焊接残余应力的测试
- 格式:docx
- 大小:86.20 KB
- 文档页数:3
残余应力测试方法残余应力是指材料或结构在受力作用后,未完全消除的应力。
残余应力的存在可能会对材料的性能和结构的稳定性产生影响,因此对残余应力进行测试和评估是非常重要的。
一、残余应力的形成原因1. 加工过程中的应力:在材料加工过程中,由于变形、切削或焊接等操作,会引入应力,这些应力可能会在材料中残留下来。
2. 热应力:材料在加热和冷却过程中,由于热胀冷缩不均匀,会产生热应力,这些应力也可能会残留下来。
3. 外部载荷:材料受到外部力的作用,如压力、拉力或弯曲力等,会导致材料产生应力,这些应力也可能会残留下来。
二、残余应力的测试方法1. X射线衍射法:通过测量材料中晶格的畸变程度来间接推测残余应力的大小和方向。
2. 中子衍射法:利用中子的衍射特性来分析材料中晶体的结构和应力状态。
3. 应变测量法:通过测量材料中的应变来推断残余应力的大小和分布。
4. 晶格畸变法:通过分析材料中晶格的畸变情况来评估残余应力。
5. 超声波法:利用超声波在材料中传播的速度和衰减情况来测量材料中的应力。
6. 磁性法:利用材料磁性的变化来分析残余应力的分布和大小。
7. 光学法:通过光学显微镜或偏光显微镜观察材料中的应力畸变情况。
8. 拉伸法:将材料进行拉伸测试,通过测量材料的应变和应力来计算残余应力。
三、残余应力测试的应用领域1. 金属材料:在金属材料的制备和加工过程中,残余应力会对材料的强度、韧性和疲劳寿命等性能产生影响,因此对金属材料中的残余应力进行测试是非常重要的。
2. 焊接结构:焊接过程中产生的残余应力可能会导致焊接接头的变形或裂纹,因此对焊接结构中的残余应力进行测试可以评估焊接接头的质量和可靠性。
3. 玻璃材料:玻璃材料在制备和加工过程中可能会产生残余应力,这些应力可能会导致玻璃材料的破裂或变形,因此对玻璃材料中的残余应力进行测试可以评估其稳定性和可靠性。
4. 复合材料:在复合材料的制备和加工过程中,残余应力可能会导致复合材料的层间剥离或破坏,因此对复合材料中的残余应力进行测试可以评估其性能和可靠性。
焊接残余应力的测定及消除方法作者:王秀峰来源:《世界家苑》2017年第02期摘要:在钢结构行业中,焊接作为至关重要的应用技术,其应用的范围非常广泛,具有许多显著的优势,但是也具有一定的缺陷,钢结构焊接的残余应力和焊接中出现的变形问题。
在钢结构焊接作业中,如果出现钢材结构的温度不均匀,就会导致钢材结构出现许多焊接残余应力,从而造成焊接的钢结构产生变形以及开裂问题,影响了钢结构焊接施工质量。
本文主要针对钢结构焊接作业中残余应力产生的原因进行了深入分析,并对残余应力的影响展开了探讨,并提出了控制钢结构残余应力和变形的方法。
关键词:钢结构;焊接;残余应力;变形引言随着现代化科学技术的快速发展,我国的焊接加工技术也在不断发展进步,现代化焊接加工技术具有比较明显的技术优势,能够提高钢结构焊接的精细化水平。
1、焊接应力与焊接变形的定义1)焊接应力:钢材在焊接过程中,焊件部位会因为焊接时的局部高温产生不均匀的温度场。
高温时,有一部分钢材会产生很大的膨胀和伸长,但由于受到邻近钢材的约束影响,会在焊件内部产生较大的收缩应力。
在焊接的过程中,这种收缩应力伴随着焊接时间的变化和温度的升降变化不断的改变,而这种收缩应力就被定义为焊接应力。
2)焊接变形:焊接构件在焊接及逐渐冷却的过程中,由于焊接构件局部受热且受热不均匀,同时焊接构件冷却也不均匀,因此焊接构件不仅会产生焊接应力,还会产生各种变形。
