过程。
三、高等几何的基本理论高等几何的基本理论是研究高维空间几何性质的理论基础。
在学习高等几何时,我们需要掌握以下几个重要的理论:1. 坐标系与变换在高维空间中,我们需要使用坐标系来表示点和向量。
坐标系的选择和变换对于研究几何性质和解决几何问题起着至关重要的作用。
在高等几何中,我们将学习各种坐标系的选择和变换方法。
2. 向量运算与线性变换向量运算是研究高维空间中向量性质的重要工具。
线性变换是指将向量从一个空间映射到另一个空间的变换。
向量运算和线性变换的研究对于理解高等几何中的向量空间和线性映射具有关键性的意义。
3. 几何性质与关系高等几何研究的核心是研究几何性质与关系。
我们将学习高维空间中的点、直线、面以及其他图形的性质和关系,例如距离、角度、平行、垂直等。
《高等几何》学习指导第一章仿射坐标与仿射变换一、教学目的要求1、理解透视仿射对应、仿射对应和仿射变换的概念,注意其区别和联系;2、熟练掌握共线三点单比的概念及其坐标表示法;3、理解仿射不变性与仿射不变量的概念,并能利用它们证明平面图形的其它仿射性质;4、熟练掌握仿射变换的代数表示.二、教学重点、难点重点:透视仿射对应、仿射变换的概念;仿射不变性与仿射不变量;仿射变换的代数表示和共线三点单比的坐标表示法.难点:透视仿射对应的概念、特征及判断.三、内容小结本章主要介绍下述内容:1、共线三点单比(简比)的概念2、透视仿射对应1)、概念:①、同一平面内,直线l到直线/l的透视仿射对应;②、平面π到平面/π的透视仿射对应.2)、判断:对应点连线互相平行.3)、性质: ①、保持同素性; ②、保持结合性; ③、保持平行性; ④、保持共线三点单比不变. 3、仿射对应与仿射变换 概念:透视仿射链. 4、仿射坐标 1)、仿射坐标系;2)、共线三点单比的坐标表示: 设31311233232(,),(1,2,3),()i i i x x y y P x y i PP P x x y y --===--则; 3)、仿射变换的代数表示:/111213/212223x a x a y a y a x a y a ⎧=++⎪⎨=++⎪⎩, 111221220a a a a ∆=≠;5、仿射性质1)、仿射不变性:同素性、结合性、平行性. 2)、仿射不变量: 共线三点的单比; 两条平行线段之比; 两个三角形面积之比; 两个封闭图形面积之比.3)、常见的仿射不变图形:三角形、平行四边形、梯形. 四、例题例1、直线上三点的非齐次坐标分别为A(-2,-4),B(5,2),C3(,1)2-,求单比(ABC ). 解:设A 、B 、C 的非齐次坐标分别为112233(,),(,),(,)A x y B x y C x y由3132322()1352x x ABC x x +-===---.例2、平面上是否存在仿射变换,使点A (1,2),B (-2,-4), C (3,6)分别变为点A /(-1,-1),B /(2,2),C /(0,0)?解:由于A ,B ,C 三点共线,A /,B /, C /也共线,下面验证它们的单比是否保持不变,由于://////////312011(),(),()()325022AC A C ABC A B C ABC A B C BC B C -+======-∴≠+-因此这样的仿射变换不存在.例3、求使三点(0,0),(1,1),(1,-1)顺次变到三点(2,3),(2,5),(3,-7)的仿射变换.解:设所求仿射变换为:/111213/212223x a x a y a y a x a y a ⎧=++⎪⎨=++⎪⎩111221220a a a a ∆=≠,将(0,0)对应(2,3), (1,1)对应(2,5),(1,-1)对应(3,-7)分别代人上式得:1323111213212223111223212223232537a a a a a a a a a a a a a a ===++=++=-+-=-+ ,解此方程组,得132311122122112,3,,,4,622a a a a a a ====-==故所求仿射变换为://11222463x x y y x y ⎧=-+⎪⎨⎪=-++⎩, 且1102246-∆=≠-. 