高二4月调研试题
- 格式:doc
- 大小:205.00 KB
- 文档页数:4
高二下语文4月调研考试卷【高二下语文4月调研考试卷】一、基础知识与运用(26分)1、下列加点字注音不完全正确的一项是( )A. 秕谷( bǐ ) 收敛( liǎn ) 确凿( záo ) 脑髓( suǐ )B. 崎岖( qí ) 祈祷( qǐ ) 踱步( duó ) 喧嚣( xiāo )C. 女佣(yōnɡ) 踌躇( chú ) 重荷( hè ) 荒谬( miù )D. 骊歌( lí ) 花圃( pǔ ) 脚踝( huái ) 涉猎( shè )2、下列各组词语字形完全正确的一项是( )A. 气势磅礴来势凶凶荒草萋萋惊涛澎湃B. 浩浩荡荡炯乎不同杂乱无章鲜为人知C. 人声鼎沸九曲连环亦复如是家喻户晓D. 鞠躬尽瘁妇儒皆知惹人注目一拍即合3、下列加点字语解释有误的一项是( )A. 轻捷(快) 讪笑(嘲讽) 人迹罕至(稀少)B. 山巅(山顶) 怪诞(荒唐的) 心会神凝(领会)C. 哽住(声气阻塞) 宿儒(长久从事某种工作) 锋芒毕露(毕竟)D. 鉴赏(鉴定) 宛转(曲折) 锲而不舍( 刻)4、填入横线处与上下文衔接恰当的一组词语是( )应试教育向素质教育的转轨,是一项教育思想、教育内容、教育方法的历史性深刻变革。
这次变革要求学生,,学会办事,学会健体,,,力求德、智、体、美全面发展,使知、情、意、行和谐统一,最终实现提高全体国民素质、提高民族素质的目的。
A. 学会求知学会做人学会审美学会创造B. 学会做人学会求知学会审美学会创造C. 学会求知学会做人学会创造学会审美D. 学会做人学会求知学会创造学会审美5、下列对课文内容理解有误的一项是( )A 《音乐巨人贝多芬》中作者通过一次会见来表现贝多芬在音乐上的巨大造诣。
B 《艰难的国运与雄健的国民》一文中,作者以大江大河的流淌比喻历史前行过程,表现了革命乐观主义情怀和爱国主义精神。
高二期中调研试卷英语2024.04注意事项:1.本试卷满分150分,考试时间120分钟.2.答卷前,学生务必将自己的学校、姓名、考试号等相关信息填写在答题卡上规定的地方,3.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
回答非选择题时,将答案写在答题卡上,写在本试卷上无效。
第一部分听力(共两节,满分30分)做题时,先将答案标在试卷上。
录音内容结束后,你将有两分钟的时间将试卷上的答案转涂到答题卡上。
第一节(共5小题;每小题1.5分,满分7.5分)听下面5段对话。
每段对话后有一个小题,从题中所给的A、B、C三个选项中选出最佳选项。
听完每段对话后,你都有10秒钟的时间来回答有关小题和阅读下一小题。
每段对话仅读一遍。
1. What will the weather be like this afternoon according to the woman?A. SunnyB. Windy.C. Rainy.2. How much change should the woman have received?A. $2.B. $3.C. $5.3. What does the woman enjoy doing online?A. Chatting.B. ShoppingC. Reading.4. Which subject did the man teach?A. English.B. Math.C. Physics.5. What does the man offer to do for the woman?A. Finish her work.B. Look after her husband.C. Take her to a doctor.第二节(共15小题;每小题1.5分,满分22.5分)听下面5段对话或独白。
每段对话或独白后有几个小题,从题中所给的A、B、C三个选项中选出最佳选项。
河南省林州市第一中学2020-2021学年高二4月调研考试英语试题学校:___________姓名:___________班级:___________考号:___________一、阅读选择Teen ConferenceAre you ready to explore the University of Idaho campus, learn life skills for beyond high school, meet new friends and get reacquainted with old ones? Then Idaho 4-H Teen Conference is for you.●June 27---30 , 2017●Moscow, Idaho●Grades 8 to 12At this conference, teens will:●Gain leadership skills●Participate in educational workshops●Experience campus life and learn about opportunitie s at the University of Idaho●Learn about state, national and international 4-H opportunities●Develop a passion for 4-H●Make new friends throughout the state of IdahoAdults at Teen ConferenceAdults are welcome to attend Teen Conference as chaperones(监护人). Please review adult chaperone position description and discover if this opportunity is for you. To apply, please complete the online chaperone application.College students may also attend as collegiate(学院的)volunteers. Please review the collegiate volunteer position description. To apply, please complete the collegiate volunteer application.ScholarshipsPlease contact your local UI Extension country office to learn how to apply. All participants will be informed by April 1 before registration begins.. Scholarships include:●Youth scholarships sponsored by the Friends of 4-H●Adult chaperone scholarshipsConference Proceedings●Gem State News 2016Be sure to visit the Idaho 4-H Teen Conference Facebook page.For more information, contact Shana Codr, 4-H Program Specialist. 1.Who is the Idaho 4-H Teen Conference intended for?A.Program specialists.B.Adults as chaperones.C.College students only.D.Teens of Grades 8 to 12.2.How can the participants possibly know about scholarships of 4-H?A.By calling the Friends of 4-H Teen Conference.B.By visiting the university’s official website.C.By visiting the Idaho 4-H Teen Conference Facebook page.D.By contacting the local UI Extension country office.3.Where can you probably find this passage?A.In a personal diary.B.In an official report.C.On a campus website.D.In a tourist guidebook.On a cloudless summer day, 13-year-old Charlie Finlayson was ready for a long hike with his father, David.Around noon, David was inching his way across a cliff 800 feet above the valley, searching for a line of cracks that would lead them to the top. Charlie stood on a rock a dozen yards to the right as he fed rope to his dad. Reaching up, David missed his step. In the next moment, he heard a sharp crack from above as something larger broke loose.When Charlie saw his father sailing through the air alongside the huge rocks that had struck him, he pulled the rope fiercely.“Tell me it’s OK,” Charlie begged, struggling to control his fear.“I think I broke my leg,” David told him. “And we must get off thismountain.” He proposed a plan: Charlie would lower David half a rope length at a time, then lower himself to the same level, and at a new place, begin again.As hours passed, they came to the base of the cliff, and David was shaking with cold and exhaustion.Worried that David would die if he fell asleep, Charlie kept the conversation going; they talked about past travels. Eventually Charlie allowed himself to catnap, checking on his father each time he awoke. When the sun rose on their camp, Charlie was relieved to see that his father was awake.Just after dawn, Charlie headed off on the trail toward the volunteers’ cabin 12 miles away, bringing back a helicopter that would carry his father to safety.“Charlie’s as strong as anyone I know,” says his father, “I’m so proud of him.”4.What happened to David when he climbed up?A.He missed his step and broke his leg.B.He lost his way across the cliff.C.He caught sight of a sharp crack from above.D.He stood on a rock a dozen yards from the cliff.5.How did Charlie feel at his father’s sailing through the air? A.Puzzled.B.Fearful.C.Relieved.D.Proud.6.What does the underlined word “catnap” in Paragraph 7 mean? A.become less calmB.continue talkingC.comfort himselfD.take a short sleep7.What might be the best title for the passage?A.A Father and His Brave SonB.An Accident Happened in a ValleyC.A Story on a Cloudless Summer DayD.A Boy Saved His Father’s Life from CliffTwelve years ago, Danny called me from a dark, damp subway station. “A baby!” he shouted. “Get down here, and flag down a police car or something.” By nature, Danny is a remarkably calm person, so when I felt his heart pounding through the phone line, I ran.When I got to the subway station, Danny was holding a light-brown-skinned baby, about a day old. The baby had been wrapped in an oversize black sweatshirt and left on the ground in a corner behind the gate.Three months later, Danny appeared in family court to give an account of finding the baby. Su ddenly, the judge asked, “Would you be interested in adopting this baby?” The question stunned everyone in the courtroom, except Danny, who answered, simply, “Yes.”