这种焊件产生的变形,被称为焊接变形。
2、钢结构焊接应力与焊接变形产生的原因在钢结构焊接的过程中,由于对焊接钢构件局部加热,使得焊缝附近区域的温度很高,而远离焊缝的金属基本上不受热,其温度与室内温度差不多。
在焊接钢构件局部加热的过程中,焊缝附近金属由于受热作用会产生膨胀。
而远离焊缝的金属未受热不发生膨胀,但却会严重制约焊缝附近金属的膨胀过程,这样使得焊缝附近金属会产生部分塑性变形。
同样,在焊接金属冷却时也会受到周边未加热金属的影响,制约了焊接金属自由塑性收缩,使整个焊接钢构件均产生了收缩现象,同时也会产生焊接应力及焊接变形,这样就使得焊接钢结构产生了各种变形。
髓源工程焊接国际论坛IFWT2005动转塔显微硬度计进行测量。
压痕大小测量在荷兰FEl公司的Sirion型场离子发射枪高分辨扫描电镜(SEM)上进行,在高倍下精确测出压痕的面秘比,,这比般的光学会相品微镜的测量精度要高得多。
3实验结果及讨论3.1显微压痕与残余应力的关系图5是纯铜片样品经二点弯曲后受拉伸应力部位的显微硬度压痕和未弯曲时的同一区域乐痕的形貌特征。
可以看Ⅱj纯铜片被弯曲之后,表面产生了大量孪晶和滑移带,说明此处有较大的应力集中,如图5a所示。
与无变形的区域相比,有孪晶和滑移带区域的压痕并没有明显的增大趋势,但是其面积比C。
有较人的变化。
由测量可知,有变形和应力集中时产为1,08085,无变形时∥为09701l。
可见,残余戍力对压痕面积影响并不是很大,而是很大程度影响J.压痕的面积比。
a)有批应力集rfl区域的乐痕b)无扣应力集巾区域的压痕图5纯铜中拉伴残余应力时压痕朐影响图6显示出随着弯曲度的增大,每次弯曲后得到的硬度值基本上是不变的。
这与Oliver所得结果相符‘7一I,也说明我们的面积测量方法是准确的。
另外,Carlsson等人”’”1也指出硬度只与残余应变有关,而与残余应力几乎无关,图6巾的曲线显示硬度几乎不变,可知在弯曲后产牛^的残余应变极小,其值为常数。
在Carlsson和Sttresh口’91”1的研究中发现,当材料中存在拉伸残余应力时,压痕的面积比会小十没有残余应力时的面积比。
即面积比随着拉伸残余应力的增人而减小。
这是由f其压痕的面积是根据加载卸载曲线获得的,主要由乐入深度h决定,当存在批应力时,压痕的四周产生凹陷(Sink.in)或凸起(Pile-up)减小,造成真实面积A[A=4h2/(tan22。
)2】减小,从而得到的面积比减小。
而在本实验中,压痕面积比随着弯曲度的增大l叮增大,压痕面积比随着弯曲度变化而呈线性变化,如图7所示。
这是由于我们的压痕面积测鼍是根据眶痕的‘个俯视图得到的(见图4)。
焊接残余应力的测定
目前,测定焊接残余应力的方法主要可归结为两类,即机械方法和物理方法。
1.机械方法
利用机械加工将试件切开或切去一部分,测定由此而释放的弹性应变来推算构件中原有的残余应力。
包括切条法、钻孔法和套孔法。
2.物理方法
是非破坏性测定焊接残余应力的方法,常用的有磁性法、超声波法和X射线衍射法。
(1)磁性法是利用铁磁材料在磁场中磁化后的磁致伸缩效应来测量残余应力的。
(2)X射线衍射法是根据测定金属晶体晶格常数在应力的作用下发生变化来测定残余应力的无损测量方法。
(3)超声波法是根据超声波在有应力的试件和无应力的试件中传播速度的变化来测定残余应力的。
一、引言压力容器作为核电站最重要的主设备之一,其质量的优劣直接影响了整个核电站的正常运行。
窄间隙埋弧焊是核电压力容器制造中最常用的焊接方法,主要用于筒体与筒体、接管与筒体等主要部件的组焊。