例4、求一仿射变换,它使直线210x y +-=210x y +-=上的每个点都不变,且使点(1,-1)变为(-1,2).解:在直线210x y +-=上任取两点(1,0),(-1,1),由于 (1,0)→(1,0);(-1,1)→(-1,1),又(1,-1)→(-1,2),由于三对对应点分别不共线,从而可唯一确定一仿射变换,将它们的坐标分别代入仿射变换式/111213/212223x a x a y a y a x a y a ⎧=++⎪⎨=++⎪⎩,解得://22133222x x y y x y ⎧=+-⎪⎨=--+⎪⎩,220322∆=≠--,即为所求的仿射变换.例5、求椭圆的面积. 解法1(见教材第15页)解法2:设在笛氏直角坐标下圆的方程为222x y r +=即22221x y r r+=,令仿射变换T ://x x a ry yb r⎧=⎪⎪⎨⎪=⎪⎩,即//ax x r b y y r ⎧=⎪⎪⎨⎪=⎪⎩, 其中2000aabrb rr ∆==≠, 其对应图形为椭圆:/2/2221x y a b+=故T 是圆到椭圆的仿射变换,设圆的面积为S ,椭圆的面积为S / 由定理4.3//22S abS S r ab S rππ=∆⇒=∆== 所以椭圆的面积为ab л.例6、求将点O (0,0),A (1,0),B (0,1)分别变为O /(1,1),A /(3,1),B /(3,2)的仿射变换;并求在这个变换下,半径为2的圆的仿射对应图形的面积.解:①、设所求仿射变换为:/111213/212223x a x a y a y a x a y a ⎧=++⎪⎨=++⎪⎩111221220a a a a ∆=≠将O (0,0)对应O /(1,1), A (1,0)对应A /(3,1),B (0,1)对应B /(3,2)分别代人上式解得//2211x x y y y ⎧=++⎪⎨=+⎪⎩且 22001∆=≠ 为所求仿射变换.②、////1,1,42OAB O A B S S S π∆∆===Q 圆,设圆的仿射对应图形面积为/S ,则//////1,42812O A B OABS S S S S ππ∆∆==∴=⨯=圆. 五、习题1、直线上三点的非齐次坐标分别为A(-3,2),B(6,1),C 33(,)22,求单比(ABC ).2、经过点A (-3,2)和B (6,1)的直线AB 与直线x+3y-6=0相交于P ,求(ABP).3、求仿射变换{4y 2x 4y 1y x 7x ++='+-='的不变点.4、试求:在仿射变换下,梯形、菱形、等边三角形、正方形、等腰三角形、圆、两全等矩形的对应图形.5、二平行线间的平行性是仿射不变性吗?6、任意两线段之比是仿射不变量吗?7、三角形三高线共点是仿射性质吗?三角形三中线共点是仿射性质吗?8、若(ACB )=2,则C 是A ,B 的中点吗? 9、在仿射变换 {73532-+='+-='y x y y x x 下,点O (0,0),A (3,2),的像点为 、 ;B (1,-4)的原像点为 .10、求将点A (1,0),B (0,-1),C (-1,1)分别变为A /(8,-1),B /(6,-6),C /(1,1)的仿射变换;并求在这个变换下,半径为3的圆的仿射对应图形的面积.第二章射影平面一、教学目的要求1、理解中心射影、无穷远元素及射影平面的概念,掌握无穷远元素的性质,了解射影观点与仿射观点的区别;2、掌握笛沙格定理及其应用,了解笛沙格构图;3、掌握齐次坐标的定义,熟练掌握点和直线的方程、齐次坐标的求法及其应用;4、理解对偶元素、对偶运算及对偶命题的概念,掌握对偶原理及写出一命题的对偶命题的方法;5、明确完全四点形、四线形的概念,掌握它们的调和性质及应用;6、了解复元素的概念.二、教学重点、难点重点:无穷远元素的概念及其性质,齐次坐标的定义及运算,笛沙格定理及其应用,对偶原理.