焊接残余应力的测定讲解
- 格式:ppt
- 大小:816.00 KB
- 文档页数:48
实验二焊接残余应力的测定第一部分盲孔法测定焊接残余应力1. 实验目的(1)掌握盲孔法测定焊接接头中的焊接残余应力的方法;(2)加深对平板对接接头中焊接残余应力分布规律性的认识。
2. 实验装置及材料(1)盲孔法应力测定钻孔装(ZDL—II)1套;(2)数字式电阻应变仪(WS-3811)1台;(4)数字万用表1个;(5)焊板16Mn 500mm×260mm×8mm 2块;(6)应变花纸基TJ120—1.5—φ 1.5 9片;(7)钻头φ 1.5mm 1根;(8)100#砂布、丙酮、502胶水、直尺、划针、导线、锡焊工具等。
3. 实验原理工件经焊接加工后,其内部存在着残余应力场。
在应力场内任意处钻一个一定直径和深度的盲孔后,随该处金属的去除,其中的残余应力即被释放,应力场原有的平衡亦受到破坏,这时盲孔周围的应力将重新分布,应力场达到新的平衡。
盲孔周围的应变,其大小与被释放的应力是相对应的。
测出这种应变,根据弹性力学理论便可推算出盲孔处的内应力。
如果钻孔前应变片粘贴在孔的周围如图6-4所示,钻孔后应变片即可感受到释放应变。
测出钻孔前、后各应变片的应变值,便可按下式算出主应力σ1、σ2及纵向应力σX的大小及主应力的方向γ。
图6-4 盲孔法测内应力布片示意图(公式)式中A、B为应变释放系数,需进行标定实验来确定其数值。
用盲孔法测焊接残余应力时,A、B的值与孔径、孔深、孔与孔的相对位置、应变片尺寸以及被焊材料种类等有关。
经标定,本实验的A、B值为:(A、B值)4. 实验内容及步骤(1)实验准备①用砂布打磨试板上待测部位表面,然后用丙酮除去试板表面油污。
②对待用的应变片进行外观检查;用数字万用表测量其阻值,要求每片应变花上的三个应变片的阻值差≤± 0.1Ω。
③按图6-5用划针划线,定出钻孔和贴片的位置。
图6-5 钻孔位置图④将应变片待贴面用除油污,再滴上少许502胶水,涂匀,稍晾片刻后将应变片贴于试件待测点位置。
焊接结构残余应力分析摘要:焊接残余应力的存在,会直接影响到钢混结构的承载能力。
为了保证焊接结构的安全可靠,准确地推断焊接过程中的力学行为和残余应力是十分重要的。
对于焊接残余应力,以往多是采用切割、钻孔等试验测量方法,不但费时费力,而且受到许多条件的限制,结果数据误差也会很大。
关键词:焊接残余应力;有限元;对接焊缝一、焊接残余应力的概念焊接构件由焊接而产生的内应力称之为焊接应力,按作用时间可分为焊接瞬时应力和焊接残余应力。
焊接过程中,某一瞬时的焊接应力称之为焊接瞬时应力,它随时间而变化;焊后残留在焊件内的焊接应力称之为焊接残余应力。
焊接残余应力为热应力(主要为冷却应力),相变应力可再叠加其上。
在冷焊、扩散焊、滚轧敷层和爆炸敷层等情况下,冷加工作用力是残余应力的源泉,它可单独作用,也可能附加于上述热效应之上。
二、焊接残余应力产生的原因焊接过程是一个先局部加热,然后再冷却的过程。
焊件在焊接时产生的变形称为热变形,焊件冷却后产生的变形称为焊接残余变形,这时焊件中的应力称为焊接残余应力。
焊接应力包括沿焊缝长度方向的纵向焊接应力,垂直于焊缝长度方向的横向焊接应力和沿厚度方向的焊接应力。
焊接残余应力产生的主要原因是由焊接过程中不均匀加热所引起的。
焊接应力按其发生源来区分,有如下3种情况:(1)直接应力是进行不均匀加热和冷却的结果,它取决于加热和冷却时的温度梯度,是形成焊接残余应力的主要原因。
(2)间接应力是由焊前加工状况所造成的压力。
构件若经历过轧制或拉拔时,都会使之具有此类残余应力。
这种残余应力在某种场合下会叠加到焊接残余应力上去,而在焊后的变形过程中,往往也具有附加性的影响。
