斯托克斯公式及题目
- 格式:pdf
- 大小:269.40 KB
- 文档页数:21
170第七节 斯托克斯公式一、斯托克斯公式斯托克斯公式是格林公式的推广。
格林公式表达了平面区域上的二重积分与其边界曲线上的曲线积分间的关系,而斯托克斯公式则把曲面 ∑上的曲面积分与沿着∑的边界曲线的曲线积分联系起来,这个联系可陈述如下;定理1 设Γ为分段光滑的空间有向闭曲线,∑ 是以Γ为边界的分片光滑的有向曲面,Γ的正向与∑的侧符合右手规则,函数P (x,y,z )、Q (x,y,z )、R (x,y,z )在曲面∑(连同边界Γ)上具有一阶连续偏导数,则有dxdy y P x Q dzdx x R z P dydz z Q y R ⎪⎪⎭⎫ ⎝⎛∂∂-∂∂+⎪⎭⎫ ⎝⎛∂∂-∂∂+⎪⎪⎭⎫ ⎝⎛∂∂-∂∂⎰⎰∑ ⎰Γ++=Rdz Qdy Pdx (1)公式(1)叫做斯托克斯公式。
为了便于记忆,利用行列式记号把斯托克斯公式(1)写成⎰⎰⎰Γ∑++=∂∂∂∂∂∂,Rdz Qdy Pdx RQ P z y x dxdy dzdx dydz把其中的行列式按第一行展开,并把y ∂∂ 与R 的积 理解成为 zy R ∂∂∂∂, 与Q 的“积” 理解成为zQ∂∂ 等等,于是这个行列式就“等于“ dxdy y P x Q dzdx x R z P dydz z Q y R ⎪⎪⎭⎫ ⎝⎛∂∂-∂∂+⎪⎭⎫ ⎝⎛∂∂-∂∂+⎪⎪⎭⎫ ⎝⎛∂∂-∂∂ 这恰好是公式(1)左端的被积表达式。
利用两类曲面积分间的联系,可得斯托克斯公式的另一形式:⎰⎰⎰Γ∑++=∂∂∂∂∂∂,cos cos cos Rdz Qdy Pdx dS RQ P z y x γβα 其中n=( γβαcos ,cos ,cos )为有向曲面∑在点(x,y,z) 处的单位法向量。
171如果 是xOy 面上的一块平面闭区域,斯托克斯公式就变成格林公式。
因此,格林公式是斯托克斯公式的一个特殊情形。
例1 利用斯托克斯公式计算曲线积分⎰Γ++ydz xdy zdx ,其中Γ为平面x+y+z=1 被三个坐标面所截成的三角形的整个边界,它的正向与这个三角形上侧的法向量之间符合右手规则(图10-13)解 按斯托克斯公式,有⎰⎰⎰Γ∑++=++dxdy dzdx dydz ydz xdy zdx由于 ∑的法向量的三个方向余弦都为正,又由于对称性,上式右端等于⎰⎰xyD d ,3σ其中 xy D 为xOy 面上由直线x+y=1及两条坐标轴围成的三角形区域,因此⎰Γ=++23ydz xdy zdx 例2 利用斯托克斯公式计算曲线积分()()(),222222dz y x dy x z dx z y I -+-+-=⎰Γ其中Γ是用平面x+y+z=23截立方体 (){}10,10,10,,≤≤≤≤≤≤z y x z y x的表面所得的截痕,若从Ox 轴的正向看去,取逆时针方向。
斯托克斯公式
斯托克斯公式(Stokes' formula)是一种用于计算物体在流体中的沉降速度的公式。
这个公式常用于计算圆柱形物体、球体或椭圆体在流体中的沉降速度。
斯托克斯公式的通常形式是:
v = gd^2(ρs - ρf)/18μ
其中:
v是物体的沉降速度(m/s);
g是重力加速度(9.8 m/s^2);
d是物体的直径(m);
ρs是物体的密度(kg/m^3);
ρf是流体的密度(kg/m^3);
μ是流体的粘度(Pa·s)。
注意:斯托克斯公式仅适用于流体的流动是静态的、流动是匀速的、流体的流动是无流速场的情况。
例如,如果有一个圆柱形物体直径为0.1 m,密度为800 kg/m^3,流体密度为1000 kg/m^3,粘度为0.001 Pa·s,则其沉降速度为约0.15 m/s。
第二十二章 曲面积分 3 高斯公式与斯托克斯公式一、高斯公式定理22.5:设空间区域V 由分片光滑的双侧封闭曲面S 围成. 若函数P , Q, R 在V 上连续,且有一阶连续偏导数,则有(高斯公式)dxdydz z R y Q x P V ⎰⎰⎰⎪⎪⎭⎫ ⎝⎛∂∂+∂∂+∂∂=⎰⎰++S Rdxdy Qdzdx Pdydz , S 取外侧.证:设V 是xy 型区域, 即其边界曲面S 由曲面S 2:z=z 2(x,y),(x,y)∈D xy , S 1:z=z 1(x,y),(x,y)∈D xy 及以垂直于D xy 的边界柱面S 3组成,z 1(x,y)≤z 2(x,y). ∴⎰⎰⎰∂∂Vdxdydz z R=⎰⎰⎰∂∂xyD y x z y x z dz z R dxdy ),(),(21=⎰⎰-xy D dxdyy x z y x R y x z y x R ))),(,,()),(,,((12=⎰⎰xyD dxdy y x z y x R )),(,,(2-⎰⎰xyD dxdyy x z y x R )),(,,(1=⎰⎰2),,(S dxdy z y x R -⎰⎰1),,(S dxdy z y x R =⎰⎰2),,(S dxdy z y x R +⎰⎰-1),,(S dxdy z y x R .其中S 1,S 2取上侧,又⎰⎰3),,(S dxdy z y x R =0,∴⎰⎰⎰∂∂Vdxdydz z R=⎰⎰2S Rdxdy +⎰⎰-1S Rdxdy +⎰⎰3S Rdxdy =⎰⎰SRdxdy . 同理,⎰⎰⎰∂∂Vdxdydz x P=⎰⎰SPdydz ; ⎰⎰⎰∂∂V dxdydz y Q=⎰⎰SQdydz . ∴dxdydz z R y Q x P V⎰⎰⎰⎪⎪⎭⎫⎝⎛∂∂+∂∂+∂∂=⎰⎰++SRdxdy Qdzdx Pdydz .注:对于不是xy 型区域的情形,可用有限个光滑曲面将其分割成若干个xy 型区域来讨论.例1:计算⎰⎰+++-Sdxdy xz y dzdx x dydz z x y )()(22,其中S 是边长为a 的正方体表面并取外侧. 解:x ∂∂y(x-z)=y, y ∂∂x 2=0, z∂∂(y 2+xz)=x, 应用高斯公式,该曲面积分为:dxdydz x y V⎰⎰⎰+)(=⎰⎰⎰+aaadz x y dy dx 0)(=a 4.注:若高斯公式中P=x, Q=y, R=z, 则有dxdydz V⎰⎰⎰++)111(=⎰⎰++Szdxdy ydzdx xdydz , 即有应用第二型曲面积分计算空间区域V 的体积公式:△V=⎰⎰++Szdxdy ydzdx xdydz 31.二、斯托克斯公式右手法则:设人站在曲面S 上指定的一侧,沿S 的边界曲线L 行走,指定的侧总在人的左方,则人前进的方向为边界线L 的正向;若沿L 行走,指定的侧总在人的右方,则人前进的方向为边界线的负向.定理22.6:设光滑曲面S 的边界L 是按段光滑的连续曲线. 若函数P ,Q,R 在S(连同L)上连续, 且有一阶连续偏导数,则有(斯托克斯公式)⎰⎰⎪⎪⎭⎫ ⎝⎛∂∂-∂∂+⎪⎭⎫⎝⎛∂∂-∂∂+⎪⎪⎭⎫ ⎝⎛∂∂-∂∂S dxdy y P x Q dzdx x R z P dydz z Q y R =⎰++LRdz Qdy Pdx , 其中S 的侧与L 的方向按右手法则确定.证:曲面S 由方程z=z(x,y)确定, 其正侧法线方向数为(-z x ,-z y ,1), 方向余弦为(cos α,cos β,cos γ), ∴xz ∂∂=-γαcos cos , y z ∂∂=-γβcos cos .