难点:无穷远元素的概念,点方程、线坐标的定义.三、内容小结本章主要介绍下述内容:1、无穷远元素的概念2、射影直线与射影平面的概念3、图形的射影性质经过中心射影(透视对应)后图形的不变性质(量)叫做图形的射影性质(不变量).射影性质⎧⎧⎨⎨⎩⎩点列同素性,射影图形结合性线束但平行性、共线三点的单比不是射影性质.4、笛沙格定理1)、笛沙格(Desargues )定理:如果两个三点形对应顶点的连线交于一点,则对应边的交点在一直线上.2)、笛沙格(Desargues )定理的逆定理:如果两个三点形对应边的交点在一直线上,则对应顶点的连线交于一点.3)、透视三点形:如果两个三点形对应边的交点共线——所在直线称为透视轴; 如果两个三点形对应顶点的连线共点——该点称为透视中心. 由笛沙格定理知,两个三点形若有透视心,则必有透视轴,反之亦然,这样的两个三点形称为透视三点形.4)、笛沙格构图:构成一个图形的基本元素有两类:点和线,分别称为第一类和第二类元素,用11a 和22a 表示,而12a 表示第一类元素点与第二类元素线结合,21a 表示第二类元素线与第一类元素点结合.Desargues 定理所表示的图形所含的第一类元素点的个数11a =10个,所含的第二类元素线22a =10条,每一点与12a =3个第二类元素线结合,每一线与21a =3个第一类元素点结合.可表示为:A=⎪⎪⎭⎫⎝⎛103310 (A 称为构形矩阵,且A 为对称矩阵). 即:图形中有10个点,每个点有3条线通过;有10条线,每条线上有3个点.布局十分巧妙!更为巧妙的是:在10个点中,任一个点都可作为透视心,在10条线中,任一条线都可作为透视轴.如图,对于任一点C,考察两个三点形/YXC ABO 和,它们对应顶点连线/,,AY BX OC 交于一点C,则其对应边交点YX AB Z Y C OA A XC BO B I I I ===,,////共线.即如果以C 为透视心,则其对应的透视轴为直线Z A B //. (读者可另行考虑以图中其余的点作为透视心,则必能找到其对应的透视轴!)5、齐次坐标 1)、齐次点坐标:① 一维齐次点坐标设直线上普通点的坐标为x,则该点的齐次坐标是122(,),,(0)x x x x x x =≠12其中, 当210,(,0)(1,0)(0)x x =∝≠1时即其中x 规定为这直线上无穷远点的一维齐次坐标.② 二维齐次点坐标设平面上的点的非齐次坐标为(x,y),则该点的齐次坐标是1212333(,,),,x xx x x x y x x == 斜率为k 的直线上的无穷远点的齐次坐标为(1,k,0)或者2121(,,0),x x x k x = ③ 直线的(齐次坐标)方程:1122330a x a x a x ++= ④ 无穷远直线的方程:30x = 2)、齐次线坐标:① 直线的齐次线坐标 []123,,u u u点123(,,)x x x x 在直线[]123,,u u u u 上1122330u x u x u x ⇒++= ② 点的方程(线有坐标,点有方程)在齐次坐标中,点123(,,)a a a a 的方程为 1122330a u a u a u ++=, 反之,[]123,,u u u 所构成的一次齐次方程表示一点. 3)、点几何与线几何的观点: 点几何——点有坐标;线有方程,平面上,把点看成几何基本元素,点的轨迹构成曲线,直线看成一系列点构成;线几何——线有坐标;点有方程,平面上,把直线看成几何基本元素,直线的集合构成曲线,点看成一束直线构成.6、对偶原理 1)、对偶图形:对偶元素 ——“点”与“直线”;对偶作图——“点在线上”与“线通过点”;对偶图形——由点和直线组成的图形,将其元素换成对偶元素,其作图改为对偶作图,这样的两个图形称为一对对偶图形.如:点列——线束三点形——三线性(自对偶) 简单四点形——简单四线形(自对偶) 完全四点形——完全四线形 2)、对偶命题与对偶原则:对偶命题——由点和直线组成的命题,将其元素换成对偶元素,其作图改为对偶作图,这样的两个命题称为一对对偶命题.