斯托克斯公式
- 格式:pdf
- 大小:370.91 KB
- 文档页数:21
170第七节 斯托克斯公式一、斯托克斯公式斯托克斯公式是格林公式的推广。
格林公式表达了平面区域上的二重积分与其边界曲线上的曲线积分间的关系,而斯托克斯公式则把曲面 ∑上的曲面积分与沿着∑的边界曲线的曲线积分联系起来,这个联系可陈述如下;定理1 设Γ为分段光滑的空间有向闭曲线,∑ 是以Γ为边界的分片光滑的有向曲面,Γ的正向与∑的侧符合右手规则,函数P (x,y,z )、Q (x,y,z )、R (x,y,z )在曲面∑(连同边界Γ)上具有一阶连续偏导数,则有dxdy y P x Q dzdx x R z P dydz z Q y R ⎪⎪⎭⎫ ⎝⎛∂∂-∂∂+⎪⎭⎫ ⎝⎛∂∂-∂∂+⎪⎪⎭⎫ ⎝⎛∂∂-∂∂⎰⎰∑ ⎰Γ++=Rdz Qdy Pdx (1)公式(1)叫做斯托克斯公式。
为了便于记忆,利用行列式记号把斯托克斯公式(1)写成⎰⎰⎰Γ∑++=∂∂∂∂∂∂,Rdz Qdy Pdx RQ P z y x dxdy dzdx dydz把其中的行列式按第一行展开,并把y ∂∂ 与R 的积 理解成为 zy R ∂∂∂∂, 与Q 的“积” 理解成为zQ∂∂ 等等,于是这个行列式就“等于“ dxdy y P x Q dzdx x R z P dydz z Q y R ⎪⎪⎭⎫ ⎝⎛∂∂-∂∂+⎪⎭⎫ ⎝⎛∂∂-∂∂+⎪⎪⎭⎫ ⎝⎛∂∂-∂∂ 这恰好是公式(1)左端的被积表达式。
利用两类曲面积分间的联系,可得斯托克斯公式的另一形式:⎰⎰⎰Γ∑++=∂∂∂∂∂∂,cos cos cos Rdz Qdy Pdx dS RQ P z y x γβα 其中n=( γβαcos ,cos ,cos )为有向曲面∑在点(x,y,z) 处的单位法向量。
171如果 是xOy 面上的一块平面闭区域,斯托克斯公式就变成格林公式。
因此,格林公式是斯托克斯公式的一个特殊情形。
例1 利用斯托克斯公式计算曲线积分⎰Γ++ydz xdy zdx ,其中Γ为平面x+y+z=1 被三个坐标面所截成的三角形的整个边界,它的正向与这个三角形上侧的法向量之间符合右手规则(图10-13)解 按斯托克斯公式,有⎰⎰⎰Γ∑++=++dxdy dzdx dydz ydz xdy zdx由于 ∑的法向量的三个方向余弦都为正,又由于对称性,上式右端等于⎰⎰xyD d ,3σ其中 xy D 为xOy 面上由直线x+y=1及两条坐标轴围成的三角形区域,因此⎰Γ=++23ydz xdy zdx 例2 利用斯托克斯公式计算曲线积分()()(),222222dz y x dy x z dx z y I -+-+-=⎰Γ其中Γ是用平面x+y+z=23截立方体 (){}10,10,10,,≤≤≤≤≤≤z y x z y x的表面所得的截痕,若从Ox 轴的正向看去,取逆时针方向。
斯托克斯公式
斯托克斯公式(Stokes' formula)是一种用于计算物体在流体中的沉降速度的公式。
这个公式常用于计算圆柱形物体、球体或椭圆体在流体中的沉降速度。
斯托克斯公式的通常形式是:
v = gd^2(ρs - ρf)/18μ
其中:
v是物体的沉降速度(m/s);
g是重力加速度(9.8 m/s^2);
d是物体的直径(m);
ρs是物体的密度(kg/m^3);
ρf是流体的密度(kg/m^3);
μ是流体的粘度(Pa·s)。
注意:斯托克斯公式仅适用于流体的流动是静态的、流动是匀速的、流体的流动是无流速场的情况。
例如,如果有一个圆柱形物体直径为0.1 m,密度为800 kg/m^3,流体密度为1000 kg/m^3,粘度为0.001 Pa·s,则其沉降速度为约0.15 m/s。
第六节高斯公式和斯托克斯公式高斯公式和斯托克斯公式是微积分中的两个重要定理,是对向量场的积分定理,用于求解曲面和曲线上向量场的积分。
本文将介绍高斯公式和斯托克斯公式的定义、推导过程和应用。
一、高斯公式(Gauss's theorem)高斯公式又称为高斯散度定理,它是从向量微积分中的散度定理演变而来。
1.定义设Ω是空间中的一块有界闭区域,S是Ω的边界曲面,而n为S上的单位外法向量,则对于向量场F=(P,Q,R),高斯公式的数学表达式为:∬S(F·n)dS=∭ΩdivFdV其中,“S”表示对曲面S的积分,“∬”表示对曲面上的每个点都进行积分,“∭”表示对空间Ω中的每个点都进行积分,“div”表示F 的散度。
2.推导过程为了推导高斯公式,我们先考虑最简单的情况,即立方体的情况。
假设Ω是一个立方体,S是它的六个面,而n为各个面的单位外法向量。
我们将立方体按照坐标轴方向切割成一个个小的立方体,每个小立方体的体积为ΔV。
在每个小立方体上应用散度定理,可以得到:∬S(F·n)dS=Σi∆Si(F·ni)其中,Σi表示对立方体的所有小立方体求和,Si表示第i个小立方体的表面积,ni为第i个小立方体的单位外法向量。
我们知道,在Ω中每个小立方体的边长趋于零的极限过程中,散度div F趋于ΔV的比例的极限值就是div F在相应点处的函数值,即div FdV。
因此,当小立方体的数量趋于无穷大时,上式等于∭ΩdivFdV,从而得到了高斯公式的表达式。
3.应用高斯公式在物理学中有广泛的应用,特别是在电磁学和流体力学中。
例如,根据高斯公式,我们可以计算电荷的总电量和电场的密度分布等。
二、斯托克斯公式(Stokes's theorem)斯托克斯公式是从向量微积分中的环量定理演变而来。
1.定义设Ω是空间中的一块有界曲面,C是Ω的边界曲线,而n为曲面Ω上的单位法向量,t为曲线C上的单位切向量,则对于向量场F=(P,Q,R),斯托克斯公式的数学表达式为:∫C(F·t)ds=∬Ω(rotF·n)dS其中,“C”表示对曲线C的积分,“∫”表示对曲线上的每个点都进行积分,“∬”表示对曲面Ω的每个点都进行积分,“rot”表示F的旋度。