另外,焊件受外界约束产生的附加应力也属于此类应力。
(3)组织应力是由组织变化而产生的应力,也就是相变造成的比容变化而产生的应力。
它虽然因含碳量和材料其它成分不同而有异,但一般情况下,这种影响必须要加以考虑的是,发生相变的温度和平均冷却速度。
焊接残余应力的测定及消除方法作者:王秀峰来源:《世界家苑》2017年第02期摘要:在钢结构行业中,焊接作为至关重要的应用技术,其应用的范围非常广泛,具有许多显著的优势,但是也具有一定的缺陷,钢结构焊接的残余应力和焊接中出现的变形问题。
在钢结构焊接作业中,如果出现钢材结构的温度不均匀,就会导致钢材结构出现许多焊接残余应力,从而造成焊接的钢结构产生变形以及开裂问题,影响了钢结构焊接施工质量。
本文主要针对钢结构焊接作业中残余应力产生的原因进行了深入分析,并对残余应力的影响展开了探讨,并提出了控制钢结构残余应力和变形的方法。
关键词:钢结构;焊接;残余应力;变形引言随着现代化科学技术的快速发展,我国的焊接加工技术也在不断发展进步,现代化焊接加工技术具有比较明显的技术优势,能够提高钢结构焊接的精细化水平。
1、焊接应力与焊接变形的定义1)焊接应力:钢材在焊接过程中,焊件部位会因为焊接时的局部高温产生不均匀的温度场。
高温时,有一部分钢材会产生很大的膨胀和伸长,但由于受到邻近钢材的约束影响,会在焊件内部产生较大的收缩应力。
在焊接的过程中,这种收缩应力伴随着焊接时间的变化和温度的升降变化不断的改变,而这种收缩应力就被定义为焊接应力。
2)焊接变形:焊接构件在焊接及逐渐冷却的过程中,由于焊接构件局部受热且受热不均匀,同时焊接构件冷却也不均匀,因此焊接构件不仅会产生焊接应力,还会产生各种变形。
这种焊件产生的变形,被称为焊接变形。
2、钢结构焊接应力与焊接变形产生的原因在钢结构焊接的过程中,由于对焊接钢构件局部加热,使得焊缝附近区域的温度很高,而远离焊缝的金属基本上不受热,其温度与室内温度差不多。
在焊接钢构件局部加热的过程中,焊缝附近金属由于受热作用会产生膨胀。
而远离焊缝的金属未受热不发生膨胀,但却会严重制约焊缝附近金属的膨胀过程,这样使得焊缝附近金属会产生部分塑性变形。
同样,在焊接金属冷却时也会受到周边未加热金属的影响,制约了焊接金属自由塑性收缩,使整个焊接钢构件均产生了收缩现象,同时也会产生焊接应力及焊接变形,这样就使得焊接钢结构产生了各种变形。
《焊接残余应力应变测量》实验报告五、实验过程原始记录(数据、图表、计算等)应变花的贴片位置分布原始实验数据记录测量点1 2 3 距焊缝中心距离(mm )15.5 23.5 32.0 σ1(MPa ) 356.6 30.0 -28.6 σ2(MPa )155.5 -16.4 -74.9 θ 8.3 120 71.8 ε0 -293.4 14.3 58 εɑ -97.9 -35.2 50.3 ε2ɑ 8.1 -21.9 -0.3 σ0 352.4 -4.8 -70.4 σɑ 227.4 26.9 -65.5 σ2ɑ 159.6 18.4 -33.1 A -0.058 -0.058 -0.058 B -0.164 -0.164 -0.164 d 0 1.5 1.5 1.5 d 5 5 5 E(Gpa) 210 210 210 μ0.30.30.3161.5mm90.5mm120.0mm32.0m m15.5m m23.5m m312六、实验结果及分析1.实验结果分析上表为实验原始数据,红色字体部分数据是应力应变仪根据根据黑色字体部分的参数计算得到的,计算公式如下。