“But I know it’s not that easy,” he said.“Well, it can be,” assured the judge before barki ng out orders to allow me to be a parent-to-be.My first reaction, when I heard, went something like: “Are you crazy? How could you say yes without consulting me?”In three years as a couple, we had never discussed adopting a child. I was an ambitious playwright working as a part-time word processor. Danny was a respected yet wildly underpaid social worker. We had a roommate, who slept in our living room, to help pay the rent.We knew how many challenges couples usually faced when they wanted to adopt. And while Danny had patience and selflessness, I didn’t know how to change a diaper(尿布), let alone nurse a child. I didn’t trust the system and was sure there would be obstacles. Also, I couldn’t handle parenthood. So I promised myself I wouldn’t get attached.The caretaker held him and then placed him in my arms. But when the baby stared up at me, with all the innocence and hope he represented, I, like Danny, was completely hooked.8.Why did the author rush to the subway station?A.Because Danny finally found their long lost son.B.Because she sensed Danny met something urgent.C.Because Danny was knocked down by a police car.D.Because Danny wasn’t a remarkably calm person by nature.9.How did the author react on hearing Danny’s answer to the judge’s question? A.Surprised by the question.B.Crazy to be a parent-to-be.C.Annoyed at Danny’s decision.D.Interested in adopting this baby.10.It can be inferred from the last paragraph that_________.A.the author will adopt the babyB.the caretaker will take the baby awayC.the couple love each other very muchD.the baby will bring hope to the family11.What is the author’s purpose in writing the passage?A.To introduce a story of a poor family.B.To inform people of how to adopt a baby.C.To call on people to donate money to them.D.To show human’s kindness and love by nature.The SquareJack Dorsey, the co-inventor of Twitter, is promoting his latest invention called the Square. The square is a small plug-in attachment to your mobile phone that allows you to receive credit card payments.The idea starting from Dorsey's friend Jim McKelvey who was unable to sell some glass work to a customer because he couldn't accept a particular card being used.Accepting credit card payments for something you're selling isn't always easy, especially if you are mobile like a tradesman, or delivery service at a trade show.This latest invention uses a small scanner that plugs into the audio input item on a mobile device. It reads information on a credit card when it is swiped(刷卡). The information is not stored on the device but sent over securechannels to banks. It basically makes any mobile phone a cash register for accepting card payments.As a payer, you receive a receipt via email that can be instantly accessed securely online. You can also use a text message to authorize payment in real time. Retailers can create a payer account for their customers which speeds the payment process. For example, a cardholder can assign a photo to their card so their photo will appear on the phone for visual identity confirmation. Mobile devices with touch screens will also allow you to sign for goods.There are no contracts, monthly fees, or hidden costs to accept card payments using Square and it is expected the plug-in attachment will also be free of charge.As with Twitter, it's expected that Dorsey will direct the company based upon feedback from users. Square Inc. has offices in San Francisco, Saint Louis and New York and is currently beta testing the invention with retailers in the United States.12.Why is Jack Dorsey promoting his latest invention?A.To test a plug-in attachment.B.To identify a particular credit card.C.To sell some glass work to a customer.D.To allow people to receive credit card payments.13.What can we infer from Paragraph 4?A.The service performs only on special mobile phones.B.The latest invention is just a small scanner.C.The Square contains information on a credit card.D.It is safe for your information to be sent to banks.14.How can a cardholder receive a receipt?A.By email online.B.By oral message.C.By a payer account.D.Over safe channels to banks.15.What does the writer imply in the last paragraph?A.The invention may be used in the future.B.The Square has already put into use widely.C.The invention hasn’t been tested these days.D.The Square is popular among people in the US.二、七选五Question: I have been learning English for about 7 years. 16.And I still can't make myself understood in English. However, I love learning English. How can I learn English well? Please help me.Answer: Many people have asked me this question. 17.Here I will give you several tips for learning English.● 18.First of all, you must want to learn. If you are not interested in learning English, no class will help you and no book will help you. So you have to be honest with yourself. Ask yourself, “Do I really want to learn English?” If you can't answer “yes” to this question, it is better for you to set English aside until you're ready and willing to learn.● Set goals (目标).To learn English well, you must set some goals. 