近年来,我国在核电材料特性、焊接质量等方面取得了丰富的研究成果,但对核电结构焊接应力方面的基础研究比较少。
本文针对这一问题,采用盲孔法测试了120mm 厚SA508-3钢窄间隙焊缝不同热处理状态下的残余应力,这为产品制造、焊接结构设计分析等提供了参考和依据。
二、制备焊接试板焊接试板材质为核电SA508-3钢,规格为120mm*225mm*2500mm ,数量2块,坡口为单边U 型。
焊材采用埋弧焊焊丝US-620,规格Ф4,匹配焊剂PF200。
焊接预热温度120℃以上,层间温度控制在250℃以内,试板焊后首先缓冷至室温,依次进行中间热处理(ISR )、最小热处理和最大热处理。
三尧残余应力测试方法目前,应用最多且测试结果公认较为准确的焊接残余应力测量方法为小孔法。
小孔法测量焊接残余应力由德国学者J 。
Mathar 于1934年提出,根据钻孔是否钻通,小孔法可分为通孔法和盲孔法,其测量原理是基于弹性理论,理论计算公式见公式(1)。
其中,ε1,ε2和ε3分别为0°,45°,90°应变计钻孔后测得的释放应变;σ1,σ2为主应力;θ为主应力σ1与X 轴的夹角,即主应力方向;A ,B 为应变释放系数,可按照公式(2)直接计算出,E ,γ分别为被测材料的弹性模量和泊松比,d 、r1、r2分别为孔径和盲孔中心到应变计近孔和远孔端的距离。
2014年,我国出版了金属材料的残余应力测量-钻孔应变法的国家标准,标准号为GB/T31310-2014,标准中对钻孔应变法的残余应力计算方法、工件、应变片、测量仪器、试验程序、精度和误差等内容进行了详细的规定,并在附录A 中给出了通过标定试验对不在是与应力大小无关的A 、B 值进行修正的具体方法。
破坏性测量焊接残余应力的方法及应用秦飞虎,刘勇,杨金,李强,赵太源,李亚军(中国石油集团济柴动力有限公司成都压缩机分公司,四川 成都 610100)[摘 要] 焊接是金属材料制作和安装的一道重要工序,焊接过程中由于热胀冷缩引起的残余应力对工件机械性能、腐蚀性能、尺寸加工精度及稳定性有较大影响。
本文介绍了盲孔法、剥层法和切条法三种破坏性测量焊接残余应力的基本原理和方法,简述了各种测量方法的发展概况及应用现状,对评估工程结构焊件综合性能具有重要意义。
[关键词] 焊接残余应力;测量方法;破坏性;应用现状作者简介:秦飞虎(1974—),男,四川人,本科,高级工程师,主要研究方向为压缩机设计制造及性能评估相关工作。
焊接残余应力及变形一直是世界各国焊接专家、学者关注的问题。
焊接残余应力是由于焊接冷却时焊缝和焊缝附近的钢材受到周边材料的约束,不能自由收缩而产生的内应力。
焊接残余应力可分为沿焊缝长度方向的纵向焊接应力、垂直于焊缝方向的横向残余应力和沿厚度方向的焊接应力[1]。
焊接残余应力可引起焊接结构件的变形,甚至发生断裂现象。
因此为了进一步了解焊接工程中的残余应力,对工程结构件综合性能评估具有重要意义。
目前,焊接残余应力的测量方法可分为非破坏性(无损测量法)和破坏性(有损测量法),非破坏性测量法中X 射线法应用最为广泛,但只能测量材料表层残余应力,不能真实地反映焊接工件内部的应力分布;磁性法只适用于铁磁材料,而超声波检测法还处于实验室阶段,都不利于普遍推广应用[2-4]。
破坏性测量方法虽然对工件有损伤,但能真实反映出残余应力的分布状况,本文就三种破坏性测量方法盲孔法、剥层法和切条法进行介绍,了解它们测量的基本原理和特点,对选择合适的测量方法评估焊接残余应力具有重要意义。
1 测量方法1.1 盲孔法盲孔法又称钻孔法或小孔法,属于典型的局部破坏性测定方法,是破坏性测量方法中应用最为广泛的方法。