对偶原则——在射影平面上,如果一个命题成立,则其对偶命题也成立. 3)、代数对偶:① 两个不同点(线)123123(,,),(,,)a a a a b b b b 的连线(交点)的线坐标(点坐标)为:233112233112(,,)a a a a a a a b b b b b b b =⨯ ② 三个不同点(线)123123123(,,),(,,),(,,)a a a a b b b b c c c c 共线(共点)的充要条件是:1231231230a a a b b b c c c =③ 以两个不同已知点(线)123123(,,),(,,)a a a a b b b b 的连线为底的点列中一点(交点为顶点的线束中任一直线)的齐次坐标能够写为la mb +,其中,l m 为不全为零的常数.7、复元素在复射影平面上有以下重要结论:1)、一元素为实元素的充要条件是该元素与其共轭复元素重合; 2)、如果点x 在直线u 上,则x 的共轭复点x 在直线u 的共轭复直线u 上;3)、两共轭复直线的交点为一实点,两共轭复点的连线为一实直线. 四、例题例1、写出下列点的齐次坐标:(0,0)、(1,0)、(0,1)、以3为斜率的直线上的无穷远点.解:这些点的齐次坐标依次为:(0,0,1)、(1,0,1)、(0,1,1)、(1,3,0) 例2、写出下列直线的齐次坐标:x 轴、y 轴、无穷远直线、过原点且斜率为2的直线.解:这些直线的齐次坐标依次为:[0,1,0]、[1,0,0]、[0,0,1]、[2,-1,0].例3、求直线340x y -+=上的无穷远点的坐标和线坐标方程. 解:直线的齐次坐标方程为123340x x x -+=,这条直线与无穷远直线30x =的交点1233340x x x x -+=⎧⎨=⎩即为无穷远点,从而无穷远点的坐标(3,1,0).这个点的齐次线坐标方程是1230u u +=.例4、求直线[1,-1,2]与两点A (3,4,-1)、B (5,-3,1)之连线的交点的坐标.解:两点A (3,4,-1)、B (5,-3,1)连线上的点(3+5λ,4-3λ,-1+λ)在直线[1,-1,2]上,所以(3+5λ)-(4-3λ)+2(-1+λ)=0,解得310λ= 所以交点坐标为(45,31,-7).例5、试证、[2,-1,1]、[3,1,-2]和[7,-1,0]三线共点,并把[2,-1,1]表示成[3,1,-2]和[7,-1,0]的线性组合.解:由211312071--=-得三线共点,所以存在二实数λ,μ,使得 [2,-1,1]=λ[3,1,-2]+μ[7,-1,0],于是有372121λμλμλ+=⎧⎪-=-⎨⎪-=⎩,解得11,22λμ=-=,故[][][]112,1,13,1,27,1,022-=--+-,即 [2,-1,1]表示成[3,1,-2]和[7,-1,0]的线性组合.例6、利用对偶命题解题:(1)、求通过两直线[2,1,3]与[1,-1,0]的交点与点P :12320u u u +-=的直线坐标;(2)、求两点123340u u u +-=,123530u u u -+=的连线与直线12320x x x -+=的交点坐标.解:(1)、这两直线的交点Q 方程为123213011u u u =-, 即1230u u u +-=,即Q 点的坐标为(1,1,-1),而P 点的坐标为(1,2,-1),所以过这两点的直线方程为1231210111x x x -=-,即130x x +=,其坐标为[1,0,1] .(2)、过这两点的直线l 的方程为1233410531x x x -=-,即1238290x x x --=,其坐标为[1,-8,-29],而直线/l 坐标为[1,-1,2],所以这两直线交点的方程为12311201829u u u -=--,即123453170u u u +-=,其坐标为(45,31,-7).例7、(1)求过点(1,,0)i -的实直线;(2)求直线[,2,1]i i -上的实点.