19.It will also help you to see your progress. Ask yourself, “What are my goals? What areas would I like to improve?” Think about what your goals are, and review once in a while to see that you are making progress toward your goals.● Practice, practice, and practice.After you have set your goals, you have a better idea of what you need to practice. Just like the athlete (运动员)whose goal is the Olympics must train(训练)daily, you as a language learner must practice language every day to make progress toward your goal. 20.A.I think it is not easy to learn it well.B.Want to learn.C.Reading is a very good way to learn new words.D.Make friends with some Americans online.E.The more you practice, the more progress you will make.F.The answers are as different as the people asking the question.G.Having goals will help you remember what areas you want to work on.三、完形填空When Pizza Saved a LifeAlmost every night for more than 10 years, Kirk Alexander, 48, ordered a late dinner from his local Domino’s pizza store. Sometimes he would 21 a salad, sometimes a pie, sometimes chicken wings. Then one day, he suddenly 22 calling.“It has been 11 days,” Domino’s general manager Sarah Fuller 23 with KATU. Com, “which is not like him.”Sarah had known Kirk since 2009. Many Domino’s delivery 24 regularly made the short trip to Kirk’s 25 , about six minutes away. She knew he worked from home, and that he rarely went outside. She 26 knew that he had suffered health issues in the past. Something, Sarah worried, was 27 .Around 1 a. m. on Sunday, May 8, Sarah sent delivery driver Tracey Hamblen to Kirk’s house. Tracey 28 Ki rk’s door as he had 29 times before and knocked. He could30 see the TV set and lights were on, but after several minutes, Kirk still didn’t answer the31 . Tracey called Kirk’s phone. The call went straight to voice mail.Tracey 32 back to the store, where 911 was called, and soon officers were on their 33 .When the police arrived at Kirk’s house, they heard a man calling for help from inside. They 34 the house, and found Kirk on the floor 35 immediate medical attention after 36 from what Sarah said was a stroke(中风). One day later, 37 they might have been too late.Kirk was rushed to Salem Hospital, where he was 38 in stable condition shortly after Sunday’s 39 rescue. Sarah and other store employees visited him.So is keeping an eye on regular 40 part of Domino’s business plan? Not really, says Sarah, “Kirk is a part of our family here,” she shared with KOIN. com, “We felt like we needed to do something to build a warmer world.”21.A.drop in B.call for C.bring in D.send for22.A.finished B.enjoyed C.stopped D.avoided23.A.explained B.wondered C.joked D.shared24.A.drivers B.friends C.managers D.officers25.A.office B.house C.club D.store26.A.still B.just C.also D.ever27.A.wrong B.curious C.different D.anxious28.A.examined B.fastened C.discovered D.approached 29.A.countless B.hopeful C.various D.frequent30.A.extremely B.especially C.clearly D.constantly31.A.phone B.door C.call D.voice32.A.rushed B.paced C.wandered D.stepped33.A.duty B.watch C.concern D.way34.A.broke off B.broke into C.broke through D.broke out35.A.in danger of B.in favor of C.in face of D.in need of 36.A.surviving B.preventing C.suffering D.changing37.A.or B.but C.so D.and38.A.listed B.put C.checked D.regarded39.A.grateful B.active C.dramatic D.accurate40.A.passengers B.customers C.colleagues D.employers四、用单词的适当形式完成短文Just LoveMy story is about receiving unconditional love from my students.With so much going against immigrants, I want to share this story that blessed an immigrant like me.I teach nursing here in the US. I am from China, and I just 41.start) working in a community college in California in July 2016. At the beginning, I was 42.(worry) that I couldn’t make myself 43.(understand) by my students as my accent was different. I thought I would never be accepted. My thoughts were 44.(complete)wrong! Each day they encouraged me 45.(get) better. They never discourage me.As weeks passed, my students came up with an idea to encourage this foreign teacher of 46.(they). They gave me a prize for getting better with my 47.(pronounce). I was given a packet of Skittles(彩虹糖), 48.truly moved my heart. I am so thankful to my students. It’s not that I teach them nursing, but that they teach me life. I am glad to be 49.teacher to these hard-working students who try hard to be wonderful future nurses.I just want to encourage anyone feeling depressed. Never give 50.. There is always hope.五、短文改错51.假定英语课上老师要求同桌之间交换修改作文,请你修改你同桌写的以下作文。
宁河区高二下学期语文4月月考(学情调研)试卷姓名:________ 班级:________ 成绩:________一、选择题 (共1题;共6分)1. (6分) (2020高一上·佳木斯期末) 下列各句中,没有语病的一项是()A . 我们应该实施品牌战略,着力构建产业体系,探索出一条围绕中医药产业为核心,同步带动美丽乡村、文化旅游发展的腾飞之路。
B . 文化创意产业属于知识密集型新兴产业,具有高知识性、高融合性、高带动性等优势,是创建宜居“智慧新城”的有力推手。
C . 中国是茶树的原产地,也是世界上最早制茶的国家。
很久以前,中国人就把茶树种子和种茶经验传授给世界各国人民。
今天,茶已经成为世界上饮用人数最多的饮料。
D . 诈骗分子在冒充各大银行套取事主银行卡密码后,事主才意识到账户被盗,但是为时已晚,账户里的钱已被一笔笔地迅速转走。
二、现代文阅读 (共2题;共18分)2. (6分) (2017高二下·天门期中) 阅读下面文字,完成下列小题。
中国诗歌自身的调节功能中国诗歌之所以能历久而不衰,一个重要的原因是它本身有一种调节功能,其语言形式处在不断变化的过程之中。
从四言到五言到七言,随着汉语的发展变化而不断形成新的节奏。
二二节奏的四言诗是诗歌的早期形式,随着《诗经》时代的结束而趋于僵化。
此后的四言诗,如曹操《短歌行》那样的佳作实在不多。
中国诗歌主要的形式是二三节奏的五言和四三节奏的七言。
四言诗一句分成均等的两半,节奏呆板。
五七言前后相差一个音节,寓变化于整齐之中,节奏活泼。
所以五七言取代了四言而成为中国诗歌的主要形式。
为什么七言没有继续加长,发展为九言呢?我想这是因为一句诗七个音节已经达到读起来不至于呼吸急促的最大限度,加长到九言读起来呼吸急促。
这样的诗行不容易建立起来。
在音节变化的同时,格律也在逐渐严密化。
中国诗歌是从自由体(古诗)走向格律体(近体诗),但格律体确立之后自由体仍不衰退,而是和格律体并存着,各有其特长。
四川省攀枝花市2017-2018学年高二数学4月调研检测试题(文)注意事项:1.答第一部分前,考生务必将自己的姓名、考号、考试科目写在答题卷上.2.选择题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其它答案,不能答在试题卷上。
3。
填空题,解答题的答案一律写在答题卷上, 不能答在试题卷上。
第一部分(选择题共60分)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,有且只有一项是符合题目要求的.1、的圆心和半径分别为()A.(4,-6),16 B。
(2,-3),4 C。
(—2,3), 4 D.(2,—3),162、已知是空间三条不同的直线,下列命题中正确的是( )A。
如果,。
则 B.如果,.则共面C.如果,.则 D。
如果共点。
则共面3、如图是一个无盖正方体盒子的表面展开图,A、B、C为其上的三个点,则在正方体盒子中,∠ABC等于()A。
45° B。
60° C.90° D。
120°4、若把半径为的半圆卷成一个圆锥,则它的体积为( )A. B。
C。
D.5、一个棱锥的三视图如图所示,则该棱锥的外接球的体积是( )A。
B。
C。
D。
6、下列结论中正确的是( )A.平行于平面内两条直线的平面,一定平行于这个平面B.一条直线平行于一个平面内的无数条直线,则这条直线与该平面平行C。