盲孔法是在焊接应力场内任意点处钻一个小孔,该点的应力被释放,残余应力重新分布,利用应力应变关系式换算出材料在焊接过程中产生的残余应力[5,6]。
X 射线衍射测量焊接件残余应力一 基本测量原理X 射线是一种电磁波,具有波粒二象性。
其波长在0.001—10nm 能穿透一定厚度的物质,并能使荧光物质发光、照相乳胶感光、气体电离。
1912年德国物理学家劳厄(M.von Laue)提出一个重要的科学预见:晶体可以作为X 射线的空间衍射光栅,即当一束 X 射线通过晶体时将发生衍射,衍射波叠加的结果使射线的强度在某些方向上加强,在其他方向上减弱。
分析在照相底片上得到的衍射花样,便可确定晶体结构。
这一预见随即为实验所验证。
1913年英国物理学家布拉格父子(W.H.Bragg ,W.L.Bragg)在劳厄发现的基础上,不仅成功地测定了NaCl 、KCl 等的晶体结构,还提出了作为晶体衍射基础的著名公式──布拉格定律:λθn d =sin 2 式中λ为X 射线的波长,n 为任意正整数。
金属材料一般都是多晶体,在单位体积中含有数量极大,取向任意晶粒,因此在空间任意方向都能观察到任一选定的{hkl}晶面。
无盈利存在时,各个晶粒的同一{hkl}晶面族的面间距都为0d 。
当存在有平行于表面的张引力作用于该多晶体时,各个晶粒的晶面间距将发生不同程度的变化,但这些变化都是有规律的晶面间距的变化反映为衍射角的改变,X 射线衍射应力测定就是通过测量衍射角θ2相对于晶面方位(ψ:衍射面法线与试件表面法线的夹角)的变化率计算试件表面的残余应力。
用X 射线衍射法测量宏观应力,需要在平面应力状态假设下进行,即垂直试样表面的正应力和切应力都为零。
根据晶面间距的变化,可以计算出相应的{hkl}晶面应变值θθε∆-=∆=-=cos 0d d d d d根据上述应变,加以适当的刚度条件,则应力值计算M K E ∙=∙ψ∂∂∙∙+=ΦΦ180)(sin)2(cot )1(220πθθμσ式中,Φσ是x 方向的应力;K 是应力常数;0ψ是入射X 射线与试样表面法线的夹角;ψ是试样表面法线与衍射晶面法线的夹角;E 是弹性模量;μ是泊松比;0θ是材料在无应力状态下X 射线的衍射角;Φθ是材料在应力作用下X 射线衍射角。
《焊接残余应力应变测量》实验报告
161.5mm 90.5mm
120.0mm
32.0m m
15.5m m
23.5m m
3 1
2
如图为试件纵向残余应力分布云图。
焊缝及近焊缝区等经历过高温的区域存在较大的拉应力,沿着焊缝方向来看,由于焊缝较长,在焊缝中段出现了一个稳定区,且纵向残余应力大于材料的屈服强度。
两端存在一个过渡区域,纵向残余应力逐渐减小,在板边纵向残余应力为0。
纵向残余应力沿板材横截面上的分布表现为中心区域是拉应力,两边为压应力,压应力和拉应力在截面内平衡。
上图为试件横向应力分布云图。
横向应力形成的原因较为复杂,纵向收缩会导致焊缝两边的板子产生相对的弯曲的倾向,但由于两边实际上是连在一起的,因而将导致焊缝的两端部分产生压应力而中心部分产生拉应力,这样才能保证板不弯曲。
所以焊缝的横向应力表现为两端受压,中间受拉,且压应力比拉应力要大得多。
此外横向收缩也会对横向应力的分布产生影响,对于本次实验的焊接顺序,其效果是两端受拉,
line
如图所示,为试件上表面的纵向和横向残余应力在中央截面上的分布,实验值与数值模拟结果所反映的纵向应力分布趋势基本一致,焊缝与近焊缝区域为高的拉应力,远离焊缝的区域为压应力。