释放系数计算公式:2021A ⎪⎭⎫⎝⎛+-=d d μ⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛++-=402031421d d d d B μμ μ为泊松比E 为材料杨氏模量主应力及角度计算公式:()()⎥⎦⎤⎢⎣⎡-+-±+=20220221424AεεεεεεσααααB E ,αααεεεεεθ202022tan -+-=ααεεε20为各应变片的应变量,θ为σ1与0°位置的夹角纵向与横向残余应力计算公式:θσσσσσα2cos 22212120-±+=, 本实验中0ε为应变花中平行于焊缝的应变片所测应变,αε2为垂直于焊缝的应变片所测应变,0σ对应纵向残余应力,ασ2对应横向残余应力。
2.数值模拟计算与残余应力分布讨论基于MSC.Marc 有限元分析软件,针对本次实验所用的Q235薄板单道堆焊,建立有限元模型,并结合实验测试结果,计算和讨论了试件的纵向和横向的残余应力的大小及分布特征。
焊接残余应力分析及消除方法一、什么是焊接应力焊接应力,是焊接构件由于焊接而产生的应力。
焊接过程中焊件中产生的内应力和焊接热过程引起的焊件的形状和尺寸变化。
焊接过程的不均匀温度场以及由它引起的局部塑性变形和比容不同的组织是产生焊接应力和变形的根本原因。
当焊接引起的不均匀温度场尚未消失时,焊件中的这种应力和变形称为瞬态焊接应力和变形;焊接温度场消失后的应力和变形称为残余焊接应力和变形。
在没有外力作用的条件下,焊接应力在焊件内部是平衡的。
焊接应力和变形在一定条件下会影响焊件的功能和外观。
二、焊接应力的危害焊接残余应力对焊件有 6个方面的影响:①对强度的影响:如果在高残余拉应力区中存在严重的缺陷,而焊件又在低于脆性转变温度下工作,则焊接残余应力将使静载强度降低。
在循环应力作用下,如果在应力集中处存在着残余拉应力,则焊接残余拉应力将使焊件的疲劳强度降低。
焊件的疲劳强度除与残余应力的大小有关外,还与焊件的应力集中系数应力循环特征系数和循环应力的最大值有关其影响随应力集中系数的降低而减弱,随的降低而加剧,随的增加而减弱。
当接近于屈服强度时,残余应力的影响逐渐消失。
②对刚度的影响:焊接残余应力与外载引起的应力相叠加,可能使焊件局部提前屈服产生塑性变形。
焊件的刚度会因此而降低。
③对受压焊件稳定性的影响:焊接杆件受压时,焊接残余应力与外载所引起的应力相叠加,可能使杆件局部屈服或使杆件局部失稳,杆件的整体稳定性将因此而降低。
残余应力对稳定性的影响取决于杆件的几何形状和内应力分布。
残余应力对非封闭截面(如工字形截面)杆件的影响比封闭截面(如箱形截面)的影响大。
④对加工精度的影响:焊接残余应力的存在对焊件的加工精度有不同程度的影响。
焊件的刚度越小,加工量越大,对精度的影响也越大。
⑤对尺寸稳定性的影响:焊接残余应力随时间发生一定的变化,焊件的尺寸也随之变化。
焊件的尺寸稳定性又受到残余应力稳定性的影响。
⑥对耐腐蚀性的影响:焊接残余应力和载荷应力一样也能导致应力腐蚀开裂。
破坏性测量焊接残余应力的方法及应用秦飞虎,刘勇,杨金,李强,赵太源,李亚军(中国石油集团济柴动力有限公司成都压缩机分公司,四川 成都 610100)[摘 要] 焊接是金属材料制作和安装的一道重要工序,焊接过程中由于热胀冷缩引起的残余应力对工件机械性能、腐蚀性能、尺寸加工精度及稳定性有较大影响。
本文介绍了盲孔法、剥层法和切条法三种破坏性测量焊接残余应力的基本原理和方法,简述了各种测量方法的发展概况及应用现状,对评估工程结构焊件综合性能具有重要意义。
[关键词] 焊接残余应力;测量方法;破坏性;应用现状作者简介:秦飞虎(1974—),男,四川人,本科,高级工程师,主要研究方向为压缩机设计制造及性能评估相关工作。