两个平面分别与第三个平面相交,若交线平行则两平面平行D.在两个平行平面中,一平面内的一条直线必平行于另一个平面7、若一个正三棱柱的三视图如图所示,则这个正三棱柱的表面积为()A. B. C。
D.8、如图是一个几何体的三视图,其中正(主)视图和侧(左)视图都是一个两底长分别为和,腰长为4的等腰梯形,则该几何体的侧面积是( )A。
B。
C. D.9、抛物线的焦点到双曲线的渐近线的距离为( )A. B。
C. D.10、已知,与分别为圆锥曲线和的离心率,则的值( )A。
高二语文4月份月结学情调研试题命题人:张民强注意事项:1、本试卷分为选择题和非选择题两部分。
时间150分钟,满分150分。
2、答卷前,考生务必将自己的班级、姓名填写在答题纸的相应位置。
第一卷(选择题,共36分)一、(15分,每小题3分)1、下列加点的字词读音全部正确的一组是()A布衾.qīn 角.色jué殷.红yān 潜.移默化qiǎnB熟稔.shěn 偌.大ruò泥.古nì引吭.高歌hángC属.意zhǔ落.枕lào 顷.刻qǐng 有的放矢.shǐD挨.批ái 尽.管jǐn 应.用yīng 闷声闷.气mēn2、下列各组词语中,错别字最少的一项是()A喝倒彩家具坐阵集腋成裘B捅娄子蝉联通牒顾名思义C座右铭丰姿棉薄食不果腹D打牙祭渲泄匮乏开源截流3、下列各句中,加点的成语使用恰当的一句是( )A、在向高考冲刺的紧张阶段,备考复习缺乏通盘考虑,目无全牛....,顾此失彼,这是许多高三同学复习收获不大的重要原因。
B、岁月行云流水....般静静流逝,白发悄悄爬上了他的鬓角,三十多年桃李芬芳的教学生涯成为他人生最美好的回忆。
C、为了这次遥远的北国之旅,我早早的就在脑海里储备了许许多多的神秘幻想和童话故事,以至于今夜在这美丽的拉普兰,我的梦境也变得光怪陆离....。
D、嫦娥奔月,神七升空,中俄开展星火联合探测……中国太空探测计划正以前所未有的速度往前推进,真是大快人心....。
4、下列各项中,标点符号使用正确的一项是()A、近年来,人类已经感受到了大自然的“愤怒”,频发的地震、海啸等灾害便是在警告我们:关爱地球,创造良好的生存环境已经迫在眉睫。
B、有学者认为,历史上襄阳这座城市为兵家必争之地,闻名海内,“襄阳,早已融进了中国文化的血液里,融进了中国人的记忆。
”C、像以前的囧等网络热词一样,给力一词原来只属于网民的自娱自乐,11月10日登上以严肃严谨著称的《人民日报》头版头条,立刻引发热议。
2022-2023学年江苏省常州市高二下学期4月阶段性调研测试数学试题一、单选题1.可以表示为( ).899091100⨯⨯⨯⨯ A .B .C .D .10100A 11100A 12100A 13100A 【答案】C【分析】根据排列数的计算公式即可判断﹒()()()12··1mn A n n n n m ⋅-⋅-- =+【详解】=,899091100⨯⨯⨯⨯ 12100A 故选:C﹒2.若平面,的法向量分别为,,并且,则x 的值为( )αβ()1,2,4a =-(),1,2b x =--//αβA .10B .C .D .10-1212-【答案】C【解析】根据两个法向量共线可得的值.x 【详解】因为,共线,故,故,//αβ,a b 12124x --==-12x =故选:C.3.根据组合数的性质可知,( )222223410C C C C +++⋅⋅⋅+=A .B .C .D .310C 211C 311C 411C 【答案】C【分析】根据性质直接可得.1121C C C C C r r r r r r r r n n +++++++⋅⋅⋅+=【详解】由性质可得.1121C C C C C r r r r r r r r n n +++++++⋅⋅⋅+=222232341011C C C C C +++⋅⋅⋅+=故选:C4.从名大学毕业生中选人担任村长助理,则甲、乙至少有人入选,而丙没有入选的不同选法1131的种数为( )A .B .C .D .49566484【答案】C【分析】分别在甲、乙有且仅有人入选和甲、乙人都入选的情况下确定选法种数,根据分类加12法计数原理可求得结果.【详解】甲、乙有且仅有人入选、丙没有入选的情况有:种;11228C C 56=甲、乙人都入选、丙没有入选的情况有:种;218C 8=甲、乙至少有人入选,而丙没有入选的不同选法的种数有种.∴156864+=故选:C.5.将一枚骰子连续抛两次,得到正面朝上的点数分别为、,记事件A 为 “为偶数”,事件x y x y +B 为“”,则的值为( )7x y +<(|)P B A A .B .C .D .13125979【答案】B【分析】利用条件概率的公式求解即可.【详解】根据题意可知,若事件为“为偶数”发生,则、两个数均为奇数或均为偶数,A x y +x y 其中基本事件数为,,,,,,,,,()1,1()1,3()1,5()2,2()2,4()2,6()3,1()3,3()3,5,,,,,,,,,一共个基本事件,∴()4,2()4,4()4,6()5,1()5,3()5,5()6,2()6,4()6,618,()181362P A ==而A 、同时发生,基本事件有当一共有9个基本事件,∴,B 91()364P AB ==则在事件A 发生的情况下,发生的概率为,B ()()()114122P AB P B A P A ===故选:.B 6.已知三棱锥中,点为棱的中点,点为的重心,设,,O ABC -M OA G ABC OA a = OB b =,则向量( )OC c =MG = A .B .111633a b c-++ 111633a b c --C .D .111633a b c -+ 111633a b c-+- 【答案】A【解析】作出图形,利用重心的性质可得出关于、、的表达式,再由可得OGa b c MG OG OM =- 结果.【详解】连接并延长交于点,连接,则为的中点,且,CG AB E OE E AB 23CG CE=()()()111111222222CE CA AE CA AB CA CB CA CA CB OA OC OB OC=+=+=+-=+=-+-,1122a b c =+- ,22111113322333OG OC CG OC CE c a b c a b c⎛⎫∴=+=+=++-=++ ⎪⎝⎭ 为的中点,.M OA 11111113332633MG OG OM a b c a a b c⎛⎫∴=-=++-=-++ ⎪⎝⎭ 故选:A.7.某次考试共有4道单选题,某学生对其中3道题有思路,1道题完全没有思路.有思路的题目每道做对的概率为0.8,没有思路的题目,只好任意猜一个答案,猜对的概率为0.25.若从这4道题中任选2道,则这个学生2道题全做对的概率为( )A .0.34B .0.37C .0.42D .0.43【答案】C【分析】根据排列组合以及概率的乘法公式即可求解.【详解】设事件表示“两道题全做对”,A 若两个题目都有思路,则,223124C 0.80.32C P =⨯=若两个题目中一个有思路一个没有思路,则,1113224C C 0.80.250.1C P =⨯⨯=故,12()0.320.10.42P A P P =+=+=故选:C8.《九章算术》是我国古代数学名著,它在几何学中的研究比西方早一千多年,例如堑堵指底面为直角三角形,且侧棱垂直于底面的三棱柱;鳖臑指的是四个面均为直角三角形的三棱锥如图,在堑堵ABC﹒A1B1C1中,∠ACB=90°,若AB,AA1=2,当鳖臑A1﹒ABC体积最大时,直线B1C 与平面ABB1A1所成角的余弦值为()AB C.D13【答案】A【分析】当鳖臑A1﹒ABC体积最大时,AC=BC=1,以C为原点,CA为x轴,CB为y轴,CC1为z轴,建立空间直角坐标系,由此能求出直线B1C与平面ABB1A1所成角的余弦值.【详解】解:在堑堵ABC﹒A1B1C1中,∠ACB=90°,AB,AA1=2,当鳖臑A1﹒ABC体积最大时,AC=BC=1,以C为原点,CA为x轴,CB为y轴,CC1为z轴,建立空间直角坐标系,B1(0,1,2),C(0,0,0),A(1,0,0),B(0,1,0),11(0,1,2),(1,1,0),(0,0,2)B C BA BB=--=-=设平面ABB1A1的法向量,(,,)n x y z=则,取x=1,得,120n BA x yn BB z⎧⋅=-=⎪⎨⋅==⎪⎩(1,1,0)n=设直线B1C与平面ABB1A1所成角为θ,则sinθ=所以cosθ=∴直线B1C与平面ABB1A1二、多选题9.从4名男生、3名女生中选2人分别担任班长和副部长,要求选出的2人中至少有一名男生,则不同的方法数为( )A .B .C .D .112462C C A ()222732CC A -()11224342C CC A +2273A A -【答案】BCD【分析】根据选项注意分析即可.【详解】表示从4名男生中选1人,再从剩余的6人中选1人,最后将选出的2人进行排112462C C A 列,当选出的2人都为男生时,此算法有重复,故A 错误;表示先从7人中选2人,减去2人都是女生的情况,最后将选出的2人进行排列,故()222732CC A -B 正确;表示先从4名男生和3名女生中各选1人,或从4名男生中选2人,最后将选出的()11224342C CC A +2人进行排列,故C 正确;表示从7人中选出2人进行排列,然后减去2人都是女生的情况,故D 正确.2273A A -故选:BCD10.已知,则( )()727012712x a a x a x a x -=+++⋅⋅⋅+A .B .01a =722a =C .D .01271a a a a +++⋅⋅⋅+=-701273a a a a +++⋅⋅⋅+=【分析】令可求得可判断A ;写出该二项展开式的通项可得可判断B ;令,求得0x =0a 2a 1x =,进而求得可判断C ;由二项展开式的通项分析可知,当为偶数0127a a a a +++⋅⋅⋅+127a a a +++ k 时,,当为奇数时,,然后令可得出所求式子的值,可判断D .0k a >k 0k a <=1x -【详解】因为,()727012712x a a x a x a x -=+++⋅⋅⋅+令,得,故A 正确;0x =01a =展开式的通项为 ,则,故B 错误;()712x -7177C 1(2)(2)C r r r r r r r T x x -+=-=-7222(2)C 84a =-=令,得,故C 正确;1x =01271a a a a -=+++⋅⋅⋅+展开式的通项为,则,其中且,()712x -17(2)C r r r r T x +=-()72C kkk a =-07k ≤≤N k ∈当为偶数时,;当为奇数时,,k 0k a >k 0k a <令,可得,故D 正确.=1x -70127012345673a a a a a a a a a a a a +++⋅⋅⋅+=-+-+-+-=故选:ACD.11.假设某厂有两条包装食盐的生产线甲、乙,生产线甲正常情况下生产出来的包装食盐质量服从正态分布(单位:g ),生产线乙正常情况下生产出来包装食盐质量为x g ,随机变量x 服()2500,5N从正态密度函数,其中,则( )()2200(1000)x x ϕ--=x ∈R 附:随机变量,则,,2(,)N ξμσ-()0.683P μσξμσ-<<+=()220.954P μσξμσ-<<+=.()330.997P μσξμσ-<<+=A .正常情况下,从生产线甲任意抽取一包食盐,质量小于485g 的概率为0.15%B .生产线乙的食盐质量()2~1000,100x N C .生产线乙产出的包装食盐一定比生产线甲产出的包装食盐质量重D .生产线甲上的检测员某天随机抽取两包食盐,称得其质量均大于515g ,于是判断出该生产线出现异常是合理的【答案】AD【分析】根据正态分布的参数,以及结合原则的参考数据,即可判断选项.3σ【详解】由条件可知,设生产线甲正常情况下生产出来的包装食盐的质量为,X其中,其中,,()2500,5X N 500μ=5σ=则,故A 正确;()()10.99748530.00150.15%2P X P X μσ-<=<-===B. 随机变量x 服从正态密度函数,可知,,,()2200(1000)x x ϕ--=1000μ=10σ=所以生产线乙的食盐质量,故B 错误;()2~1000,10x N C.不一定,可能小概率事件发生,生产线乙产出的包装食盐比生产线甲产出的包装食盐质量轻,故C 错误;D.,说明生产线甲抽到质量大于515g 的可()()10.99751530.00150.15%2P X P X μσ->=>+===能性很低,所以随机抽取两包质量均大于515g ,说明判断出该生产线出现异常是合理的,故D 正确.故选:AD12.已知离散型随机变量服从二项分布,其中,记为奇数的概率为,X (),B n p N ,01n p *∈<<X a 为偶数的概率为,则下列说法中正确的有( )X b A .B .时,1a b +=12p =a b=C .时,随着的增大而增大D .时,随着的增大而减小102p <<a n 112p <<a n 【答案】ABC【分析】选项A 利用概率的基本性质即可,B 选项由条件可知满足二项分布,利用二项分布进行分析,选项C ,D 根据题意把的表达式写出,然后利用单调性分析即可.a 【详解】对于A 选项,由概率的基本性质可知,,1a b +=故A 正确,对于B 选项,由时,离散型随机变量服从二项分布,12p =X 1,2B n ⎛⎫ ⎪⎝⎭则,()()11C 10,1,2,3,,22kn kk nP X k k n -⎛⎫⎛⎫===-= ⎪⎪⎝⎭⎝⎭所以,()1351111C C C 2222nnn n n n a -⎛⎫⎛⎫=+++=⨯=⎪ ⎪⎝⎭⎝⎭ ,()0241111C C C 2222nnn n n n b -⎛⎫⎛⎫=+++=⨯=⎪ ⎪⎝⎭⎝⎭所以,故B 正确,a b =对于C,D 选项,,()()()1111222nnnp p p p p a -+---⎡⎤⎡⎤--⎣⎦⎣⎦==当时,为正项且单调递增的数列,102p <<()1122np a --=故随着的增大而增大故选项C 正确,a n 当时,为正负交替的摆动数列,112p <<()12n a p =-故选项D 不正确.