横向残余应力的实验结果为靠近焊缝的实验点呈拉应力,远离焊缝的点为压应力,与数值模拟的结果有一定偏差。
这可能是因为本次模拟。
残余应力检测方法关于构件的残余应力检测(盲孔法检测)一、前言(1)应力概念通常讲,一个物体,在没有外力和外力矩作用、温度达到平衡、相变已经终止的条件下,其内部仍然存在并自身保持平衡的应力叫做内应力。
按照德国学者马赫劳赫提出的分类方法,内应力分为三类:第Ⅰ类内应力是存在于材料的较大区域(很多晶粒)内,并在整个物体各个截面保持平衡的内应力。
当一个物体的第Ⅰ类内应力平衡和内力矩平衡被破坏时,物体会产生宏观的尺寸变化。
第Ⅱ类内应力是存在于较小范围(一个晶粒或晶粒内部的区域)的内应力。
第Ⅲ类内应力是存在于极小范围(几个原子间距)的内应力。
在工程上通常所说的残余应力就是第Ⅰ类内应力。
到目前为止,第Ⅰ类内应力的测量技术最为完善,它们对材料性能和构件质量的影响也研究得最为透彻。
除了这样的分类方法以外,工程界也习惯于按产生残余应力的工艺过程来归类和命名,例如铸造应力、焊接应力、热处理应力、磨削应力、喷丸应力等等,而且一般指的都是第Ⅰ类内应力。
(2)应力作用机械零部件和大型机械构件中的残余应力对其疲劳强度、抗应力腐蚀能力、尺寸稳定性和使用寿命有着十分重要的影响。
适当的、分布合理的残余压应力可能成为提高疲劳强度、提高抗应力腐蚀能力,从而延长零件和构件使用寿命的因素;而不适当的残余应力则会降低疲劳强度,产生应力腐蚀,失去尺寸精度,甚至导致变形、开裂等早期失效事故。
(3)应力的产生在机械制造中,各种工艺过程往往都会产生残余应力。
但是,如果从本质上讲,产生残余应力的原因可以归结为:1.不均匀的塑性变形;2.不均匀的温度变化;3.不均匀的相变(4)应力的调整针对工件的具体服役条件,采取一定的工艺措施,消除或降低对其使用性能不利的残余拉应力,有时还可以引入有益的残余压应力分布,这就是残余应力的调整问题。
通常调整残余应力的方法有:①自然时效把构件置于室外,经气候、温度的反复变化,在反复温度应力作用下,使残余应力松弛、尺寸精度获得稳定。
残余应力测试报告1. 引言残余应力是物体在经历了外力作用后,消除外力作用后仍然存在的内部应力状态。
残余应力测试是一种评估材料或构件内部应力状况的方法,对于判断材料的工艺性能以及结构的可靠性具有重要意义。
本报告旨在对进行残余应力测试的方法、测试结果以及结论进行详细的描述。
2. 测试方法在本次残余应力测试中,我们使用了非破坏性测试方法进行测试,具体测试方法如下:1.X射线衍射法:X射线衍射法是一种常用的测试方法,可通过测量材料中的晶体结构来估计残余应力的大小和分布。
在测试中,我们使用了X射线衍射仪对待测试材料进行扫描,并分析衍射图谱来获得残余应力的信息。
2.中子衍射法:中子衍射法与X射线衍射法相似,但使用的是中子束而不是X射线束。
中子具有与材料发生相互作用时不同于X射线的特性,因此中子衍射法可以提供不同的测试结果。
我们在本次测试中也使用了中子衍射法来对测试样品进行分析。
3.光栅法:光栅法是一种基于光学原理的残余应力测试方法。
通过测量材料表面反射光的偏移来获得残余应力的信息。
在测试中,我们使用了专用的光栅仪器来对测试样品进行测试。
3. 测试结果经过以上测试方法的应用,我们获得了如下的测试结果:1.X射线衍射法:通过X射线衍射仪对样品进行测试后,我们得到了样品不同区域的衍射图谱。
进一步分析衍射图谱,我们获得了样品中的残余应力分布情况。
测试结果显示,在样品的表面以及深入一定厚度的地方都存在着不同程度的残余应力。
2.中子衍射法:使用中子衍射仪器对样品进行测试后,我们得到了样品的中子衍射图谱。