若S 在xy 平面上投影区域为D xy , L 在xy 平面上的投影曲线记为Г. 由第二型曲线积分定义及格林公式有⎰Ldx z y x P ),,(=⎰Γdx y x z y x P )),(,,(=dxdy y x z y x P y xyD )),(,,(⎰⎰∂∂-. ∵dxdy y x z y x P y )),(,,(∂∂=y P ∂∂+yzz P ∂∂∂∂, ∴⎰L dx z y x P ),,(=dxdy y x z y x P y xy D )),(,,(⎰⎰∂∂-=dxdy y z z P y P S ⎰⎰⎪⎪⎭⎫ ⎝⎛∂∂∂∂+∂∂-=dxdy z P y P S⎰⎰⎪⎪⎭⎫⎝⎛∂∂-∂∂-γβcos cos =γβγcos cos cos dxdy z Py P S ⎰⎰⎪⎪⎭⎫ ⎝⎛∂∂-∂∂-=dS z Py P S⎰⎰⎪⎪⎭⎫⎝⎛∂∂-∂∂-βγcos cos =⎰⎰∂∂-∂∂Sdxdy y P dzdx z P ; 同理,对于曲面S 表示为x=x(y,z)和y=y(z,x)时,分别可证得⎰LQdy =⎰⎰∂∂-∂∂Sdydz z Q dxdy x Q 和⎰L Rdz =⎰⎰∂∂-∂∂Sdzdx x Rdydz y R . ∴⎰⎰⎪⎪⎭⎫ ⎝⎛∂∂-∂∂+⎪⎭⎫ ⎝⎛∂∂-∂∂+⎪⎪⎭⎫⎝⎛∂∂-∂∂Sdxdy y P x Q dzdx x R z P dydz z Q y R =⎰++L Rdz Qdy Pdx .注:1、若曲面S 不能以z=z(x,y)的形式给出,则可用一些光滑曲线把S 分割为若干小块,使每一小块能用这种形式来表示.2、斯托克斯公式也写为:⎰⎰∂∂∂∂∂∂SRQ P z y x dxdydzdx dydz =⎰++L Rdz Qdy Pdx .例2:计算⎰-+-++L dz x y dy z x dx z y )()()2(, 其中L 为平面x+y+z=1与各坐标面的交线,取逆时针方向为正向.解:(2y+z)y =2, (2y+z)z =1, (x-z)z =-1, (x-z)x =1, (y-x)x =-1, (y-x)y =1,∴⎰-+-++L dz x y dy z x dx z y )()()2(=⎰⎰-+--+--Sdxdydzdx dydz )21()]1(1[)]1(1[=⎰⎰-+Sdxdy dzdx dydz 22=1+1-21=23.概念:若V 内任一封闭曲线皆可不经过V 以外的点而连续收缩于属于V 的一点,则称区域V 为单连通区域, 否则称为复连通区域. 如球体属于单连通区域,而环状区域属于复连通区域.定理22.7:设Ω∈R 3为空间单连通区域. 若函数P , Q, R 在Ω上连续,且有一阶连续偏导数,则以下四个条件是等价的:(1)对于Ω内任一按段光滑的封闭曲线L 有⎰++L Rdz Qdy Pdx =0. (2)对于Ω内任一按段光滑的封闭曲线L, 曲线积分⎰++L Rdz Qdy Pdx 与路线无关.(3)Pdx+Qdy+Rdz 是Ω内某一函数u 的全微分,即du=Pdx+Qdy+Rdz. (4)x Q y P ∂∂=∂∂, y R z Q ∂∂=∂∂, zPx R ∂∂=∂∂. 在Ω内处处成立.例3:验证曲线积分⎰+++++L dz y x dy x z dx z y )()()(与路线无关,并求被积表达式的原函数u(x,y,z). 解:P=y+z, Q=z+x, R=x+y, ∵x Q y P ∂∂=∂∂=y R z Q ∂∂=∂∂=zPx R ∂∂=∂∂=1, ∴曲线积分与路线无关.取空间折线M 0(x 0,y 0,z 0)→(x,y 0,z 0)→(x,y,z 0)→(x,y,z), 则u(x,y,z)=⎰+++++M M dzy x dy x z dx z y 0)()()(=⎰⎰⎰+++++zz x x y y dry x dt x z ds z y 0)()()(000=(y 0+z 0)(x-x 0)+(z 0+x)(y-y 0)+(x+y)(z-z 0)=xy+xz+yz+C. 其中C=-x 0y 0-x 0z 0-y 0z 0. 若取M 0为原点,则u(x,y,z)=xy+xz+yz.习题1、应用高斯公式计算下列曲面积分:(1)⎰⎰++Sxydxdy zxdzdx yzdydz ,其中S 为球面x 2+y 2+z 2=1的外侧;(2)⎰⎰++Sdxdy z dzdx y dydz x 222,其中S 是立方体0≤x,y,z ≤a 表面的外侧;(3)⎰⎰++Sdxdy z dzdx y dydz x 222,其中S 是锥面x 2+y 2=z 2与平面z=h 所围空间区域的表面,方向取外侧;(4)⎰⎰++Sdxdy z dzdx y dydz x 333,其中S 为球面x 2+y 2+z 2=1的外侧;(5)⎰⎰++Szdxdy ydzdx xdydz ,其中S 为上半球面z=222y x a --的外侧.解:(1)⎰⎰++Sxydxdy zxdzdx yzdydz =⎰⎰⎰Vdxdydz 0=0.(2)⎰⎰++Sdxdy z dzdx y dydz x 222=2⎰⎰⎰++Vdxdydzz y x )(=2⎰⎰⎰++aa a dz z y x dy dx 000)(=3a 4.(3)⎰⎰++Sdxdy z dzdx y dydz x 222=2⎰⎰⎰++Vdxdydzz y x )(=2⎰⎰⎰++hr h rdz z r r dr d )sin cos (020θθθπ=24h π.(4)⎰⎰++Sdxdy z dzdx y dydz x 333=3⎰⎰⎰++Vdxdydzz y x )(222=3⎰⎰⎰104200sin dr r d d ϕθϕππ=512π.(5)⎰⎰++Szdxdy ydzdx xdydz =3⎰⎰⎰Vdxdydz =2πa 3.2、应用高斯公式计算三重积分:dxdydz zx yz xy V⎰⎰⎰++)(, 其中V 是由x ≥0, y ≥0, 0≤z ≤1与x 2+y 2≤1所确定的空间区域. 解:dxdydz zx yz xy V⎰⎰⎰++)(=⎰⎰++Sxdxdy z zdzdx y ydydz x 22221=⎥⎥⎦⎤⎢⎢⎣⎡+-+-⎰⎰⎰⎰⎰⎰dxdy x zdzdx x ydydz y xyzx yz D D D )1()1(2122=⎥⎦⎤⎢⎣⎡+-+-⎰⎰⎰⎰⎰⎰-210101021010210)1()1(21x xdy dx zdx x dz ydz y dy =⎥⎦⎤⎢⎣⎡-+-+-⎰⎰⎰1021021021)1(21)1(21dx x x dx x ydy y =⎪⎭⎫ ⎝⎛++31314121=2411.3、应用斯托克斯公式计算下列曲线积分:(1)⎰+++++L dz y x dy z x dx x y )()()(222222,其中L 为x+y+z=1与三坐标面的交线,它的走向使所围平面区域上侧在曲线的左侧; (2)⎰++L dz dy dx y x 32,其中L 为y 2+z 2=1, x=y 所交的椭圆的正向; (3)⎰-+-+-L dz x y dy z x dx y z )()()(,其中S 是以A(a,0,0), B(0,a,0), C(0,0,a)为顶点的三角形沿ABCA 的方向. 