故选:ABC.三、填空题13.在棱长为1的正方体中,为棱上任意一点,则=_______.1111ABCD A B C D -M 1CC AM BC ⋅【答案】1【分析】根据空间向量的线性运算及数量积的运算性质求解.【详解】如图,在正方体中,为棱上任意一点,则,,M 1CC 11CM CC AA λλ==01λ≤≤.()()21001AM BC A AC CM AB AD AA D D AD A λ∴=+⋅=++⋅⋅=++= 故答案为:1.14.展开式中含项的系数为______.()521x y -+2x y 【答案】-60【分析】根据二项式的通项公式进行求解即可.【详解】,()()552112x y x y -+=+-⎡⎤⎣⎦设该二项式的通项公式为,()()5155C 12C 2rrr r rr T x y x y -+=⋅⋅-=⋅-因为的次数为,所以令,2x y 33r =二项式的通项公式为,()32x y -()313C 2r r r r T x y '''-'+'=⋅⋅-令,1r '=所以项的系数为,2x y ()3153C C 260⋅⋅-=-故答案为:60-15.某企业的一批产品由一等品零件、二等品零件混装而成,每包产品均含有10个零件.小张到该企业采购,利用如下方法进行抽检:从该企业产品中随机抽取1包产品,再从该包产品中随机抽取4个零件,若抽取的零件都是一等品,则决定采购该企业产品;否则,拒绝采购.假设该企业这批产品中,每包产品均含1个或2个二等品零件,其中含2个二等品零件的包数占,则小张决10%定采购该企业产品的概率为______.【答案】4375【分析】根据题意,分析可得含1个二等品零件的包数占,进而由对立事件和互斥事件的概率90%公式计算可得答案.【详解】解:根据题意,该企业这批产品中,含2个二等品零件的包数占,则含1个二等品零10%件的包数占,90%在含1个二等品零件产品中,随机抽取4个零件,若抽取的4个零件都是一等品,其概率,491410C 3C 5P ==在含2个二等品零件产品中,随机抽取4个零件,若抽取的4个零件都是一等品,其概率,482410C 1C 3P ==则小张决定采购该企业产品的概率;93114310510375P =⨯+⨯=故答案为:.4375四、双空题16.在数字通信中,信号是由数字“0”和“1”组成的序列.现连续发射信号次,每次发射信号“0”和n “1”是等可能的.记发射信号“1”的次数为.X ①当时,_______;6n =()2P X ≤=②已知切比雪夫不等式:对于任一随机变量,若其数学期望和方差均存在,则对任Y ()E Y ()D Y 意正实数,有.根据该不等式可以对事件“”的概率作出下a ()()()21D Y P Y E Y a a -<≥-()Y E Y a-<限估计.为了至少有98%的把握使发射信号“1”的频率在0.4与0.6之间,估计信号发射次数的最小n 值为_______.【答案】12501132【分析】①根据二项分布公式计算;②运用二项分布公式算出和,再根()2P X ≤()E X ()D X 据题意求出中a 的表达式,最后利用切比雪夫不等式求解.()X E X a-<【详解】①当时,由已知,6n =16,2X B ⎛⎫ ⎪⎝⎭ 所以()()()()2012P X P X P X P X ≤==+=+= ;652412666111111615112222264646432C C C ⎛⎫⎛⎫⎛⎫⎛⎫=+⋅+⋅=++=⎪ ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭②由已知,所以,1,2X B n ⎛⎫⎪⎝⎭ ()()0.5,0.25E X n D X n ==若,则,即,即.0.40.6Xn ≤≤0.40.6n X n ≤≤0.10.50.1n X n n -≤-≤0.50.1X n n -≤由切比雪夫不等式,()20.250.50.11(0.1)nP X n n n -≤≥-要使得至少有的把握使发射信号“1”的频率在与之间,则,98%0.40.620.2510.98(0.1)nn -≥解得,所以估计信号发射次数的最小值为1250.1250n ≥n 故答案为:;1250.1132五、解答题17.在1,2,3,…,9这9个自然数中,任取2个不同的数.(1)求这2个数中恰有1个是奇数的概率;(2)设X 为所取的2个数中奇数的个数,求随机变量X 的概率分布及均值.【答案】(1)59(2)分布列见解析,均值为.109【分析】(1)由9个数中5个奇数,4个偶数,可得出取出的2个数中恰有1个是奇数的方法数,从而计算出概率;(2)X 的可能值依次为,分别计算出概率的分布列,由均值公式计算出均值.0,1,2【详解】(1)9个数中5个奇数,4个偶数,因此所求概率为;11542959C C P C ==(2)X 的可能值依次为,0,1,2,,24291(0)6C P X C ===25295(2)18C P X C ===的分布列为X X012P1659518均值为.15510()01269189E X =⨯+⨯+⨯=18.已知在的展开式中,第2项与第8项的二项式系数相等.()()*2nx n -∈N (1)求展开式中二项式系数最大的项;(2)求展开式中的常数项.()112n x x ⎛⎫-- ⎪⎝⎭【答案】(1)41120x (2)1280【分析】(1)根据题目条件先求出,再根据二项式系数的性质求出结果;n (2),结合(1)中的结果,求出的常数项和的系数()(2)(2112)n n nx x x x x =⎛⎫---⎝-⎪⎭- n (2)nx -x 即可.【详解】(1)依题意得,,解得,根据二项式系数的性质最大,于是展开式中系数17C C n n =8n =48C 最大的项为:.44448C (2)1120x x -=(2),展开式的常数项为:,展开式()()888211(2)2x x x x x -⎛⎫--⎭--⎪= ⎝8(2)x -8(2)256-=8(2)x -的的系数为:,于是展开式的常数项为:x 778C (2)1024-=-()8112x x ⎛⎫-- ⎪⎝⎭256(1024)1280--=19.如图,在四棱锥中,底面是直角梯形,平面,S ABCD -ABCD ,,AD BC AB BC SA ⊥⊥//ABCD 22SA AB BC AD ====(1)求到平面的距离;C SBD (2)求平面与平面的夹角的正弦值.SAB SCD 【答案】【分析】(1)根据等体积求解.S BCD C SBD V V --=(2)以为坐标原点,分别以为轴,轴,轴建立空间直角坐标系,设平A ,,AD AB AS x y z A xyz -面与平面的夹角为,则代入求解.SAB SCD θ1212cos n n n n θ⋅=⋅【详解】(1)平面,所以是三棱锥的高,SA ⊥ ABCD SA SBCD -根据题意,设到平面的距离为,,C SBD h SD BD SB ===由得,S BCDC SBD V V --=1133BCD SBD S SA S h ⋅⋅=⋅⋅ 代入数据,得11112223232h ⨯⨯⨯⨯=⨯⨯h 所以到平面.C SBD(2)由平面,平面,SA ⊥ABCD ,AB AD ⊂ABCD ,又则,,SA AB SA AD ∴⊥⊥,,AD BC AB BC ⊥//AB AD ⊥两两垂直,,,SA AB AD ∴以为坐标原点,分别以为轴,轴,轴建立空间直角坐标系,A ,,AD AB AS x y z A xyz -则,则()()()0,0,2,1,0,0,2,2,0S D C ()()1,0,2,1,2,0SD DC =-=设平面的一个法向量为,则,令,SCD ()1000,,n x y z =()()()()1000001000001,0,2,,201,2,0,,20SD n x y z x z DC n x y z x y ⎧⋅=-⋅=-=⎪⎨⋅=⋅=+=⎪⎩ 01z =则,()12,1,1n =-平面的一个法向量,SAB ()21,0,0n =设平面与平面的夹角为,则,SAB SCDθ1212cos n n n n θ⋅===⋅与平面sin θ∴=SAB SCD 20.(1)求证:;11C C r r n n r n --=(2)求和:;123C 2C 3C C n n n n n n +++⋅⋅⋅+(3)求证:当随机变量时,(),X B n p ()E X np=【答案】(1)证明见解析;(2);(3)证明见解析12n n -⋅【分析】(1)由组合数公式证明即可;(2)由(1)中结论,结合二项式系数的性质求解; (3)写出的表达式,由(2)中结论,结合二项式定理求解.()E X 【详解】(1),,()()()!!C !!!1!r n n n r r n r r n r r =⋅=---()()()()()111!!C !1!!1!r n n n n n n r r n r r ---=⋅=----所以.11C C r r n n r n --=(2)12301211111C 2C 3C C C C C C n n n n n n n n n n n n n n n -----+++⋅⋅⋅+=+++⋅⋅⋅+.()012111111C C C C 2n n n n n n n n ------=+++⋅⋅⋅+=⋅(3)()()()()()120011220C 11C 12C 1C 1nn n n nn n n n E X p p p p p p n p p --=⋅⋅-+⋅⋅-+⋅⋅-+⋅⋅⋅+-()()()1201121111C 1C 1C 1n n n nn n n n p p n p p n p p ------=⋅⋅-+⋅⋅-+⋅⋅⋅+-()()()120001111111C 1C 1C 1n n n n n n n n p p p p p p p -------⎡⎤=⋅⋅⋅-+⋅-+⋅⋅⋅+-⎣⎦.()11n n p p p np-=⋅⋅+-=21.如图,四棱锥的底面为正方形,底面,,点在棱上,PABCD -PA ⊥ABCD 3PA AB ==E PD 且,点是棱上的动点(不含端点).2PE ED =F PC (1)若是棱的中点,求的余弦值;F PC EAF ∠(2)求与平面所成角的正弦值的最大值.PA AEF 【答案】【分析】(1)建立空间直角坐标系,求出,的坐标,利用向量夹角公式求解;AE AF(2)设,求出平面的法向量,设与平面所成角为,则PF PC λ=AEF 1n PA AEF θ.1sin cos ,n θ=【详解】(1)由平面,,平面,所以,,PA ⊥ABCD AB AD ⊂ABCD PA AB ⊥PA AD ⊥又,所以、、两两垂直,AB AD ⊥PA AB AD 以为坐标原点,分别以,,所在直线为,,轴,建立空间直角坐标系,A AB AD AP x y z A xyz-则,,,,,,()0,0,3P ()0,0,0A ()3,0,0B ()3,3,0C ()0,3,0D ()0,1,2E 当为棱的中点时,,则,,F PC 333,,222F ⎛⎫ ⎪⎝⎭()0,1,2AE = 333,,222AF ⎛⎫= ⎪⎝⎭,cos ,AE AF AE AF AE AF⋅===所以EAF ∠(2),设,,()3,3,3PC =-()3,3,3PF PC λλλλ==-01λ<<则,则,又,()3,3,3AF AP λλλ--= ()3,3,33AF λλλ=- ()0,1,2AE = 设平面的一个法向量为,AEF ()1111,,n x y z =则,即,取,1100n AE n AF ⎧⋅=⎪⎨⋅=⎪⎩ ()111112033330y z x y z λλλ+=⎧⎨++-=⎩131,2,1n λλ-⎛⎫=- ⎪⎝⎭ ,设与平面所成角为,()0,0,3PA =-PA AEF θ1sin cos ,n θ== 令,当时,,221611435y λλλ⎛⎫=-+=-+ ⎪⎝⎭13λ=min 5y=即时,13λ=sin θ所以与平面PA AEF22.法国数学家庞加莱是个喜欢吃面包的人,他每天都会到同一家面包店购买一个面包,该面包店的面包师声称自己所出售的面包的平均质量是1000g ,上下浮动不超过50g ,这句话用数学语言来表达就是:每个面包的质量服从期望为1000g ,标准差为50g 的正态分布.(1)已知如下结论:若,从的取值中随机抽取个数据,记这个数据()2,X N μσ~X (),2k k k *∈≥N k 的平均值为,则随机变量.利用该结论解决下面问题.Y 2,Y N k σμ⎛⎫~ ⎪⎝⎭①假设面包师的说法是真实的,随机购买25个面包,记随机购买25个面包的平均值为,求Y ;()980P Y <②庞加莱每天都会将买来的面包称重并记录,25天后,得到的数据都落在上并经计算()950,105025个面包质量的平均值为978.72g.庞加莱通过分析举报了该面包师,从概率角度说明庞加菜举报该面包师的理由;(2)假设有两箱面包(面包除颜色外,其他都一样),已知第一箱中共装有6个面包,其中黑色面包有2个;第二箱中共装有8个面包,其中黑色面包有3个.现随机挑选一箱,然后从该箱中随机取出2个面包.求取出黑色面包个数的分布列及数学期望.附:①随机变量服从正态分布,则,η()2,N μσ()0.6827P μσημσ-≤≤+=,()220.9545P μσημσ-≤≤+=()330.9973P μσημσ-≤≤+=②通常把发生概率小于0.05的事件称为小概率事件,小概率事件基本不会发生【答案】(1)①;②答案见解析0.02275(2)分布列见解析,1724【分析】(1)(i )由正太分布的对称性及原则进行求解;(ii )结合第一问求解的概率及小概率3σ事件进行说明;(2)设取出黑色面包个数为随机变量,则的可能取值为0,1,2,求出相应的概率,进而求出分布ξξ列及数学期望.【详解】(1)(i )假设面包师说法是真实的,则每个面包的质量()21000,50X N 由已知结论可知,()21000,10Y N由附①数据知,()10.95459800.022752P Y -≤==(ii ),由附②知,事件“”为小概率事件,980Y ≤由题25个面包质量的平均值,978.72980Y =<小概率事件“”发生所以庞加莱认为面包师的说法不真实,进行了举报980Y ≤(2)由题意,设随机挑选一箱,取出两个面包,其中黑色面包个数为,则的取值为0,1,2ξξ设“所取两个面包来自第箱”,所以=i A i ()1,2i =1212A A P P ==设“所取两个面包有各黑色面包”,由全概率公式i B =i ()1,2i =,()()()()()22540110222268C C 115302C 2C 140P P B A P A P B A P A ξ==+=⨯+⨯=∣∣,()()()()()111153421111222268C C C C 1144912C 2C 840P P B A P A P B A P A ξ==+=⨯+⨯=∣∣,()()()()()22322112222268C C 117322C 2C 840P P B A P A P B A P A ξ==+=⨯+⨯=∣∣所以黑色面包个数的分布列为ξξ012P5314044984073840所以53449735951701214084084084024E ξ=⨯+⨯+⨯==。