通过分析图谱,我们发现样品的不同位置存在着不同的残余应力大小。
尤其是在样品的焊接处以及表面附近的区域,残余应力较高。
3.光栅法:通过光栅仪器对样品进行测试,我们观察到样品表面的光栅条纹发生了偏移。
根据光栅条纹的偏移情况,我们可以推测样品的残余应力分布情况。
测试结果显示,在样品的边缘处以及焊接部位都存在着较大的残余应力。
4. 结论根据以上测试结果,我们得出了以下的结论:1.测试样品在进行加工和焊接过程中产生了残余应力,并且这些残余应力在不同区域存在着差异。
焊接残余应力的测试
一、实验目的
1.了解ASM1.0全自动应力、应变监测记录仪的结构和工作原理。
2.掌握应力释放法的测试原理及操作技术。
二、实验原理
焊接残余应力的测量方法,按其原理可分为应力释放法、物性变化法(X 射线法、磁性法)等,应力释放法又可分为小孔法(即盲孔法)、套孔法与梳状切条法(及全释法)。
本实验采用小孔法进行测量。
对板钻小孔可以评价释放的径向应变。
在应力场中去一直径为d 的圆环,并在圆环上粘贴应变片,在圆环的中心处钻一直接为d 0的小孔(图1),由于钻孔使应力的平衡受到破坏,测出孔周围的应力变化,就可以用弹性力学的理论来推算出小孔处的应力。
设应变片中心与圆环中的连线与x 轴的夹角为α,其释放的径向应变r ε和钻孔释放的残余应力之间的关系,可按照带孔无线板的弹性理论,同时承受双轴薄膜应力x σ和y σ(理解为主应力)的条件求解。
()()y x r B A B A σασαεcos cos +++= 2
021⎪
⎭
⎫ ⎝⎛+-=d d E A μ
⎥⎥⎦
⎤⎢⎢
⎣⎡⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛++-=4
02031421d d d d E B μμ 图1 小孔法所用的应变花示意图
为了完全确定未知的双轴残余应力状态(两个主应力σ1和σ2,以及主应力方向β),必须至少在圆环上的三个不同测量方向评价释放的径向应变r ε(如采用三个应变片组成的应变花)。
常用的应变花布置是︒=0α、︒=45α和︒=90α(对应00ε、45ε和90ε)。
()()20090452009000
902,1--2-B
41
A
4εεεεεεε
σ+±+=
三、实验设备及器材
1. ASM1.0全自动应力、应变检测仪一台
2. 残余应力打孔装置一台
3. 焊接铝板一块
4. 应变片、瞬干胶水若干
四、实验方法与步骤
1.将待测部位用砂纸磨至表面光亮,用酒精进行清洗,清除待测部位表面的杂志和氧化物,直到准备粘贴应变片的部位干净为止。
2.将502速干胶均匀涂于应变片背面,迅速把应变片粘在所测位置,轻压使其与工件表面紧密结合,应变片与金属之间无气泡无脱胶现象。
3.将应变片末端引线与应变仪连接的导线焊接。
注意应使所有应变片的导线长度保持一致,以免产生电阻值的差异导致测量不准。
将应变仪调零,用万用表检查应变片与工件绝缘程度和阻值变化情况。
4.设置残余应力相应参数,用直径为2.0mm的砖头在应变片中心处打出深2.0mm的盲孔,记录残余应力数据。
五、实验数据记录
六、实验结果整理及分析
1. 焊接残余应力测试过程中哪些因素容易引起测量误差?如何减小误差?
1、应变片的粘贴质量。
应变片粘贴不好会引起数据漂移和精度下降。
2、钻孔装置安装时的对中偏心引起的误差。
钻孔前必须用专用对中显微镜调整中心位置。
3、钻孔时产生的附加应变。
它可以用两次钻孔并改变钻速的方法减小附加应变。
4、释放系数A、B值的误差。