解:(1)因为过点(1,,0)i -的实直线必过其共轭复点(1,,0)i ,所以所求直线为1231001x x x i i-=,即30x =为所求.(2)直线[,2,1]i i -上的实点为此直线与其共轭复直线[,2,1]i i -+的交点,由方程1231232(1)02(1)0ix x i x ix x i x ++-=⎧⎨-+++=⎩,解得实点为(2,-1,2).例8、设三点形ABC 的三边BC, CA, AB 的方程分别为052,0153,0237=-+=--=+-y x y x y x ,求证三点形 ABC 与坐标三点形A 1A 2A 3透视,并求出透视轴方程.解:在三点形ABC 和 A 1A 2A 3中,123123123:7320,:350,:250,BC x x x CA x x x AB x x x -+=--=+-= 231312123:0,:0,:0,A A x A A x A A x ===其对应边之交点:233112(0,2,3),(1,0,3),(1,2,0)BC A A L CA A A M AB A A N ⨯=⨯=⨯=-因为023130120=-,所以L 、M 、N 共线,即三点形ABC 和 A 1A 2A 3透视,且透视轴方程为1236320x x x +-=例9、如图,设直线AB 与CD 交于M ,AC 与BD 交于N ,直线MN 分别交AD 、BC 于K 、H ,直线BK 交AC 于L ,求证:HL 、CK 、MA 交于一点.解:在三点形HCM 与LKA 中,对应边的交点HC хLK=B ,CM хKA=D ,MH хAL=N ,而B 、D 、N 在一条直线上,由笛沙格定理的逆定理,这两个三点形对应顶点的连线HL 、CK 、MA 交于一点.五、习题1、回答下列问题:①、坐标原点的方程是U 3=0吗?②、X 轴上的无穷远点坐标是(0,1,0)吗?③、三直线[1,1,1],[1,-1,1],[3,-1,3]共点吗? ④、共线三点的单比是射影不变量吗?⑤、直线03)2()1(321=+++-ix x i x i 上的实点有无数多个吗? ⑥、方程22120x x -=表示什么图形?方程22120u u -=表示什么图形? ⑦、当正负号任意选取是,齐次坐标(1,1,1±±±)表示多少个相异的点?2、写出下列点的坐标:①、P 1(3,7,-2),P 2(0,0,1),P 3(3,-1,0)的非齐次坐标. ②、直线5x+3y-1=0上的无穷远点的齐次坐标. ③、直线l [1,1,2]与m[0,1,1]的交点坐标. ④、直线ix 1+4x 2+(1+i)x 3 = 0上的实点坐标.3、直线03)2()1(321=+++-ix x i x i 上的实点有无数多个,对吗?4、写出下列直线的方程:①、点A(0,1,2)与B(1,0,1)D 连线方程. ②、通过点(1,i,0)的实直线方程.5、已知点123(1,1,1),(1,1,1),(3,1,3)P P P --,求证123,,P P P 共线,并求λ,μ的值,使得312P P P λμ=+.6、下列诸方程表示什么?123123120;0;0;20u u u u u u u u =-=++=+=;221122540;u u u u -+=7、已知Pappus 定理:设直线l 上有互异三点A ,B ,C ,直线l '有互异三点C ,B ,A ''',那么三点B A B A N ,A C A C M ,C B C B L '⨯'='⨯'='⨯'=共线.写出其对偶命题.8、“一线束中三直线a,b,c 与不过中心的二直线21,l l 相交得两个互成透视的点列”.写出其对偶命题.9、“如果两个三角形对应边的交点在一直线上,则对应顶点的连线共点”.写出此命题的对偶命题.10、证明三角形三中线共点.11、指出下图中以B 为透视心的两个三点形和其对应的透视轴.12、ABCD 是个四面体,点M 在BC 上,一直线通过M 分别交AB ,AC 于P 、Q ,另一直线过M 分别交DB 、DC 于R 、S ,求证PR 、QS 、AD 交于一点.13、画出下面图形的平面对偶图形。