高二下学期4月学情调研数学试题一、单选题1.已知直线与平行,则之间的距离为( ) 1:230l x y ++=2:10l x ay --=12,l lA .1B .2C D 【答案】D【分析】由两直线平行,可知其斜率相等,即可求出,然后再根据平行直线间的距离公式即可求a 解.【详解】由题意知,,,因为,所以,所以,12k =-21k a=12l l ∥12k k =12a =-所以,即,所以21:102l x y +-=2:220l x y +-=d2.已知圆与圆只有一个公共点,则( )2214850:O x y x y ++--=2222(2)(0:)O x y r r ++=>r =A .1 B .4 C .9 D .1或9【答案】D【分析】将圆的方程化为标准式,即可得到圆心坐标与半径,依题意两圆相内切,则圆心距等于半径之差的绝对值,即可得到方程,解得即可.【详解】圆,即,圆心为,半径,2214850:O x y x y ++--=()()222425x y ++-=()12,4O -15r =圆,圆心,半径为,2222(2)(0:)O x y r r ++=>()22,0O -r所以124O O ==因为两圆只有一个公共点,所以两圆相外切或相内切, 显然两圆不能相外切,所以,即,解得或. 211r O r O =-54r -=1r =9r =故选:D3.在54张扑克牌中取出13张红桃,按大小排好,现取出梅花插入红桃牌中,则15张扑克牌,Q K 的排法种数是( ) A .12B .182C .210D .364【答案】C【分析】利用倍缩法求解即可.【详解】由题意,15张扑克牌的排法种数是.15151313A 210A =故选:C.4.能源是一个国家发展的基础,火力发电是现今社会能源来源的主要途径,但火力发电影响全球气候变暖等有关问题.为了提高火电厂一次能源的使用效率,有效推动社会的可持续发展,必须对火电厂节能减排技术进行深入的探讨.火电厂的冷却塔常用的外形之一就是旋转单叶双曲面,它的优点是对流快、散热效果好,外形可以看成是双曲线的一部分绕其虚轴旋转所形成的曲面(如图1).某火电厂的冷却塔设计图纸比例(长度比)为(图纸上的尺寸单位:),图纸中单叶1:20m 双曲面的方程为(如图2),则该冷却塔占地面积为( )22140(32)6x y z z +--=-≤≤A .B .C .D .270πm 21400πm 2200πm 2140πm 【答案】B【分析】令,可得,求出底面圆的半径,乘以比例尺,即可求出占地面积作答. 3z =-2272x y +=【详解】令,得方程为的圆,而比例尺为, 3z =-2272x y +=1:20因此圆的实际半径为,所以冷却塔占地面积为. 22π1400π(m )⨯=故选:B5.已知,则( )1021001210(1)(1)(1)(1)x a a x a x a x +=+-+-++- A . B . 012101024a a a a ++++= 101a =-C . D . 15120a =-1012021012221024a a a a ++++= 【答案】C【分析】对A ,只需取代入即可;对B ,把看成求其展开式的第11项即0x =10(1)x +()1021x --⎡⎤⎣⎦可求得;对C ,把看成求其展开式的第2项即可求得;对D ,令,10a 10(1)x +()1021x --⎡⎤⎣⎦1a 12x =即可得. 101012021031()22221024a a a a =++++≠ 【详解】对A ,时,原始右边=,所以A 错误;0x =100121011a a a a ++++== 对B ,,,,所以B 错误; ()1010(1)21x x ⎡⎤+=--⎣⎦()()101010010101C 21a x x -=⋅⋅--⎡⎤⎣⎦101a ∴=对C ,同上,,,C 正确;()()()11919110101C 21C 21a x x x -=⋅⋅--=-⋅⋅-⎡⎤⎣⎦90111C 25120a -⋅=-∴=对D ,令,则 12x =10210012101111(1)(1)(1)(12222a a a a +=+-+-++- , 10210012103111()()()()2222a a a a ∴=++++ 则,所以D 错误. 10101202103122221024a a a a ⎛⎫=++++≠ ⎪⎝⎭ 故选:C.6.南宋数学家杨辉所著的《详解九章算法》一书中画了一张表示二项式展开式的系数构成的三角形数阵(如图所示),在“杨辉三角”中,第10行所有数字的平方和等于( )A .B .C .D .1020C 1120C 1020A 1120A 【答案】A【分析】根据题意得到第10行的所有数字的平方和为,结合的()()()2220110101010C C C +++ 2(1)n x +展开式中,得到,即可求解.n x 00112C C C C C C C n n nn n n n n n n =+++ 【详解】由题意,可得第10行的所有数字的平方和为,()()()222110101010C C C +++ 因为20101(1)(1)(1)(C C C )(C C C )nn n n n n nn n n n n n x x x x x x x +=+⋅+=++++++ ,01100011(C C C C C C )(C C C C C C )n n n n n n nn n n n n n n n n n n n x x -=+++++=+++++ 所以展开式中的系数,n x 0011C C C C C C n nn n n n n n +++又因为,可得展开式中的系数,201222222(1)C C C C nn n n n n n n n x x x x +=+++++ nx 2C n n 所以,00112C C C C C C C n n nn n n n n n n =+++ 所以.()()()22201101010101020C C C C +++= 故选:A.7.已知抛物线的焦点为,直线与抛物线交于两个不同的点,.如果2y ax =F (12y x =-A B ,,成等差数列,那么等于( ) AF 2BF a A . B .C .D .1-248【答案】C【分析】只有项是负的,代入发现,对于A 、C 、D 选项:,利用抛物线定义以及等A Δ0<0a >差中项可求参数的值.a 【详解】对于选项:若,A 1a =-,,,不符合题意. 2(12y x y x ⎧=-⎪⎨=-⎪⎩2(120y y ++=18(10∆=-+<对于B 、C 、D 选项:,0a >直线与抛物线交于两个不同的点,. (12y x =-A B 设, ,11(,)A x y 22(,)B x y 因为,,成等差数列,所以,AF 2BF 4AF BF +=设直线为抛物线的准线,根据抛物线定义, CD AF BF AC BD +=+因为抛物线,所以, 2y ax =1242aAF BF AC BD x x +=+=++=,, 2(12y x y ax ⎧=-⎪⎨=⎪⎩22(14(140x a x ⎡⎤-++=⎣⎦令,则,则直线过定点,其在抛物线内部,且0y =1x ==(12y x =-)1,0-,则该直线与抛物线必有两交点,(10+>,12x x +=12x x =,解得. 42a=4a =故选:C.8.已知关于的方程在上解的个数为( ) x e sin 1x x x =-(0,π)A .1个 B .2个 C .3个 D .4个【答案】A【分析】在同一坐标系内作出与在上的图像,观察图像交点个数,即可得1()e xx h x -==sin y x (0,π)到关于的方程在上解的个数. x e sin 1x x x =-(0,π)【详解】关于的方程在上解的个数, x e sin 1x x x =-(0,π)即为关于的方程在上解的个数, x 1sin e xx x -=(0,π)令,,则, 1()e x x h x -=π()0,x ∈2()exxh x -'=π()0,x ∈则当时,单调递增; (0,2)x ∈()0h x '>1()e xx h x -=当时,单调递减. (2,π)x ∈()0h x '<1()e xx h x -=又,, (1)0h =21(2)e h =π1()0πe πh =>-在同一坐标系内作出与在上的图像,两图像有1个交点 1()ex x h x -==sin y x (0,π)则关于的方程在上解的个数为1.x e sin 1x x x =-(0,π)故选:A.二、多选题9.已知数列前项和为,,则下列正确的是( ) {}n a n n S 12211,2,320n n n a a a a a ++==-+=A .数列为等比数列{}1n n a a +-B .1001002a =C .21n n S =-D .数列的前项和为 12+⎧⎫⎨⎬⋅⎩⎭n n n S S n 112221n n ++--【答案】ACD【分析】根据题意,由递推关系可得数列与都为等比数列,然后结合等比数列的通项{}1n n a a +-{}n a 公式以及求和公式即可得到结果.【详解】由可得,,则,21320n n n a a a ++-+=()2112n n n n a a a a +++-=-2112n n n na a a a +++-=-又,所以数列是以为首项,为公比的等比数列,故A 正确;121,2a a =={}1n n a a +-12因为,当时,112n n n a a -+-=2n ≥()()()112211n n n n n a a a a a a a a ---=-+-++-+ ,当时,也满足上式,()123112222111212n n n n -----=+++++=+=- 1n =11a =所以,故B 错误;991002a =因为,即数列是以为首项,为公比的等比数列,12n n a -={}n a 12则其前项和,故C 正确;n ()122112nnnS -==--因为,()()111221121212121n n n n n n n n S S +++⎛⎫==- ⎪⋅----⎝⎭则其前项和 n 2233411111111121212121212121n n +⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫=-+-+-++- ⎪ ⎪ ⎪ ⎪⎢⎥-------⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦ ,故D 正确; 11122111212n n n +++⎛⎫=-= ⎪-⎝--⎭故选:ACD10.在 的展开式中,下列结论正确的是( )71x ⎫⎪⎭A .展开式的二项式系数和是128 B .只有第4项的二项式系数最大 C .的系数是D .展开式中的有理项共有3项2x 7-【答案】AC【分析】根据二项式展开式的通项特征即可判断CD ,由组合数的性质即可判断B,由二项式系数和可判断A.【详解】对于A,二项式系数和为,故A 正确,7228=1对于B ,由于 ,所以第四项与第五项的二项式系数均为最大,故B 错误,4377C =C对于C,的通项为71x ⎫⎪⎭()()(){}7737227771C 1C 1C ,0,1,2,3,4,5,6,7k k kk kkkkk kk xxx xk ------=--∈=,令,7321kk -⇒==2所以的系数是,故C 正确, 2x ()1171C 7--=当时,为整数,所以有理项有4项,故D 错误,1,3,5,7k=732k-故选:AC11.在三棱柱中,分别是上的点,且.设111ABC A B C -,M N 111,A B B C 1112,2BM A M C N B N ==,若,则下列说法中1,,AB a AC b AA c ===11190,60,1BAC BAA CAA AB AC AA ∠∠∠====== 正确的是( )A .B 112333MN a b c =++C .D .直线与所成的角为11112A B A C ⋅=- 1AB 1BC 30 【答案】BC【分析】根据空间向量的线性运算法则,可判定A 错误;求得,求得111333MN a b c =++B 正确;根据向量的数量积的运算公式,求得,可判定1111()2A B AC a c b ⋅=+⋅= C 正确;利用向量的夹角公式,可判定D 错误.