解:(1)⎰+++++L dzy x dy z x dx x y )()()(222222 =2⎰⎰-+-+-Sdxdy y x dzdx x z dydz z y )()()(. 其中⎰⎰-Sdydz z y )(=⎰⎰--ydz z y dy 1010)(=⎰⎪⎪⎭⎫⎝⎛--10221232dy y y =0, 同理,⎰⎰-Sdzdx x z )(=⎰⎰-Sdxdy y x )(=0. ∴原积分=0.(2)⎰++L dz dy dx y x 32=⎰⎰-Sdxdy y x 223=⎰⎰-xyD dxdy y x 223=0. (注:D xy 的面积为0)(3)⎰-+-+-L dz x y dy z x dx y z )()()(=2⎰⎰++Sdxdy dzdx dydz =3a 2.4、求下列全微分的原函数:(1)yzdx+xzdy+xydz ;(2)(x 2-2yz)dx+(y 2-2xz)dy+(z 2-2xy)dz. 解:(1)∵d(xyz)=yzdx+xzdy+xydz, ∴原函数为:u(x,y,z)=xyz+C. (2)∵d(31(x 3+y 3+z 3)-2xyz)=(x 2-2yz)dx+(y 2-2xz)dy+(z 2-2xy)dz, ∴原函数为:u(x,y,z)=31(x 3+y 3+z 3)-2xyz+C.5、验证下列线积分与路线无关,并计算其值; (1)⎰-++)4,3,2()1,1,1(32dz z dy y xdx ; (2)⎰++++),,(),,(222222111z y x z y x z y x zdz ydy xdx , 其中(x 1,y 1,z 1), (x 2,y 2,z 2)在球面x 2+y 2+z 2=a 2上.解:(1)P=x, Q=y 2, R=z 3, 有x Q y P ∂∂=∂∂=y R z Q ∂∂=∂∂=zPx R ∂∂=∂∂=0, ∴原积分与路线无关.⎰-++)4,3,2()1,1,1(32dz z dy y xdx =⎰⎰⎰-++41331221dz z dy y xdx =425532623-++=-53127(2)∵d(222z y x ++)=222zy x zdz ydy xdx ++++, ∴原积分与路线无关.原式=⎰++),,(),,(222222111z y x z y x z y x d =212121222222z y x z y x ++-++=0.6、证明:由曲面S 所围的立体V 的体积 △V=⎰⎰++SdS z y x )cos cos cos (31γβα,其中cos α, cos β, cos γ为曲面S 的外法线方向余弦. 证:⎰⎰++S dS z y x )cos cos cos (31γβα=⎰⎰++Szdxdy ydzdx xdydz 31=dxdydz z z y y x x V ⎰⎰⎰⎪⎪⎭⎫ ⎝⎛∂∂+∂∂+∂∂31=⎰⎰⎰Vdxdydz =V.7、证明:若S 为封闭曲面, l 为任何固定方向, 则⎰⎰∧SdS l n ),cos(=0,其中n 为曲面S 的外法线方向.证:设n 和l 的方向余弦分别是cos α, cos β, cos γ和cos α’, cos β’, cos γ’. 由第一、二型曲面积分之间的关系可得:⎰⎰∧SdS l n ),cos(=⎰⎰'+'+'Sds)cos cos cos cos cos (cos γγββαα=⎰⎰'+'+'Sdxdy dzdx dydz γβαcos cos cos . 由L 的方向固定知,P=cos α’, Q=cos β’, R=cos γ’都是常数,∴zRy Q x P ∂∂+∂∂+∂∂=0. 由奥高公式得: ⎰⎰∧S dS l n ),cos(=⎰⎰++S Rdxdy Qdzdx Pdydz =⎰⎰⎰⎪⎪⎭⎫⎝⎛∂∂+∂∂+∂∂V dxdydz z R y Q x P =0.8、证明公式:⎰⎰⎰Vr dxdydz =⎰⎰∧SdS n r ),cos(21=0, 其中S 是包围V 的曲面,n 为曲面S 的外法线方向, |r|=222z y x ++, r=(x,y,z).证:∵),cos(∧n r =),cos(),cos(∧∧x n x r +),cos(),cos(∧∧y n y r +),cos(),cos(∧∧z n z r ,且),cos(∧x r =r x , ),cos(∧y r =ry, ),cos(∧z r =r z ,由第一, 二型曲面积分的关系及奥高公式可得:⎰⎰∧SdS n r ),cos(21=⎰⎰∧∧∧++S dS z n z y n y x n x r )],cos(),cos(),cos([121 =⎰⎰++S dxdy r z dzdx r y dydz r x 21=⎰⎰⎰⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛∂∂+⎪⎭⎫ ⎝⎛∂∂+⎪⎭⎫ ⎝⎛∂∂V dxdydz r z z r y y r x x 21=⎰⎰⎰Vrdxdydz.9、若L 是平面xcos α+ycos β+zcos γ-p=0上的闭曲线,它所包围区域的面积为S ,求⎰L zyxdz dy dx γβαcos cos cos , 其中L 依正向进行. 解:∵P=zcos β-ycos γ, Q=xcos γ-zcos α, R=ycos α-xcos β, 由斯托克斯公式及第一, 二型曲面积分之间的关系得:原式=⎰⎰---∂∂∂∂∂∂Sx y z x y z z yxdxdy dzdx dydz βααγγβcos cos cos cos cos cos =2⎰⎰++Ddxdy dzdx dydz γβαcos cos cos =2⎰⎰++Dds )cos cos (cos 222γβα=2s.。
设空间闭区域Ω由分片光滑的闭曲面Σ围成, 函数),,(z y x P 、),,(z y x Q 、),,(z y x R 在Ω上具有 一阶连续偏导数, 则有公式⎰⎰⎰⎰⎰∑Ω++=∂∂+∂∂+∂∂Rdxdy Qdzdx Pdydz dv z Ry Q x P )(高 斯 公 式dSR Q P dvz Ry Q x P )cos cos cos ()(⎰⎰⎰⎰⎰∑Ωγ+β+α=∂∂+∂∂+∂∂或这里∑是Ω的整个边界曲面的外侧,γβαcos ,cos ,cos 是∑上点),,(z y x 处的法向量的方向余弦.xyzo例 计算曲面积分ds z y x )cos cos cos (222γβα++⎰⎰∑,其中Σ为锥面 222z y x=+介于平面0=z 及)0(>=h h z之间的部分的下侧,γβαcos ,cos ,cos 是Σ在),,(z y x 处的法向量的方向余弦.h⋅xyD xyzoh⋅1∑解 空间曲面在 面上的投影域为 xoy xy D )(:2221h y x h z ≤+=∑补充曲面∑不是封闭曲面, 为利用高斯公式取上侧,1∑∑构成封闭曲面,1∑+∑.1Ω∑+∑围成空间区域,上使用高斯公式在Ω⎰⎰⎰⎰⎰Ω∑+∑++=++dv z y x dSz y x)(2)cos cos cos (1222γβα⎰⎰⎰+++=xyD h y x dz z y x dxdy 22,)(2}.