焊接残余应力及变形一直是世界各国焊接专家、学者关注的问题。
焊接残余应力是由于焊接冷却时焊缝和焊缝附近的钢材受到周边材料的约束,不能自由收缩而产生的内应力。
焊接残余应力可分为沿焊缝长度方向的纵向焊接应力、垂直于焊缝方向的横向残余应力和沿厚度方向的焊接应力[1]。
焊接残余应力可引起焊接结构件的变形,甚至发生断裂现象。
因此为了进一步了解焊接工程中的残余应力,对工程结构件综合性能评估具有重要意义。
目前,焊接残余应力的测量方法可分为非破坏性(无损测量法)和破坏性(有损测量法),非破坏性测量法中X 射线法应用最为广泛,但只能测量材料表层残余应力,不能真实地反映焊接工件内部的应力分布;磁性法只适用于铁磁材料,而超声波检测法还处于实验室阶段,都不利于普遍推广应用[2-4]。
破坏性测量方法虽然对工件有损伤,但能真实反映出残余应力的分布状况,本文就三种破坏性测量方法盲孔法、剥层法和切条法进行介绍,了解它们测量的基本原理和特点,对选择合适的测量方法评估焊接残余应力具有重要意义。
1 测量方法1.1 盲孔法盲孔法又称钻孔法或小孔法,属于典型的局部破坏性测定方法,是破坏性测量方法中应用最为广泛的方法。
盲孔法是在焊接应力场内任意点处钻一个小孔,该点的应力被释放,残余应力重新分布,利用应力应变关系式换算出材料在焊接过程中产生的残余应力[5,6]。
(三)焊接变形的基本形式(四)应力测量原理焊接残余应力的测定方法,按其原理可分为应力释放法,x射线法与磁性法等.其中以应力释放法应用较为普遍.而应力释放法又...:焊接残余应力的测定实验目的:1学习采用应力释放法测量焊接残余应力的原理,初步掌握测定接头中焊接残余应力的操作技能;2、加深对于焊接接头中焊接残余应力分布规律性的理解;3、了解焊接法对于残余应力的峰值及分布的影响。
实验原理:(一)钢板中间加热温度达塑性变形温度范围弹塑性炙形加热厘度虚室也隻形葩S!內菊遑旻拉应力中间凳压应力的妾际伸长(二)钢板中间加热温度在弹性变形温度范围弹更性麦形加榆谨度在更柱麦刑临禹内弹塑性支形加热爼皮扈更性支形范禹由暉性变形禅性吏形如热锻度盛弹桂龙形范囲内弾桂仲氐炽热显曼虚弹性复形葩S!内两直炎ik血力中同受圧应力驗娈际伸收(三)焊接变形的基本形式波浪变形弯曲变形波浪变形弯曲变形焊接残余应力的测定方法,按其原理可分为应力释放法,x射线法与磁性法等。
其中以应力释放法应用较为普遍。
而应力释放法又可分为小孔法(盲孔法)、套孔法与梳状切条法,其中又以小孔法对于接头的破坏性最小。
本实验采用小孔法测定在钢板上敷焊后的焊接残余应力。
下图表示一块钻有小孔的钢板,在钢板的应力场中钻出一个小孔(盲孔)以后,应力场原来的平衡状态将受到破坏,使小孔周围的应力分布发生改变,应力场产生新的平衡。
若测得钻孔前后小孔附近应变量的差值,就可以根据弹性力学理论推算出小孔处的内应力。
为了测得这种应变量的变化,在离小孔中心一定部位处贴上应变片,且诸应变片间保持一定角度。
分别测出钻孔前后各应变片的应变值。
便可按下式算出主应力的大小和方向。
其中:2或彳应2(1 +円亠斥+代尸二+尸2:苻 ~~r r- 2mm r 2= 4 mm R二1 ・ 5 mm分别为钉J拙方向应变量建值:H为梢松I;匕职0.25 ;E为材料鹅性模量取210 X 10 9 Pa实验器材:1交流电焊机:用于钢板的敷焊2 yj-22型静态电阻应变测量处理仪yj-22 型静态电阻应变测量处理仪是一种带有8 0 3 9单片微处理机的应变仪,配合yj-22 型转换箱可进行自动测量。
残余应力测定方法(精)第二章残余应力测定方法残余应力的测定方法大致可分为机械测量法和物理测量法两类。