【详解】由题意,在中,因为,且,111ABC A B C -1112,2BM A M C N B N ==1,,AB a AC b AA c ===,11190,60,1BAC BAA CAA AB AC AA ∠∠∠======对于A 中,根据向量的运算法则,可得1111111111233MN MA A C C N BA A C C B =++=++,所以A 不正确; 12111()()33333c a b a b a b c =-++-=++对于B 中,因为,1111()3333MN a b c a b c =++=++可得222221(222)9MN MN a b c a b a c b c ==+++⋅+⋅+⋅B 正确; 22215(1110211cos 60211cos 60)99=++++⨯⨯+⨯⨯= 对于C 中,由, 111,A B a c AC b =-=则,所以C 正确;1111()011cos 602A B A C a c b a c b c ⋅=-⋅=⋅-⋅=-⨯⨯=-对于D 中,由, 11,AB a c BC a b c =+=-++=且, ()()1111111012222BC a c a b c AB ⋅=+⋅-++=-++-++= 则,所以D 错误. 1111111cos ,6BC BC AB BC AB AB ⋅==故选:BC.12.已知椭圆一个焦点是,过点且垂直轴的直线交椭圆第一2222:1(0)x y C a b a b +=>>(2,0)F F x 0l象限于点. 直线平行于(为原点),且与椭圆交于两点,与直线交于点T 1l OT O C ,M N 0l (介于两点之间).则下列正确的是()P P ,M N A .椭圆的方程为B .C 22184x y +=4TM TN k k ⋅=-C .面积最大值是D .TMN △||||||||TM PN TN PM ⋅=⋅【答案】ACD【分析】对于A :根据题意列式求解即可;对于B :利用韦达定理可得,分析判,,a b c TM TN k k =-断;对于C :利用韦达定理结合二次函数分析求解;对于D :根据角平分线结合正弦定理分析求解.【详解】对于A :由题意可得:,解得,22222c ba ab c=⎧⎪⎪=⎨⎪=+⎪⎩22a b c ⎧=⎪=⎨⎪=⎩所以椭圆的方程为,故A 正确;C 22184x y +=由题意可知:直线的斜率1l k =设直线:, 1l ()()1122,,,,y m M x y N x y =+联立方程,消去y 得, 22184y x m x y ⎧=+⎪⎪⎨⎪+=⎪⎩2240x m +-=则,解得)()()22244280m m ∆=--=->m -<<且, 21212,4x x x x m +==-对于B :由题意可得:,TM TN k k ==则TM TNk k+=+=,0==所以,TM TN k k =-若,则均为定值,显然不合题意,故B 错误;2TMTN k k =-,TM TN kk 对于C点到直线直线:的距离(2T 1l 0x=d 则面积 TMN△1122TMN S MN d =⨯=△当,即时,C 正确; 24m =2m =±TMN △=对于D :在中,由正弦定理可得, TPM △sin sin TM MPTPM MTP∠=∠在中,由正弦定理可得, TPN △sin sin TN NPTPN NTP∠=∠由选项B 可知:,即直线为的角平分线, TM TN k k =-0l MTN ∠则,即,MTP NTP ∠=∠sin sin MTP NTP ∠=∠又因为,则,πMPT NPT ∠=-∠()sin sin πsin MPT NPT NPT ∠=-∠=∠所以,整理得,故D 正确; TM TNPM PN=||||||||TM PN TN PM ⋅=⋅故选:ACD.三、填空题13.已知数列的前项和为,,,则________.{}n a n n S 12a =*10(2,N )n n n S S a n n -+=≥∈n S =【答案】221n -【分析】利用与题设条件推得,从而得到是等差数列,进而利用等差1n n n a S S -=-1111n n S S --=1n S ⎧⎫⎨⎬⎩⎭数列的通项公式即可得解.【详解】因为,*10(2,N )n n n S S a n n -+=≥∈所以当时,,即,2n ≥110n n n n S S S S --+-=11n n n n S S S S ---=若,则,故,显然与矛盾,故, 0n S =10n S -=110a S ==12a =0n S ≠所以,又,1111n n S S --=111112S a ==所以是以首项为,公差为的等差数列,1n S ⎧⎫⎨⎬⎩⎭121所以,故. ()11211122n n n S -=+-⨯=221n S n =-故答案为:. 221n -14.已知直线与相交于点,过点作圆140l ax y +-=:240l x ay --=:()R a ∈M M 的切线,切点为,则的最大值为___.()()22111C x y +++=:N MN 【答案】7【分析】先求得点的轨迹方程,再求得圆心到点M 的距离的最大值,进而利用切线长M (1,1)C --定理即可求得的最大值.MN 【详解】当时,直线过定点,斜率 0a ≠140l ax y +-=:(0,4)A 1k a =-直线过定点,斜率, 240l x ay --=:(4,0)B 21k a=由,可得两直线垂直; 121()1k k a a=⨯-=-当时直线与直线垂直. 0a =140l y -=:240l x -=:综上,直线与直线总垂直. 140l ax y +-=:240l x ay --=:则点在以为直径的圆上,圆心,半径为, M AB (2,2)T 圆的圆心,半径为1, ()()22111C x y +++=:(1,1)C --则点M 到圆心的距离的最大值为 C TC +7≤==故答案为:715.直四棱柱的底面为正方形,分别是上底面、下底面的中1111ABCD A B C D -,E F 1111A B C D ABCD 心,在平面内的射影恰好为的重心,,则________. F BCE BCE A 1AB mAA =m =【分析】以为坐标原点,所在直线分别为轴、轴、轴,建立坐标系,设D 1,,DA DC DD x y z,求得的重心,再利用求解即可.2AB =BCE A 52(1,,)33G mFG ⋅ 0BE = 【详解】解:如图示,以为坐标原点,所在直线分别为轴、轴、轴,建立坐标D 1,,DA DC DD x y z 系:设,则有,2AB =(2,0,0),(2,2,0),(0,2,0),(0,0,0)A B C D 11112222(2,0,),(2,2,),(0,2,),(0,0,)A B C D m m m m,, 2(1,1,),(1,1,0)E F m则的重心,BCE A 52(1,,)33G m 所以,,22(0,,33FG m = 2(1,1,)BE m =-- 由题意可得平面,平面,FG ⊥BCE BE ⊂BCE 所以,即有,FG ⊥BE FG ⊥ BE所以, FG ⋅ 0BE =即有,又因为,得242033m -=0m >m =16.已知直线是曲线与的公切线,则________.y kx b =+3()e x f x -=()2022e 2022x g x +=-k =【答案】20222025【分析】设设直线与曲线相切于点,与曲线相切于点, y kx b =+()f x 111(,)P x y ()g x 222(,)P x y 然后求出,,再根据导数的几何意义求出切线方程,联立切线方程即可求解. ()f x '()g x '【详解】设直线与曲线相切于点,与曲线相切于点, y kx b =+()f x 111(,)P x y ()g x 222(,)P x y 由于,,3()e x f x -=()2022e2022x g x +=-所以,,,, 3()e x f x -='()2022ex g x +'=131e x y -=220222e 2022x y +=-所以由点在切线上,得切线方程为,111(,)P x y 11331ee ()x x y x x ---=-由点在切线上,得切线方程为,222(,)P x y 22202220222e2022e ()x x y x x ++-+=-故解得. 1212320223202212e =e e (1)=e (1)2022x x x x x x -+-+⎧⎨---⎩132022e 2025x k -==故答案为:. 20222025四、解答题17.某学校高二1班有五名学生报名参加社团活动,社团活动共有“记者在线”、“机器人行动”、“音乐之声”三个项目,每人都要报名且限报其中一项. (1)求“每个项目都有人报名”的报名情况种数;(2)已知其中一项目恰只有三名学生报名,求只有甲同学一人报“记者在线”的概率. 【答案】(1)150 (2) 115【分析】(1)5名学生分三组,按人数分为3,1,1或2,2,1分类计算即可;(2)记事件为“其中一项目恰只有三名学生报名”,事件为“只有甲同学一人报记者在线”,利A B 用条件概率公式计算即可.【详解】(1)“每个项目都有人报名”,则5名学生分三组,即人数分为3,1,1或2,2,1;故此时报名情况有种. 223335353322C C C A A 150A +=(2)记事件为“其中一项目恰只有三名学生报名”,事件为“只有甲同学一人报记者在线”,A B 事件为“其中一项目恰只有三名学生报名”,报名情况有种,A 3332253532C A C C A 120+=所以, ()51203P A =若同时发生,即其中一项目恰只有三名学生报名,且只有甲同学一人报“记者在线”,则有,A B 种,3242C A 8=所以, ()583P AB =所以. ()()()55813|120153P AB P B A P A ===18.如图,在四棱锥中,为等边三角形,为的中点,,P ABCD -PAD A M PA AD BC ∥,,,平面平面.2AD BC =2AB =1,BC AB AD =⊥PAD ⊥ABCD(1)证明:平面;DM ⊥PAB (2)求平面与平面所成锐二面角的余弦值. PAB PCM 【答案】(1)证明见解析【分析】(1)根据题意,由面面垂直的性质定理可得平面,从而得到,再由AB ⊥PAD AB ⊥DM 线面垂直的判定定理即可得到证明;(2)根据题意,以为坐标原点,分别以所在直线为轴,建立空间直角坐标系,结合A ,AB AD ,x y 空间向量的坐标运算即可得到结果.【详解】(1)证明:因为平面平面,平面平面,, PAD ⊥ABCD PAD ⋂ABCD AD =AB AD ⊥平面,所以平面,AB ⊂ABCD AB ⊥PAD 又平面,所以,DM ⊂PAD AB ⊥DM 又因为为等边三角形,为的中点,所以, PAD A M PA PA ⊥DM 因为平面, ,,AB PA A AB PA ⋂=⊂PAB 所以平面.DM ⊥PAB (2)以为坐标原点,分别以所在直线为轴,建立如图空间直角坐标系,A ,AB AD ,x y则,,(0,0,0),(2,0,0),(2,1,0),(0,2,0),A B CD P 1(0,2M 由(1)可知, 平面的一个法向量, DMPAB 30,2DM ⎛=- ⎝ 设是平面的一个法向量,,(,,)n x yz =PCM AP = (2,1,0)AC =所以,即,n AP n AC ⎧⊥⎪⎨⊥⎪⎩ 00n AP n AC ⎧⋅=⎪⎨⋅=⎪⎩20y x y ⎧=⎪⎨+=⎪⎩取,所以,z =33,2y x =-=3,2n ⎛=- ⎝ 所以,cos ,n DM n DM n DM ⋅==⋅平面与平面PAB PCM 19.正项数列的前和为,且.{}n a n n S 22n n n S a a =+()n *∈N (1)求数列的通项公式; {}n a (2)设,求数列的前项和. 311212233333n n n n n n a a a a a b ---=+++++ {}n b n n T 【答案】(1)n a n =(2) 2111834n nn T ⎛⎫=-+ ⎪⎝⎭【分析】(1)由证明是等差数列,可求通项; 11n n n S S a ++-={}n a (2)由错位相减法求的通项,再用分组求和求数列的前项和.{}n b {}n b n n T 【详解】(1)正项数列,当时,由,解得,{}n a 1n =2111122S a a a ==+11a =由,所以,22n n n S a a =+21112n n n S a a +++=+所以,即,()22111122n n n n n n n S S a a a a a ++++-==-+-22110n n n n a a a a ++---=,()()1110n n n n a a a a +++--=数列是正项数列,所以,{}n a 11n n a a +-=所以数列是首项为1,公差为1的正项等差数列, {}n a 所以. n a n =(2)由, 311212233333n n n n n n a a a a a b ---=+++++ 所以, 122123133333n n n n n n b ---=+++++ ,221312333(1)33n n n n b n n --=+⋅+⋅++-⋅+⋅,12313132333(1)33n n n n b n n +-=⋅+⋅+⋅++-⋅+⋅ 上面两式相减,得,23123133333n n nn b n -⋅=++++--+⋅ ,即,1323313nnn n b n ---⋅=⋅-11-1)432n n n b =+(所以,11111(1)33142213n n n n T n ⎡⎤⎛⎫- ⎪⎢⎥+⎝⎭⎢⎥=-+⋅⎢⎥-⎢⎥⎣⎦. 2111834n nn T ⎛⎫=-+ ⎪⎝⎭20.已知函数(为非零常数).()3e xf x mx =-m (1)若函数在上是增函数,求实数的取值范围;()f x (0,)+∞m (2)若()表示的导函数,,当时,设1()n f x +N n ∈()n f x 0()()f x f x =1m =,若的最小值恒大于零,求的最小值.