|),{(222h y x y x D xy ≤+=其中⎰⎰⎰+=+xyDhy x dz y x dxdy 22,0)(⎰⎰⎰⎰--=++∴∑+∑xyD dxdy y x h dSz y x)()cos cos cos (2222221γβα.214h π=⎰⎰⎰⎰∑∑=γ+β+α112222)cos cos cos (dSz dS z y x⎰⎰=xyDdxdy h 2.4h π=故所求积分为⎰⎰∑γ+β+αdSz y x)cos cos cos (222421h π=4h π-.214h π-=定理 设Γ为分段光滑的空间有向闭曲线,∑是以Γ为边界的分片光滑的有向曲面, Γ的正向与∑的侧符合右手规则, 函数),,(z y x P ,),,(z y x Q ,),,(z y x R 在包含曲面∑在内的一个空间区域内具有一阶连续偏导数, 则有公式一、斯托克斯(stokes)公式dxdyy Px Q dzdx x R z P dydz z Q y R )()()(∂∂-∂∂+∂∂-∂∂+∂∂-∂∂⎰⎰∑⎰Γ++=RdzQdy Pdx 斯托克斯公式nΓ∑是有向曲面 的正向边界曲线Γ∑右手法则⎰⎰⎰Γ∑++=∂∂∂∂∂∂Rdz Qdy Pdx R Q P z y x dxdydzdx dydz ⎰⎰⎰Γ∑++=∂∂∂∂∂∂Rdz Qdy Pdx ds RQ P z y x γβαcos cos cos 另一种形式}cos ,cos ,{cos γβα=n其中便于记忆形式Stokes 公式的实质:表达了有向曲面上的曲面积分与其边界曲线上的曲线积分之间的关系.斯托克斯公式格林公式特殊情形(当Σ是xoy 面的平面闭区域时)例1. Γ 为柱面与平面 y = z 的交线,从 z轴正向看为顺时针, 计算o z2Γyx解: 设∑为平面 z = y 上被 Γ 所围椭圆域 , 且取下侧, 利用斯托克斯公式得SI d ⎰⎰∑=0=则其法线方向余弦γβαcos cos cos zy x ∂∂∂∂∂∂zx y x y2∑例2 计算曲线积分dzy x dy x z dx z y)()()(222222-+-+-⎰Γ其中Γ是平面23=++z y x 截立方体:10≤≤x ,10≤≤y ,10≤≤z 的表面所得的截痕,若从 ox轴的正向看去,取逆时针方向.解 取Σ为平面23=++z y x 的上侧被Γ所围成的部分.则 }1,1,1{31=n zxyo∑nΓ即 ,31cos cos cos ===γβαdsy x x z z y z y x I ⎰⎰∑---∂∂∂∂∂∂=∴222222313131⎰⎰∑++-=ds z y x )(34⎰⎰∑⋅-=ds 2334⎰⎰-=xyD dxdy 332.29-=)23(=++∑z y x 上在 xyD 23=+y x 21=+y xz R y Q x P u d d d d ++=空间曲线积分与路径无关的条件定理2. 设 G 是空间一维单连通域, 内在函数G R Q P ,,具有连续一阶偏导数, 则下列四个条件相互等价: (1) 对G 内任一分段光滑闭曲线 Γ, 有d d d =++⎰Γz R y Q x P (2) 对G 内任一分段光滑曲线 Γ, ⎰Γ++zR y Q x P d d d 与路径无关(3) 在G 内存在某一函数 u , 使 (4) 在G 内处处有zP x R y R zQ x Q yP∂∂∂∂∂∂∂∂∂∂∂∂===,,z y x y x z x z y d )(d )(d )(+++++⎰Γ与路径无关, 并求函数z y x y x z x z y z y x u z y x d )(d )(d )(),,(),,()0,0,0(+++++=⎰解: 令 yx R x z Q z y P +=+=+=,,,1xQ y P ∂∂==∂∂,1yR z Q ∂∂==∂∂yPx R ∂∂==∂∂1∴ 积分与路径无关, zy x xy )(++=y x y d 0⎰+zy x z d )(0⎰++zxyz xy ++=xzyo),,(z y x )0,,(y x )0,0,(x 因此例3. 验证曲线积分 z y x y x z x z y d )(d )(d )(+++++⎰Γ与路径无关, 并求函数z y x y x z x z y z y x u z y x d )(d )(d )(),,(),,()0,0,0(+++++=⎰解: 令 yx R x z Q z y P +=+=+=,,,1xQy P ∂∂==∂∂ ,1yR z Q ∂∂==∂∂yPx R ∂∂==∂∂1∴ 积分与路径无关, z y x xy )(++=y x y d 0⎰+zy x z d )(0⎰++zxyz xy ++=xzyo ),,(z y x )0,,(y x )0,0,(x 因此例3. 验证曲线积分 三、 环流量与旋度斯托克斯公式⎰Γ++=zR y Q x P d d d 设曲面 ∑ 的法向量为 曲线 Γ的单位切向量为 则斯托克斯公式可写为⎰Γ++=sR Q P d )cos cos cos (νμλ)cos ,cos ,(cos γβα=n )cos ,cos ,(cos νμλτ=令 , 引进一个向量),,(R Q P A =Arot 记作向量 rot A 称为向量场 A 的 RQ P kj i zy x ∂∂∂∂∂∂=称为向量场A 定义: s A z R y Q x P d d d d ⎰⎰ΓΓ=++τ沿有向闭曲线 Γ的环流量. s A S n A d d rot ⎰⎰⎰Γ∑⋅=⋅τ或sA S A n d d )(rot ⎰⎰⎰Γ∑=τ①于是得斯托克斯公式的向量形式 :旋度 .z yxkjiA ∂∂∂∂∂∂=rot 的外法向量, 计算 解: )1,0,0(=SI d cos ⎰⎰∑=∴γπ8=232zx y 例4. 设.d rot S n A I ⋅=⎰⎰∑∑为n。
第二十二章 曲面积分 3 高斯公式与斯托克斯公式一、高斯公式定理22.5:设空间区域V 由分片光滑的双侧封闭曲面S 围成. 若函数P , Q, R 在V 上连续,且有一阶连续偏导数,则有(高斯公式)dxdydz z R y Q x P V ⎰⎰⎰⎪⎪⎭⎫ ⎝⎛∂∂+∂∂+∂∂=⎰⎰++S Rdxdy Qdzdx Pdydz , S 取外侧.证:设V 是xy 型区域, 即其边界曲面S 由曲面S 2:z=z 2(x,y),(x,y)∈D xy , S 1:z=z 1(x,y),(x,y)∈D xy 及以垂直于D xy 的边界柱面S 3组成,z 1(x,y)≤z 2(x,y). ∴⎰⎰⎰∂∂Vdxdydz z R=⎰⎰⎰∂∂xyD y x z y x z dz z R dxdy ),(),(21=⎰⎰-xy D dxdyy x z y x R y x z y x R ))),(,,()),(,,((12=⎰⎰xyD dxdy y x z y x R )),(,,(2-⎰⎰xyD dxdyy x z y x R )),(,,(1=⎰⎰2),,(S dxdy z y x R -⎰⎰1),,(S dxdy z y x R =⎰⎰2),,(S dxdy z y x R +⎰⎰-1),,(S dxdy z y x R .其中S 1,S 2取上侧,又⎰⎰3),,(S dxdy z y x R =0,∴⎰⎰⎰∂∂Vdxdydz z R=⎰⎰2S Rdxdy +⎰⎰-1S Rdxdy +⎰⎰3S Rdxdy =⎰⎰SRdxdy . 