物理测量法包括X射线法、磁性法、和超声波法等。
它们分别利用晶体的X射线衍射现象.材料在应力作用下的磁性变化和超声效应来求得残余应力的量值。
它们是无损的测量方法。
其中X射线法使用较多,比较成熟,被认为是物理测量法中较为精确的一种测量方法。
磁弹性法和超声波法均是新方法,尚不成熟,但普遍地认为是有发展前途的两种测试方法。
物理法的测试设备复杂.昂贵.精度不高。
特别是应用于现场实测时,都有一定的局限性和困难。
机械方法包括切割法、套环法和钻孔法(下面主要介绍)等,它是把被测点的应力给予释放,并采用电阻应变计测量技术测出释放应变而计算出原有残余应力。
残余应力的释放方法是通过机械切割分离或钻一盲孔等方法,因此它是一种破坏性或半破坏性的测量方法,但它具有简单、准确等特点。
从两类方法的测试功能来说,机械方法以测试宏观残余应力为目的,而物理方法则测试宏观应力与微观应力的综合值。
因此两种方法测试的结果一般来说是有区别的。
一、分离法测量残余应力切割法和套环法都是将被测点与其邻近部分分开以释放残余应力,因此统称分离法。
它是测量残余应力的一种最简单的方法,多用于测量表面残余应力或沿厚度方向应力变化较小的构件上的残余应力。
(一)、切割法:在欲测部位划线:划出20mm×20mm的方格将测点围在正中。
在方格内一定方向上贴应变计和应变花,再将应变计与应变仪相连,通电调平。
然后用铣床或手锯慢速切割方格线,使被测点与周围部分分离开。
切割后,再测应变计得到的释放应变。
它与构件原有应变量值相同、符号相反,因此计算应力时,应将所得值乘以负号。
释放后的残余应力计算方法如下:1、如果已知构件的残余应力为单向应力状态,只要在主应力方向贴一个应变片(如图3.1)即可。
分割后得释放应变ε,由虎克定律可知其残余应力为:σ=-Eε(1)2、如果构件上残余应力方向已知,则在测点处沿主应力方向粘贴两个应变片1和2(如图3.2所示)。
(完整版)盲孔法测残余应力关于构件的残余应力检测(盲孔法检测)一、前言(1)应力概念通常讲,一个物体,在没有外力和外力矩作用、温度达到平衡、相变已经终止的条件下,其内部仍然存在并自身保持平衡的应力叫做内应力。
按照德国学者马赫劳赫提出的分类方法,内应力分为三类:第Ⅰ类内应力是存在于材料的较大区域(很多晶粒)内,并在整个物体各个截面保持平衡的内应力。
当一个物体的第Ⅰ类内应力平衡和内力矩平衡被破坏时,物体会产生宏观的尺寸变化。
第Ⅱ类内应力是存在于较小范围(一个晶粒或晶粒内部的区域)的内应力。
第Ⅲ类内应力是存在于极小范围(几个原子间距)的内应力。
在工程上通常所说的残余应力就是第Ⅰ类内应力。
到目前为止,第Ⅰ类内应力的测量技术最为完善,它们对材料性能和构件质量的影响也研究得最为透彻。
除了这样的分类方法以外,工程界也习惯于按产生残余应力的工艺过程来归类和命名,例如铸造应力、焊接应力、热处理应力、磨削应力、喷丸应力等等,而且一般指的都是第Ⅰ类内应力。
(2)应力作用机械零部件和大型机械构件中的残余应力对其疲劳强度、抗应力腐蚀能力、尺寸稳定性和使用寿命有着十分重要的影响。
适当的、分布合理的残余压应力可能成为提高疲劳强度、提高抗应力腐蚀能力,从而延长零件和构件使用寿命的因素;而不适当的残余应力则会降低疲劳强度,产生应力腐蚀,失去尺寸精度,甚至导致变形、开裂等早期失效事故。
(3)应力的产生在机械制造中,各种工艺过程往往都会产生残余应力。
但是,如果从本质上讲,产生残余应力的原因可以归结为:1.不均匀的塑性变形;2.不均匀的温度变化;3.不均匀的相变(4)应力的调整针对工件的具体服役条件,采取一定的工艺措施,消除或降低对其使用性能不利的残余拉应力,有时还可以引入有益的残余压应力分布,这就是残余应力的调整问题。