()()()()()232,N n n g x f x f x f x n n =+++≥∈ ()n y g x =n 【答案】(1) m ≤2e 12(2)8【分析】(1)根据函数在上是增函数,得在上恒成立,分离参数,构()f x (0,)+∞()0f x '≥(0,)+∞造函数,求解函数最值即可得到答案;(2)先通过求导得到函数的解析式,利用导数研究单调性,利用最小值恒大于零解不等()n y g x =式即可.【详解】(1)因为,所以, ()3e xf x mx =-()2e 3x f x mx ='-因为函数在上是增函数,所以,()f x (0,)+∞()2e 30xf x mx =-≥'所以,即,2e 3xmx ≥2e 3xm x≥设,,则,()2e x h x x =x ∈(0,)+∞()()3e 2x x h x x ='-令得, ()()3e 20x x x x-'==A ,2x =当时,函数是减函数,x ∈0,2()()0x '<A ,()h x 当时,函数是增函数, x ∈∞(2,+)()0x '>A ,()h x所以当时,的最小值为,2x =()2e xh x x =2e 4所以,即;3m ≤2e 4m ≤2e 12(2)由题意,,,()()30e x f x f x x ==-()()210e 3x f x f x x =-'=,()()21e 6x x f x f x =-'=,()()()()3243e 6,e x x f x f x f x f x ='-=='=当时,,4n ≥()e xn f x =因为,所以,23()()()()n n g x f x f x f x =+++ ()()1e 66xn g x n x =---所以, ()()1e 6x ng x n =--'令,得, ()()1e 60x ng x n '=--=6ln 1x n =-当时,函数是减函数, 6ln 1x n <-()0ng x '<()n g x 当时,函数是增函数, 6ln1x n >-()0ng x '>()n g x 所以当时,的最小值为, 6ln 1x n =-()n g x 16ln 6n -若,则,所以,所以的最小值为8. 16ln06n ->116n ->7n >n21.已知双曲线,且左焦点到渐近线()2222:10,0x y C a b a b-=>>0y +=F直线、经过且互相垂直(斜率都存在),与双曲线分别交于点和1l 2l F C A B 、,、分别为、的中点.M N 、D E AB MN (1)求双曲线的方程;C (2)证明:(一)直线过定点; DE (二)与的面积之比为定值.DOE A DEF A 【答案】(1)2213y x -=(2)(一)证明见解析;(二)证明见解析【分析】(1)先由题给条件求得的值,进而得到双曲线的方程;,a b C (2)先利用设而不求的方法分别求得两点的坐标,求得直线的方程,进而得到直线过,D E DE DE 定点;分别表示出与的面积,进而得到与的面积之比为定值.(1,0)DOE A DEF A DOE A DEF A【详解】(1)双曲线,所以2222:1x y C a b-=0y +=b a =左焦点,F222c a b =+联立得,解之得,2222c a b c b ⎧=+⎪=⎨⎪⎩12a c b ⎧=⎪=⎨⎪=⎩所以双曲线的方程为.C 2213y x -=(2)设直线的方程为,令1l ()2(y k x k =+≠1122(,),(,)A x y B x y 联立,整理得,,()22213y k x y x ⎧=+⎪⎨-=⎪⎩2222(3)4430k x k x k ----=所以,所以 212243k x x k +=-2122223x x k k +=-,,则,()1212262423k x x y y k k ++==-+222(3k D k -,263k k -设直线的方程为,令 2l ()12(y x k k -=+≠3344(,),(,)C x y D x y 联立,整理得, ()221213y x k y x ⎧=-+⎪⎪⎨⎪-=⎪⎩222(31)4340k x x k ----=所以,所以342431x x k +=-2342231x x k +=-,,则, ()432341622431x x y y k k k -+-=++=-22(31E k ,-2631k k --当,即时,直线的方程为. 2223k k=-2231k-1k =±DE 1x =当,时, 1k ≠±k ≠k ≠直线的斜率为,DE 222222662331221331k kkk k k k k k ----=----直线的方程为,即, DE 2222622()313k k k y x k k k -=----22(1)1k y x k =--所以直线过点,又直线过点, DE (1,0)Q 1x =(1,0)Q 综上,直线过定点.DE (1,0)Q所以与的面积之比为DOE A DEF A 112132D E D E y y OQy y FQ -=-22.已知函数在点处的切线过点,关于x 的方程有两()21ln f x mx x =++(1,(1))f (1,2)-()0f x n -=个实数根. ,()a b a b <(1)证明: ()1f x x ≤-(2)证明: 12b a n -<-【答案】(1)证明见解析; (2)证明见解析【分析】(1)先利用题给条件求得m 的值,进而得到的解析式,构造新函数()f x 并利用导数求得其最大值,即可证明成立;()2ln (0)F x x x x x =-+>()1f x x ≤-(2)由(1)的结论得,构造新函数,()10f b b +-≤()()2ln 1G x f x x x x x x ⎛⎫⎛=-=--+∈ ⎪ ⎪⎝⎝⎭并利用导数求得其最大值,即可得,进而证得成立.()()0G a f a a =-<12b a n -<-【详解】(1),则, ()21ln f x mx x =++()12f x mx x'=+又,,()11f m =+()121f m '=+则函数在点处的切线为:()21ln f x mx x =++(1,(1))f ,()()()1211y m m x -+=+-把点代入得:,(1,2)-()()()212111m m -+=+--解之得,则1m =-()21ln f x x x =-++由,可得()1f x x ≤-2ln 0x x x -+≤令,()2ln (0)F x x x x x =-+>则 ()()()()2111210x x F x x x x x+-'=-+=>∵,,0x >210x +>令,则;令,则;()0F x '>01x <<()0F x '<1x >则在上单调递增,在上单调递减,可得, ()F x ()0,1()1,+∞()()10F x F ≤=故,即.2ln 0x x x -+≤()1f x x ≤-(2)由题意可得:,()()2ln 10f x x x x =-+>则,())120f x x x x '=-=>∵,,0x >10>令,解得,解得()0f x '>0x <<()0f x '<x >则在上单调递增,在上单调递减, ()f x ⎛ ⎝⎫+∞⎪⎪⎭可得,()1ln 22f x f -≤=由关于x 的方程有两个实数根, ()f x n =,()a b a b <得, ()()1ln2,0,2n a b f a f b n -<<<<==由(1)得:对恒成立,得,()10f x x +-≤()0,x ∀∈+∞()10f b b +-≤设, ()()2ln 1G x f x x x x x x ⎛⎫⎛=-=--+∈ ⎪ ⎪⎝⎝⎭则, ()()()121121x x G x x x x x ⎛⎫⎛-+'=--=∈ ⎪ ⎪⎝⎝⎭∵,则, x ⎛∈ ⎝10x +>令,解得;令,解得 ()0G x '>102x <<()0G x '<12x <<则在上单调递增,在上单调递减,可得, ()G x 10,2⎛⎫ ⎪⎝⎭12⎛ ⎝()114ln 2024G x G -⎛⎫≤=< ⎪⎝⎭故对恒成立,可得,()0G x <x ⎛∀∈ ⎝()()0G a f a a =-<所以()()()12121b a n b a n b a f a f b ---=--+=--++,=()()10f a a f b b ⎡⎤⎡⎤-++-<⎣⎦⎣⎦所以 12b a n -<-。
2013----2014学年模块学分认定考试
数学试题(文科) 2014-4-23
本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分,满分150分,考试时间120分钟,考生作答时,将答案答在答题卡上,在本试卷上答题无效。
第I 卷(选择题,共60分)
一、选择题:(本大题共10小题,每小题5分,共50分,每小题给出的四个选项中,只有一项是符合题目要求的。
)
1、复数211⎪⎭
⎫ ⎝⎛+i 的虚部是( ) A 、0 B 、2 C 、-2 D 、-2i
2、如果二次函数12++=bx ax y 的图像的对称轴是1=x ,并通过点A ()7,1-,则a,b 的
值分别是( )
A 、2,4
B 、2,-4
C 、2-,4
D 、4,2--
3、已知()bx ax x f +=2是定义在[]a a 2,1-上的偶函数,那么a+b 的值是( )
A 、31-
B 、31
C 、21
D 、2
1- 4、已知全集S=R,S B S A ⊆⊆,,若命题P :B A ⋃∈2,则命题:P ⌝是( )
A 、A ∉2
B 、B
C S ∈2 C 、B A ⋂∉2
D 、)()(2B C A C S S ⋂∈
5、 设1a >,实数,x y 满足1||log 0a x y
-=,则y 关于x 的函数的图像形状大致是( ) A B C D
6、下列命题正确的个数有 ( )
(1)命题“若m>0,则方程02=-+m x x 有实根”的逆否命题为:“若方程02
=-+m x x
没有实根,则m 0≤”;
(2)、“x=1”是“0232=+-x x ”的充分不必要条件;
(3)、命题“若2≤+y x ,则11≤≤y x 或”为真命题;
(4)、对于命题p :“01,2<++∈∃x x R x 使得”,则p ⌝:“01,2≥++∈∀x x R x 均有”
A 、1
B 、2
C 、3
D 、4
7、已知612:≤+≤x p ;11:+≤≤-m x m q ,若p 是q 的必要而不充分条件,则m 的
取值范围是( ) [)[]()()Φ+∞⋃∞ D. 4,,2-C. 2,4B. 4,2.A
8、设232555322555
a b c ===(),(),(),则a ,b ,c 的大小关系是 (A )a >c >b (B )a >b >c (C )c >a >b (D )b >c >a
9、如函数()3
442++-=mx mx x x f 定义域为R ,则实数m 的取值范围是( ) A 、()+∞∞-, B 、⎪⎭⎫ ⎝⎛43,0 C 、⎪⎭⎫ ⎝⎛+∞,43 D 、⎪⎭⎫⎢⎣⎡43,0
10、已知函数()()()x x x x h x g e x f 3,10,===,直线()10<<=a a y 与这三个函数的交点
的横坐标分别为321,,x x x ,则321,,x x x 的大小关系
A 321x x x <<、
B 、132x x x <<
C 、123x x x <<
D 、231x x x <<
二、填空题(本大题共5题,每题5分,共25分)
11、已知集合{}21P x x ==,{}
1Q x ax ==,若Q P ⊆,则a = 12、函数x x y )3(--=的单调递增区间是
13、已知函数()5323-+-=x ax x x f 在区间[]2,1上单调递增,则a 的取值范围是
14、已知定义在R 上的函数()x f 满足()322-=f ,且对任意的x 都有()()
x f x f 13-=+,则()=2015f
15、已知函数()()⎪⎩⎪⎨⎧<-≥=2
,12,23x x x x x f ,关于x 的方程()k x f =有两个不同的实根,求k 的取
值范围
三、解答题(本大题共6题,共75分,解答题应写出文字说明,证明过程或演算步骤)
16、(12分)已知函数()x x x f -+-
=11ln 21的定义域为A,函数()312-+=x x x g ,[]1,0∈x 的值域为B 。
(1)、求集合A,B
(2)、求B A C R ⋂)(
17、(12分)已知函数()()0,01>>-=b a x
b a x f (1)、求证:f (x )在()+∞,0上是增函数;
(2)、若f (x )在⎥⎦⎤⎢⎣⎡2,21上的值域是⎥⎦⎤⎢⎣⎡2,2
1,求a+b 的值。
18、(12分)已知命题p :复数i i a a z +++
-=1427在复平面内对应的点在第四象限内, 命题q :函数()()x a x f 72-=是R 上的减函数,若q p ∨为真命题,求a 的取值范围。
19、(12分)已知函数()21x b ax x f ++=是定义在()1,1-上的奇函数,且5
221=⎪⎭⎫ ⎝⎛f (1)求函数y = f (x )的解析式;
(2)判断函数()f x 的单调性,并证明;
(3)解不等式()()01<+-t f t f
20、(14分)己知函数()x e x x f -=2
(I)求f(x)的极小值和极大值;
(II)当曲线y = f(x)的切线L 的斜率为负数时,求L 在x 轴上截距的取值范围.
21、(14分)设函数()()R a a a x a x x f ∈++++=312)(22
(1)、若()x f 在[]2,0的最大值为0,求a 的值;
(2)、若()x f 在闭区间[]()βαβα<,上是增函数,且(){}
[]βαβα,,=≤≤=x x f y y
求a 的取值范围。