同理,⎰⎰⎰∂∂Vdxdydz x P=⎰⎰SPdydz ; ⎰⎰⎰∂∂V dxdydz y Q=⎰⎰SQdydz . ∴dxdydz z R y Q x P V⎰⎰⎰⎪⎪⎭⎫⎝⎛∂∂+∂∂+∂∂=⎰⎰++SRdxdy Qdzdx Pdydz .注:对于不是xy 型区域的情形,可用有限个光滑曲面将其分割成若干个xy 型区域来讨论.例1:计算⎰⎰+++-Sdxdy xz y dzdx x dydz z x y )()(22,其中S 是边长为a 的正方体表面并取外侧. 解:x ∂∂y(x-z)=y, y ∂∂x 2=0, z∂∂(y 2+xz)=x, 应用高斯公式,该曲面积分为:dxdydz x y V⎰⎰⎰+)(=⎰⎰⎰+aaadz x y dy dx 0)(=a 4.注:若高斯公式中P=x, Q=y, R=z, 则有dxdydz V⎰⎰⎰++)111(=⎰⎰++Szdxdy ydzdx xdydz , 即有应用第二型曲面积分计算空间区域V 的体积公式:△V=⎰⎰++Szdxdy ydzdx xdydz 31.二、斯托克斯公式右手法则:设人站在曲面S 上指定的一侧,沿S 的边界曲线L 行走,指定的侧总在人的左方,则人前进的方向为边界线L 的正向;若沿L 行走,指定的侧总在人的右方,则人前进的方向为边界线的负向.定理22.6:设光滑曲面S 的边界L 是按段光滑的连续曲线. 若函数P ,Q,R 在S(连同L)上连续, 且有一阶连续偏导数,则有(斯托克斯公式)⎰⎰⎪⎪⎭⎫ ⎝⎛∂∂-∂∂+⎪⎭⎫⎝⎛∂∂-∂∂+⎪⎪⎭⎫ ⎝⎛∂∂-∂∂S dxdy y P x Q dzdx x R z P dydz z Q y R =⎰++LRdz Qdy Pdx , 其中S 的侧与L 的方向按右手法则确定.证:曲面S 由方程z=z(x,y)确定, 其正侧法线方向数为(-z x ,-z y ,1), 方向余弦为(cos α,cos β,cos γ), ∴xz ∂∂=-γαcos cos , y z ∂∂=-γβcos cos .若S 在xy 平面上投影区域为D xy , L 在xy 平面上的投影曲线记为Г. 由第二型曲线积分定义及格林公式有⎰Ldx z y x P ),,(=⎰Γdx y x z y x P )),(,,(=dxdy y x z y x P y xyD )),(,,(⎰⎰∂∂-. ∵dxdy y x z y x P y )),(,,(∂∂=y P ∂∂+yzz P ∂∂∂∂, ∴⎰L dx z y x P ),,(=dxdy y x z y x P y xy D )),(,,(⎰⎰∂∂-=dxdy y z z P y P S ⎰⎰⎪⎪⎭⎫ ⎝⎛∂∂∂∂+∂∂-=dxdy z P y P S⎰⎰⎪⎪⎭⎫⎝⎛∂∂-∂∂-γβcos cos =γβγcos cos cos dxdy z Py P S ⎰⎰⎪⎪⎭⎫ ⎝⎛∂∂-∂∂-=dS z Py P S⎰⎰⎪⎪⎭⎫⎝⎛∂∂-∂∂-βγcos cos =⎰⎰∂∂-∂∂Sdxdy y P dzdx z P ; 同理,对于曲面S 表示为x=x(y,z)和y=y(z,x)时,分别可证得⎰LQdy =⎰⎰∂∂-∂∂Sdydz z Q dxdy x Q 和⎰L Rdz =⎰⎰∂∂-∂∂Sdzdx x Rdydz y R . ∴⎰⎰⎪⎪⎭⎫ ⎝⎛∂∂-∂∂+⎪⎭⎫ ⎝⎛∂∂-∂∂+⎪⎪⎭⎫⎝⎛∂∂-∂∂Sdxdy y P x Q dzdx x R z P dydz z Q y R =⎰++L Rdz Qdy Pdx .注:1、若曲面S 不能以z=z(x,y)的形式给出,则可用一些光滑曲线把S 分割为若干小块,使每一小块能用这种形式来表示.2、斯托克斯公式也写为:⎰⎰∂∂∂∂∂∂SRQ P z y x dxdydzdx dydz =⎰++L Rdz Qdy Pdx .例2:计算⎰-+-++L dz x y dy z x dx z y )()()2(, 其中L 为平面x+y+z=1与各坐标面的交线,取逆时针方向为正向.解:(2y+z)y =2, (2y+z)z =1, (x-z)z =-1, (x-z)x =1, (y-x)x =-1, (y-x)y =1,∴⎰-+-++L dz x y dy z x dx z y )()()2(=⎰⎰-+--+--Sdxdydzdx dydz )21()]1(1[)]1(1[=⎰⎰-+Sdxdy dzdx dydz 22=1+1-21=23.概念:若V 内任一封闭曲线皆可不经过V 以外的点而连续收缩于属于V 的一点,则称区域V 为单连通区域, 否则称为复连通区域. 如球体属于单连通区域,而环状区域属于复连通区域.定理22.7:设Ω∈R 3为空间单连通区域. 若函数P , Q, R 在Ω上连续,且有一阶连续偏导数,则以下四个条件是等价的:(1)对于Ω内任一按段光滑的封闭曲线L 有⎰++L Rdz Qdy Pdx =0. (2)对于Ω内任一按段光滑的封闭曲线L, 曲线积分⎰++L Rdz Qdy Pdx 与路线无关.(3)Pdx+Qdy+Rdz 是Ω内某一函数u 的全微分,即du=Pdx+Qdy+Rdz. (4)x Q y P ∂∂=∂∂, y R z Q ∂∂=∂∂, zPx R ∂∂=∂∂. 在Ω内处处成立.例3:验证曲线积分⎰+++++L dz y x dy x z dx z y )()()(与路线无关,并求被积表达式的原函数u(x,y,z). 解:P=y+z, Q=z+x, R=x+y, ∵x Q y P ∂∂=∂∂=y R z Q ∂∂=∂∂=zPx R ∂∂=∂∂=1, ∴曲线积分与路线无关.取空间折线M 0(x 0,y 0,z 0)→(x,y 0,z 0)→(x,y,z 0)→(x,y,z), 则u(x,y,z)=⎰+++++M M dzy x dy x z dx z y 0)()()(=⎰⎰⎰+++++zz x x y y dry x dt x z ds z y 0)()()(000=(y 0+z 0)(x-x 0)+(z 0+x)(y-y 0)+(x+y)(z-z 0)=xy+xz+yz+C. 其中C=-x 0y 0-x 0z 0-y 0z 0. 若取M 0为原点,则u(x,y,z)=xy+xz+yz.习题1、应用高斯公式计算下列曲面积分:(1)⎰⎰++Sxydxdy zxdzdx yzdydz ,其中S 为球面x 2+y 2+z 2=1的外侧;(2)⎰⎰++Sdxdy z dzdx y dydz x 222,其中S 是立方体0≤x,y,z ≤a 表面的外侧;(3)⎰⎰++Sdxdy z dzdx y dydz x 222,其中S 是锥面x 2+y 2=z 2与平面z=h 所围空间区域的表面,方向取外侧;(4)⎰⎰++Sdxdy z dzdx y dydz x 333,其中S 为球面x 2+y 2+z 2=1的外侧;(5)⎰⎰++Szdxdy ydzdx xdydz ,其中S 为上半球面z=222y x a --的外侧.解:(1)⎰⎰++Sxydxdy zxdzdx yzdydz =⎰⎰⎰Vdxdydz 0=0.