第四章正弦稳态电路分析
- 格式:pptx
- 大小:3.07 MB
- 文档页数:116
第4章 正弦稳态电路分析--例题√【例4.1】已知两个同频正弦电流分别为()A 3314cos 2101π+=t i ,()A 65314cos 2222π-=t i 。
求(1)21i i +;(2)dt di 1;(3)⎰dt i 2。
【解】 (1)设()i t I i i i ψω+=+=cos 221,其相量为i I I ψ∠=∙(待求),可得:()()()()A54.170314cos 224.14A54.17014.24A 34.205.14 A1105.19A j8.665 A15022A 601021︒-=︒-∠=--=--++=︒-∠+︒∠=+=∙∙t i j j I I I(2)求dtdi 1可直接用时域形式求解,也可以用相量求解()()︒+︒+=︒+⨯-=9060314cos 23140 60314sin 3142101t t dt di用相量形式求解,设dt di 1的相量为K K ψ∠,则有 )9060(31406010314K 1K ︒+︒∠=︒∠⨯==∠∙j I j ωψ两者结果相同。
(3)⎰dt i 2的相量为︒∠=︒∠︒-∠=∙12007.0903********ωj I【例4.2】 图4-9所示电路中的仪表为交流电流表,其仪表所指示的读数为电流的有效值,其中电流表A 1的读数为5 A ,电流表A 2的读数为20 A ,电流表A 3的读数为25 A 。
求电流表A 和A 4的读数。
图4-9 例4.2图【解】 图中各交流电流表的读数就是仪表所在支路的电流相量的模(有效值)。
显然,如果选择并联支路的电压相量为参考相量,即令V 0︒∠=∙S S U U ,根据元件的VCR 就能很方便地确定这些并联支路中电流的相量。
它们分别为:A 25 ,A 20 ,A 05321j I j I I =-=︒∠= 根据KCL ,有:()A095A 5A 457.07A 55324321︒∠==+=︒∠=+=++=j I I I j I I I I 所求电流表的读数为:表A :7.07 A ;表A 4:5 A【例4.3】 RLC 串联电路如图4-12所示,其中R =15Ω,L =12mH ,C =5μF ,端电压u =1002cos (5000t )V 。
正弦稳态电路分析一、正弦量及其三要素?1. 初相位:时间t=0时所对应的相位;2. 一般取正弦量的正最大值到正弦量计时零点(t=0)所对应的角度为该正弦量的初相位3. 正弦量的正最大值到向右的初相位为正。
即φi>0;向左即为负;4. 各种表示法(1) F=a+jb;a=Ucos ab=Usin a(2)F=a+jb=|F|(cos a+jsin a ) =|F|e ja =|F| a (4)计算器使用pol(-4.07,3.07)=5.09 RCL tan二、电路元件的伏安关系及相量表示形式?X L =wL,X C =1/wCjX L =jwL,jX C =j*1/wC=1/(-jwC)三、阻抗、导纳及其串并联? 阻抗与导纳互为倒数关系1. 复阻抗:不含独立电源的一端口网络的端电压相量与端电流相量的比值2. 的比值;3. 电压三角形 OZ4. 阻抗三角形四、正弦量的相量表示法?1.有向相量的长度(复数的模)代表正弦量的幅值(有效值);2.复数的幅角代表正向量的初相位;3.向量形式用大写字母表示并在字母上方加点; 五、阻抗和导纳的性质?电感角大于电容角就呈感性,小于呈容性,等于呈阻性; 六、正弦稳态电路的分析?(1)画出电路的相量模型(电压、电流、各种阻抗) (2)选择适当方法(KVL 、KCL )列方程(3)求出未知量Q(4)写出电压电流的瞬时值 七、正弦稳态电路的功率?1.有功功率:电阻所消耗;P=UIcosa2.无功功率:电感、电容负载与电源进行能量交换的功率;Q=UIsina3.视在功率:电源输出的功率;S=UI=上述两者平方和的算术平方根4.复功率:S=P+jQ 八、功率因素的提高?在电感两端并联电容的操作,使两者夹角减小1)C=P/wU 2(tan a1-tan a2); 2)Q C =-P(tan a1-tan a2)九、最大功率传输? 当Z L =R eq -jX eq =Zeq *时,P MAX =U OC2/4R eq十、解题步骤?1.设。
正弦稳态电路的分析1.复数法分析:a. 复数电压和电流表示:将正弦波电流和电压表示为复数形式,即I = Im * exp(jωt),V = Vm * exp(jωt),其中Im和Vm为幅值,ω为角频率,j为虚数单位。
b.使用欧姆定律和基尔霍夫定律来建立复数表达式。
c.找到电路中的频域参数,如电阻、电感和电容等,并使用复数法计算电路中的电流和电压。
d.计算电源电压和电流的相位差,这会决定电路中的功率因数。
2.相量法分析:a.相量表示:将电路中的电流和电压表示为相量形式,即以幅值和相位角表示,例如I=Im∠θ,V=Vm∠θ。
b.使用欧姆定律和基尔霍夫定律来建立相量表达式。
c.对电路中的频域参数应用相量法,计算电路中的电流和电压。
d.计算电源电压和电流的相位差,以确定电路中的功率因数。
无论是复数法还是相量法,分析正弦稳态电路的关键是计算电路中的电流和电压的幅值和相位。
在计算过程中,需要使用复数代数、欧姆定律、基尔霍夫定律以及频域的电路参数等相关知识。
在实际应用中,正弦稳态电路的分析主要包括以下几个方面:1.交流电路中的电阻:电阻对交流电流的影响与直流电路相同,即按欧姆定律计算。
复数法计算时,电流和电压与频率无关,可以直接使用欧姆定律计算。
2.交流电路中的电感:电感器对交流电流的响应取决于电流的频率。
复数法计算电感电压和电流时,需要将频率变量引入到电感的阻抗中。
3.交流电路中的电容:电容器对交流电压的响应取决于电压的频率。
复数法计算电容电压和电流时,需要将频率变量引入到电容的阻抗中。
4.交流电路中的复数阻抗:电路中的电感、电容和电阻组成复数阻抗。
复数阻抗可以用来计算电路中的电流和电压。
根据欧姆定律和基尔霍夫定律,可以建立复数电流和电压之间的关系。
5.交流电路中的功率因数:功率因数是电路中有功功率与视在功率之比。
在分析正弦稳态电路时,可以计算电路中电源电压和电流的相位差,从而确定功率因数。
总结起来,正弦稳态电路的分析步骤包括选择复数法或相量法、建立复数或相量表达式、计算电流和电压的幅值和相位、计算功率因数等。