通常调整残余应力的方法有:①自然时效把构件置于室外,经气候、温度的反复变化,在反复温度应力作用下,使残余应力松弛、尺寸精度获得稳定。
3.3.1焊接残余应力测试方法焊接残余应力的测量始于20世纪30年代,至今已研究出数十种测量方法[47],可分为两大类,一类是机械测量法,例如小孔法、分割全释放法等,另一类是物理测量法,例如X 射线衍射法、超声波法等[48]。
机械测量法是将构件的一小部分从整体中分离或切割出来使应力释放,采用仪器测量出释放的应变大小,然后通过应力应变公式计算出焊接残余应力,其特点是对构件有一定的损伤;物理测量法虽然对被测构件无损害,但成本较高。
其中小孔法和X 射线衍射法是使用较多的,尤其以小孔法最多。
小孔法是J.Mather 于1934年提出的,该方法操作相对简单,测试成本较低,对构件破坏程度小,可测量各种金属和非金属材料的残余应力,但是盲孔法测量精度受许多因素的影响,例如孔边塑性变形、钻削附加应变、孔位偏移、孔径和孔深误差、应变片粘贴质量及灵敏度误差等,另外采用小孔法测量高残余应力时,应力集中会造成孔边屈服而产生的塑性变形,这会造成很大的测量误差。
3.3.2小孔法测量焊接残余应力原理如图3.8所示为测试点O 附近的应力状态,σ1和σ2为O 点的残余主应力。
在离O 点距离为r 的P 点处,σr 和σt 分别表示钻孔释放的径向应力和切向应力,φ为σr 和σ1的夹角[49]。
aσ1σ2r φOPσrσt图3.8 测试点O 附近的应力状态 Fig.3.8 The stress state near test point O根据弹性力学原理可得P 点的原有残余应力和与残余主应力σ1和σ2的关系为:'1212'1212cos 222cos 222r tσσσσσϕσσσσσϕ+-⎧=+⎪⎪⎨+-⎪=-⎪⎩ (3.1) 在测试点O 处钻一个半径为a 的小孔释放应力,由弹性力学可知,钻孔后的应力和分别为:242''121224224''12122434(1)(1)cos 2223(1)(1)cos 222r t a a a r r ra a r r σσσσσϕσσσσσϕ⎧+-=-++-⎪⎪⎨+-⎪=+-+⎪⎩ (3.2) 钻孔后,P 点应力释放量和为:''''''r r rt t tσσσσσσ⎧=-⎪⎨=-⎪⎩ (3.3) 将式(3.1)、式(3.2)代入式(3.3)中得:24212122422412122432()()()cos 2223()()cos 222r t a a a r r ra a r r σσσσσϕσσσσσϕ⎧=-++--⎪⎪⎨⎪=+--⎪⎩ (3.4) 同时,测试点O 钻完孔后,P 点应变片测量的释放应变εr 为:1)r r t Eεσμσ=-( (3.5)径向应变εr 与残余主应力σ1和σ2的关系为:24212122421132()(1)()cos 222r a a a E r E r r μεσσμσσϕ⎡⎤+=-⨯++--⨯-⎢⎥⎣⎦ (3.6)但因应变片长度l =r 2-r 1,所测应变εr 为l 内的平均值,即:21211r rmr r dr r r εε=-⎰ (3.7) 将式(3.6)代入式(3.7)中积分可得:1212()()cos2rm A B εσσσσϕ=++- (3.8)其中:2122222112222121212(1)()214a A E r r a r r r r a B Er r r r μμ+=-⨯⎡⎤+++=-⎢⎥⎣⎦(3.9) 式中,r 1=1.75mm ,r 2=3.25mm ,a =0.75,泊松比μ=0.3,弹性模量E =212Gpa 。