(2)⎰⎰++Sdxdy z dzdx y dydz x 222=2⎰⎰⎰++Vdxdydzz y x )(=2⎰⎰⎰++aa a dz z y x dy dx 000)(=3a 4.(3)⎰⎰++Sdxdy z dzdx y dydz x 222=2⎰⎰⎰++Vdxdydzz y x )(=2⎰⎰⎰++hr h rdz z r r dr d )sin cos (020θθθπ=24h π.(4)⎰⎰++Sdxdy z dzdx y dydz x 333=3⎰⎰⎰++Vdxdydzz y x )(222=3⎰⎰⎰104200sin dr r d d ϕθϕππ=512π.(5)⎰⎰++Szdxdy ydzdx xdydz =3⎰⎰⎰Vdxdydz =2πa 3.2、应用高斯公式计算三重积分:dxdydz zx yz xy V⎰⎰⎰++)(, 其中V 是由x ≥0, y ≥0, 0≤z ≤1与x 2+y 2≤1所确定的空间区域. 解:dxdydz zx yz xy V⎰⎰⎰++)(=⎰⎰++Sxdxdy z zdzdx y ydydz x 22221=⎥⎥⎦⎤⎢⎢⎣⎡+-+-⎰⎰⎰⎰⎰⎰dxdy x zdzdx x ydydz y xyzx yz D D D )1()1(2122=⎥⎦⎤⎢⎣⎡+-+-⎰⎰⎰⎰⎰⎰-210101021010210)1()1(21x xdy dx zdx x dz ydz y dy =⎥⎦⎤⎢⎣⎡-+-+-⎰⎰⎰1021021021)1(21)1(21dx x x dx x ydy y =⎪⎭⎫ ⎝⎛++31314121=2411.3、应用斯托克斯公式计算下列曲线积分:(1)⎰+++++L dz y x dy z x dx x y )()()(222222,其中L 为x+y+z=1与三坐标面的交线,它的走向使所围平面区域上侧在曲线的左侧; (2)⎰++L dz dy dx y x 32,其中L 为y 2+z 2=1, x=y 所交的椭圆的正向; (3)⎰-+-+-L dz x y dy z x dx y z )()()(,其中S 是以A(a,0,0), B(0,a,0), C(0,0,a)为顶点的三角形沿ABCA 的方向. 解:(1)⎰+++++L dzy x dy z x dx x y )()()(222222 =2⎰⎰-+-+-Sdxdy y x dzdx x z dydz z y )()()(. 其中⎰⎰-Sdydz z y )(=⎰⎰--ydz z y dy 1010)(=⎰⎪⎪⎭⎫⎝⎛--10221232dy y y =0, 同理,⎰⎰-Sdzdx x z )(=⎰⎰-Sdxdy y x )(=0. ∴原积分=0.(2)⎰++L dz dy dx y x 32=⎰⎰-Sdxdy y x 223=⎰⎰-xyD dxdy y x 223=0. (注:D xy 的面积为0)(3)⎰-+-+-L dz x y dy z x dx y z )()()(=2⎰⎰++Sdxdy dzdx dydz =3a 2.4、求下列全微分的原函数:(1)yzdx+xzdy+xydz ;(2)(x 2-2yz)dx+(y 2-2xz)dy+(z 2-2xy)dz. 解:(1)∵d(xyz)=yzdx+xzdy+xydz, ∴原函数为:u(x,y,z)=xyz+C. (2)∵d(31(x 3+y 3+z 3)-2xyz)=(x 2-2yz)dx+(y 2-2xz)dy+(z 2-2xy)dz, ∴原函数为:u(x,y,z)=31(x 3+y 3+z 3)-2xyz+C.5、验证下列线积分与路线无关,并计算其值; (1)⎰-++)4,3,2()1,1,1(32dz z dy y xdx ; (2)⎰++++),,(),,(222222111z y x z y x z y x zdz ydy xdx , 其中(x 1,y 1,z 1), (x 2,y 2,z 2)在球面x 2+y 2+z 2=a 2上.解:(1)P=x, Q=y 2, R=z 3, 有x Q y P ∂∂=∂∂=y R z Q ∂∂=∂∂=zPx R ∂∂=∂∂=0, ∴原积分与路线无关.⎰-++)4,3,2()1,1,1(32dz z dy y xdx =⎰⎰⎰-++41331221dz z dy y xdx =425532623-++=-53127(2)∵d(222z y x ++)=222zy x zdz ydy xdx ++++, ∴原积分与路线无关.原式=⎰++),,(),,(222222111z y x z y x z y x d =212121222222z y x z y x ++-++=0.6、证明:由曲面S 所围的立体V 的体积 △V=⎰⎰++SdS z y x )cos cos cos (31γβα,其中cos α, cos β, cos γ为曲面S 的外法线方向余弦. 证:⎰⎰++S dS z y x )cos cos cos (31γβα=⎰⎰++Szdxdy ydzdx xdydz 31=dxdydz z z y y x x V ⎰⎰⎰⎪⎪⎭⎫ ⎝⎛∂∂+∂∂+∂∂31=⎰⎰⎰Vdxdydz =V.7、证明:若S 为封闭曲面, l 为任何固定方向, 则⎰⎰∧SdS l n ),cos(=0,其中n 为曲面S 的外法线方向.证:设n 和l 的方向余弦分别是cos α, cos β, cos γ和cos α’, cos β’, cos γ’. 由第一、二型曲面积分之间的关系可得:⎰⎰∧SdS l n ),cos(=⎰⎰'+'+'Sds)cos cos cos cos cos (cos γγββαα=⎰⎰'+'+'Sdxdy dzdx dydz γβαcos cos cos . 由L 的方向固定知,P=cos α’, Q=cos β’, R=cos γ’都是常数,∴zRy Q x P ∂∂+∂∂+∂∂=0. 由奥高公式得: ⎰⎰∧S dS l n ),cos(=⎰⎰++S Rdxdy Qdzdx Pdydz =⎰⎰⎰⎪⎪⎭⎫⎝⎛∂∂+∂∂+∂∂V dxdydz z R y Q x P =0.8、证明公式:⎰⎰⎰Vr dxdydz =⎰⎰∧SdS n r ),cos(21=0, 其中S 是包围V 的曲面,n 为曲面S 的外法线方向, |r|=222z y x ++, r=(x,y,z).证:∵),cos(∧n r =),cos(),cos(∧∧x n x r +),cos(),cos(∧∧y n y r +),cos(),cos(∧∧z n z r ,且),cos(∧x r =r x , ),cos(∧y r =ry, ),cos(∧z r =r z ,由第一, 二型曲面积分的关系及奥高公式可得:⎰⎰∧SdS n r ),cos(21=⎰⎰∧∧∧++S dS z n z y n y x n x r )],cos(),cos(),cos([121 =⎰⎰++S dxdy r z dzdx r y dydz r x 21=⎰⎰⎰⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛∂∂+⎪⎭⎫ ⎝⎛∂∂+⎪⎭⎫ ⎝⎛∂∂V dxdydz r z z r y y r x x 21=⎰⎰⎰Vrdxdydz.9、若L 是平面xcos α+ycos β+zcos γ-p=0上的闭曲线,它所包围区域的面积为S ,求⎰L zyxdz dy dx γβαcos cos cos , 其中L 依正向进行. 解:∵P=zcos β-ycos γ, Q=xcos γ-zcos α, R=ycos α-xcos β, 由斯托克斯公式及第一, 二型曲面积分之间的关系得:原式=⎰⎰---∂∂∂∂∂∂Sx y z x y z z yxdxdy dzdx dydz βααγγβcos cos cos cos cos cos =2⎰⎰++Ddxdy dzdx dydz γβαcos cos cos =2⎰⎰++Dds )cos cos (cos 222γβα=2s.。
6 纳斯—斯托克斯方程(N —S 方程)在所有的惯性系都成立首先根据动量定理推导与坐标系选取无关的微分形式的N S -方程:任取一体积为τ的流体如图1所示,设其边界面为S ,根据动量定理,体积τ中流体动量的变化率等于作用在该体积上质量力和面力之和.以F 表示作用在单位质量上的质量力分布函数,而n p 表示作用于单位面积上的面力分布函数.则作用在τ上和S 上的总质量力和面力为ρδτ⎰F及sS δ⎰n p其次,体积τ内的动量是τρδτ⎰v于是,动量定理可写成下列表达式:s dS dt ττρδτρδτδ=+⎰⎰⎰n v F p(1)利用公式d d dt dtττρδτρδτ=⎰⎰aa ,得: d d dt dtττρδτρδτ=⎰⎰vv (2)再利用的是高斯公式得:div sss P s P τδδδτ==⎰⎰⎰n p n(3)其中P 是应力张量.将(2)和(3)式代入(1)式,整理得:(div )0d P dtτρρδτ--=⎰vF 因τ任意,且假定被积函数连续,由此推出被积函数恒为0,即div d P dtρρ=+vF(4)(4)式就是微分形式的动量方程,易见,它与坐标系的选取无关,下面将写出它在曲线坐标下的形式.因为123(,,,)q q q t =v v故312123dq dq dq d dt t q dt q dt q dt∂∂∂∂=+++∂∂∂∂v v v v v 图1112233112233111()/H dq H dq H dq dt t H q H q H q ∂∂∂∂=+++∂∂∂∂v v v v 312123()ds ds ds t s dt s dt s dt ∂∂∂∂=+++∂∂∂∂v v v v(5)上式中利用到等式:111ds H dq =,222ds H dq =,333ds H dq =现在进一步处理(5)式右端的第二项112233v e v e v e =++v ,根据定义有312123,,ds ds ds v v v dtdtdt===故123123()d v v v dt t s s s ∂∂∂∂=+++∂∂∂∂v v v v v (6)又1111223311()v v v e v e v e s s ∂∂=++∂∂v 111223311()v v e v e v e H q ∂=++∂ 33112121231231111111()v e v v v e ee e e v v v H q q q q q q ∂∂∂∂∂∂=+++++∂∂∂∂∂∂(7)考虑到:11123122332111223111331111e H H e e q H q H q e H e q H q e H e q H q ⎧∂∂∂=--⎪∂∂∂⎪⎪∂∂=⎨∂∂⎪⎪∂∂=⎪∂∂⎩ (8) 12221122231233113222331111e H e q H q e H H e e q H q H q e H e q H q ⎧∂∂=⎪∂∂⎪⎪∂∂∂=--⎨∂∂∂⎪⎪∂∂=⎪∂∂⎩ (9)31331132332233312311221111H e e q H q H e e q H q e H H e e q H q H q ⎧∂∂=⎪∂∂⎪⎪∂∂=⎨∂∂⎪⎪∂∂∂=--⎪∂∂∂⎩ (10) 将上面的(8)式代入(7)中,整理得,331121112111111123111223311221133()()()v v v v v H H v v v H v v H v e e e s H q H q H q H q H q H q H q ∂∂∂∂∂∂∂∂=+++-+-∂∂∂∂∂∂∂∂v同理332122221222222123222112211332333()()()v v v v v H v v v H H v v H v e e e s H q H q H q H q H q H q H q ∂∂∂∂∂∂∂∂=-++++-∂∂∂∂∂∂∂∂v将11v s ∂∂v ,22v s ∂∂v ,33v s ∂∂v表达式代入(6)式,得 311211112233[()v v v v v v d dt t H q H q H q ∂∂∂∂=+++∂∂∂∂v v 2213331211221122133121131]v v v H v v H H v H e H H q H H q H H q H H q ∂∂∂∂++--∂∂∂∂ 312222112233[()v v v v v v H q H q H q ∂∂∂+++∂∂∂2223332122112211233122232]v v v H v v H H v H e H H q H H q H H q H H q ∂∂∂∂++--∂∂∂∂ 333312112233[()v v v v v v H q H q H q ∂∂∂+++∂∂∂2213323311223131232133233]v v H v v H v H v H e H H q H H q H H q H H q ∂∂∂∂++--∂∂∂∂ (11) 因为112233v e v e v e =++v 所以312123v v v e e e t t t t∂∂∂∂=++∂∂∂∂v 速度1v 的随体导数31111121123ds dv v v ds v ds v dt t s dt s dt s dt∂∂∂∂=+++∂∂∂∂3111211112233v v v v v v v t H q H q H q ∂∂∂∂=+++∂∂∂∂ 同理可得32221222123ds dv v v ds v ds v dt t s dt s dt s dt∂∂∂∂=+++∂∂∂∂ 3212222112233v v v v v v v t H q H q H q ∂∂∂∂=+++∂∂∂∂ 33333312123dv v v v v ds ds ds dt t s dt s dt s dt∂∂∂∂=+++∂∂∂∂ 3333312112233v v v v v v v t H q H q H q ∂∂∂∂=+++∂∂∂∂ 所以(11)式可简化为22133311211221122133121131()v v v H dv v v H H v H d e dt dt H H q H H q H H q H H q ∂∂∂∂=++--∂∂∂∂v22233322122112211233212232()v v v H dv v v H H v H e dt H H q H H q H H q H H q ∂∂∂∂+++--∂∂∂∂ 22331332311223311322313323()dv v v H v v H v H v H e dt H H q H H q H H q H H q ∂∂∂∂+++--∂∂∂∂ 至此,我们将d dtv表示成曲线坐标系下的形式了. F 在曲线坐标系下表示成: 112233F e F e F e =++F最后,我们将div P 表示成曲线坐标系下的形式. 应力张量P :111213212223313233p p p P p p p p p p ⎛⎫ ⎪= ⎪ ⎪⎝⎭,共九个量 可以证明应力张量P 是对称张量,所以也可以将P 写成111231122223312333p p p P p p p p p p ⎛⎫ ⎪= ⎪ ⎪⎝⎭其在曲线坐标面上表示为111112231321212222333311232333P p e p e p e P p e p e p e P p e p e p e=++⎧⎪=++⎨⎪=++⎩ 由()()()1232313121231231a H H a H H a H H div H H H q q q ∂∂∂⎡⎤=++⎢⎥∂∂∂⎣⎦a 式得:()()()1232313121231231PH H P H H P H H div P H H H q q q ∂∂∂⎡⎤=++⎢⎥∂∂∂⎣⎦ (12)其中()()()12323123111122313111PH H H H P H H p e p e p e q q q ∂∂∂=+++∂∂∂ ()233111121231231111H H p p p P H H e e e q q q q ∂⎛⎫∂∂∂=+++ ⎪∂∂∂∂⎝⎭ 31223111231111e e eH H p p p q q q ⎛⎫∂∂∂+++ ⎪∂∂∂⎝⎭同样把11e q ∂∂、21e q ∂∂、31e q ∂∂用(8)式代替得 ()()123233111121112311112233PH H H H p p p H H P H H e q q q H q H q ∂∂⎛⎫∂∂∂=+++⎪∂∂∂∂∂⎝⎭3112111111232233122133p p p H p H H H e H H e q H q q H q ⎛⎫⎛⎫∂∂∂∂+-+-⎪ ⎪∂∂∂∂⎝⎭⎝⎭ (13) 考虑到()()()()2323232311111223131111H H H H H H H H P p e p e p e q q q q ∂∂∂∂=++∂∂∂∂()()231123111112311111H H p H H p p e H H e e q q q ∂∂∂+=∂∂∂()()231223121222322111H H p H H pp e H H e e q q q ∂∂∂+=∂∂∂()()233123313132333111H H p H H pp e H H e e q q q ∂∂∂+=∂∂∂因此可将(13)式化为:()()1231123311211231122331PH H p H H p p H H H H e q H q H q q ⎡⎤∂∂⎛⎫∂∂=++⎢⎥ ⎪∂∂∂∂⎝⎭⎣⎦()1223111232122p H H p H H H e q H q ∂⎡⎤∂+-⎢⎥∂∂⎣⎦()3123111233133p H H p H H H e q H q ∂⎡⎤∂+-⎢⎥∂∂⎣⎦同理:()()23112312223112211P H H p H H p H H H e q q H q ∂∂⎡⎤∂=-⎢⎥∂∂∂⎣⎦()223123312231211332p H H p H p H H H e H q H q q ⎡⎤∂⎛⎫∂∂+++⎢⎥ ⎪∂∂∂⎝⎭⎣⎦()2331222313233p H H p H H H e q H q ∂⎡⎤∂+-⎢⎥∂∂⎣⎦()()31231123331213311P H H p H H p H H H e q q H q ∂∂⎡⎤∂=-⎢⎥∂∂∂⎣⎦()2312333122322p H H p H H H e q H q ∂⎡⎤∂+-⎢⎥∂∂⎣⎦()331231323312311223p H H p H p H H H e H q H q q ⎡⎤∂⎛⎫∂∂+++⎢⎥ ⎪∂∂∂⎝⎭⎣⎦将以上三式代入(12)式,得()()()1123123131121231231div p H H p H H p H H P H H H q q q ⎧∂∂∂⎡⎤⎪=++⎨⎢⎥∂∂∂⎪⎣⎦⎩3133312112221122133121131p p H p H H p H e H H q H H q H H q H H q ⎫∂∂∂∂++--⎬∂∂∂∂⎭()()()1223223123121231231p H H p H H p H H H H H q q q ⎧∂∂∂⎡⎤⎪+++⎨⎢⎥∂∂∂⎪⎣⎦⎩2333312221112121233122232p p H p H H p H e H H q H H q H H q H H q ⎫∂∂∂∂++--⎬∂∂∂∂⎭()()()3123233133121231231p H H p H H p H H H H H q q q ⎧∂∂∂⎡⎤⎪+++⎨⎢⎥∂∂∂⎪⎣⎦⎩3132331112223131232133233p H p H p H p H e H H q H H q H H q H H q ⎫∂∂∂∂++--⎬∂∂∂∂⎭(14)至此,已将d dtv、F 、div P 全部表示成曲线坐标系下的形式,将其都代入(4)式,并考虑对应项相等原则,有2213331121122122133121311v v v H dv v v H H v H dt H H q H H q H H q H H q ρ⎛⎫∂∂∂∂++-- ⎪∂∂∂∂⎝⎭()()()12311311212311231231F H H p H H p H H p H H H q q q ρ⎡⎤∂∂∂=+++⎢⎥∂∂∂⎣⎦313331211222122133121311p p H p H H p H H H q H H q H H q H H q ∂∂∂∂++--∂∂∂∂()15a2223332212211211233212232v v v H dv v v H H v H dt H H q H H q H H q H H q ρ⎛⎫∂∂∂∂++-- ⎪∂∂∂∂⎝⎭ ()()()12232231231221231231p H H p H H p H H F H H H q q q ρ∂∂∂⎡⎤=+++⎢⎥∂∂∂⎣⎦233331222111121233122232p p H p H H p H H H q H H q H H q H H q ∂∂∂∂++--∂∂∂∂(15b )2233133231122311322313323dv v v H v v H v H v H dt H H q H H q H H q H H q ρ⎛⎫∂∂∂∂++-- ⎪∂∂∂∂⎝⎭ ()()()31232331331231231231p H H p H H p H H F H H H q q q ρ∂∂∂⎡⎤=+++⎢⎥∂∂∂⎣⎦313233111222131232133233p H p H p H p H H H q H H q H H q H H q ∂∂∂∂++--∂∂∂∂(15c )(15)式就是曲线坐标系下的N S -方程的具体形式.。